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 2 

16GT is a variant caller for Illumina whole-genome and whole-exome sequencing data. It 28 

uses a new 16-genotype probabilistic model to unify SNP and indel calling in a single variant 29 

calling algorithm. In benchmark comparisons with five other widely used variant callers on a 30 

modern 36-core server, 16GT demonstrated improved sensitivity in calling SNPs, and it 31 

provided comparable sensitivity and accuracy for calling indels as compared to the GATK 32 

HaplotypeCaller. 16GT is available at https://github.com/aquaskyline/16GT. 33 

 34 

Keywords 35 

Variant calling; Bayesian model; SNP calling; Indel calling 36 

 37 

Background 38 

Single nucleotide polymorphisms (SNPs) and insertions and deletions (indels) that occur at 39 

a specific genome position are interdependent; i.e., evidence that elevates the probability of 40 

one variant type should decrease the probability of other possible variant types, and the 41 

probability of all possible alleles should sum to 1. However, widely-used tools such as 42 

GATK's UnifiedGenotyper [1] and SAMtools [2] use separate models for SNP and indel 43 

detection. The model for SNP calling in these two tools is nearly identical: both assume all 44 

variants are biallelic (i.e., exactly two haplotypes are present) and use a probabilistic model 45 

allowing for 10 genotypes: AA, AC, AG, AT, CC, CG, CT, GG, GT, TT. For indel calling, the 46 

GATK UnifiedGenotyper uses a model from the Dindel's variant caller [3], while SAMtools’ 47 

model is from BAQ [4]. 48 

 49 

Findings 50 
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In order to detect SNPs and indels with a unified approach, we developed a new 16-51 

genotype probabilistic model and its implementation named 16GT. Building on an idea first 52 

introduced in Luo et al. [5], 16GT uses an empirically improved model and is the first publicly 53 

available implementation. Using X and Y to denote the indels with the highest (X) and 54 

second highest (Y) support, we add 6 new genotypes (AX, CX, GX, TX, XX and XY) to the 55 

traditional 10-genotype probabilistic model. The six new genotypes include: 1) one 56 

homozygous indel (XX); 2) one reference allele plus one heterozygous indel (AX, CX, GX, 57 

TX); 3) one heterozygous SNP plus one heterozygous indel (AX, CX, GX, TX, reusing the 58 

genotypes in 2); and 4) two heterozygous indels (XY). We exclude the 5 possible 59 

combinations AY, CY, GY, TY, YY because X has higher support than Y. By unifying SNP 60 

and indel calling in a single variant calling algorithm, 16GT not only runs 4 times faster, but 61 

also demonstrates improved sensitivity in calling SNPs and comparable sensitivity in calling 62 

indels to the GATK HaplotypeCaller. 63 

 64 

Posterior probabilities of these 16 genotypes are calculated using a Bayesian model 65 

P(L|F)∝P(F|L)P(L), where L is an assumed genotype. F refers to the observation of the 6 66 

alleles (A, C, G, T, X, Y) at a given genome position. P(L) is the prior probability of the 67 

genotype, P(F|L) is the likelihood of the observed genotype. and P(L|F) is the posterior 68 

probability of the genotype. The resulting genotype Lmax is assigned to the genotype with the 69 

highest posterior probability. The distance between the highest posterior probability and the 70 

second highest posterior probability is used as a quality metric in 16GT, along with some 71 

other metrics introduced by GATK (GATK , RRID:SCR_001876) [1]. 72 

 73 

 74 
 75 
Calculating the probability of an observation F given the genotype L 76 

To test how well an observation fits the expectation of different genotypes, we use a two-77 

tailed Fisher’s Exact Test P and use the resulting p-value as the goodness of fit. When 78 
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 4 

calculating the likelihood of a homozygous genotype, ideally we expect 100% single allele 79 

support from the observation. For example, consider genotype ‘AA’: 80 

𝑃(𝐹|′AA′) = 𝑃ℎ𝑜𝑚(𝐹𝐴) × 𝑃𝑒(𝐹𝐶 , 𝐹𝐺 , 𝐹𝑇 , 𝐹𝑋 , 𝐹𝑌) 81 

where Pe is the probability of an erroneous base call. 82 

For a heterozygous genotype, 50% support is expected for each allele in the genotype, for 83 

example consider ‘CG’:  84 

𝑃(𝐹|′𝐶𝐺′) = 𝑃ℎ𝑒𝑡(𝐹𝐶 , 𝐹𝐺) × 𝑃𝑒(𝐹𝐴,  𝐹𝑇 , 𝐹𝑋 , 𝐹𝑌) 85 

where 86 

𝑃ℎ𝑜𝑚(𝐹𝐴) = 𝑃 (
𝐹𝐴 𝐹

(1 − 𝑃𝑒𝑟𝑟)𝐹 𝐹
) 87 

𝑃ℎ𝑒𝑡(𝐹𝐶 , 𝐹𝐺) = √∏ 𝑃(
𝐹𝑖 𝐹

(0.5 − 𝑃𝑒𝑟𝑟)𝐹 𝐹
)

𝑖=𝐶,𝐺

 88 

𝑃𝑒(𝐹𝐴, 𝐹𝑇 , 𝐹𝑋, 𝐹𝑌) = 𝑃 (
𝐹𝐴 + 𝐹𝑇 + 𝐹𝑋 + 𝐹𝑌 𝐹

𝑃𝑒𝑟𝑟 × 𝐹 𝐹
) 89 

𝐹𝑠 =∑𝑓(𝑄𝑖, 𝑀𝑖, 𝑠)

𝑛

𝑖=1

     𝑠𝜖{𝐴, 𝐶, 𝐺, 𝑇, 𝑋, 𝑌} 90 

where s is the allele type, n is the number of reads supporting allele s, Qi is the base quality, 91 

and Mi is the mapping quality. f is a function describing how s, Qi and Mi change the 92 

observation: 93 

𝑓(𝑄𝑖, 𝑀𝑖, 𝑠) = 𝛼 × 𝛽 × 𝛾 

{
 
 
 
 

 
 
 
 

𝛼 = 0 𝑖𝑓 𝑀𝑖 = 0
𝛼 = 1 𝑖𝑓 𝑀𝑖 ≠ 0
𝛽 = 0 𝑖𝑓 𝑄𝑖 < 10

𝛽 = 1 𝑖𝑓 10 ≤ 𝑄𝑖 < 13
𝛽 = 2 𝑖𝑓 13 ≤ 𝑄𝑖 < 17
𝛽 = 3 𝑖𝑓 17 ≤ 𝑄𝑖 < 20
𝛽 = 4 𝑖𝑓 𝑄𝑖 ≥ 20

𝛾 = 1 𝑖𝑓 𝑠𝜖{𝐴, 𝐶, 𝐺, 𝑇}

𝛾 = 1.375 𝑖𝑓 𝑠𝜖{𝑋, 𝑌}

 94 

 95 

The possible reasons for an observation that does not match the reference genome are: 1) a 96 

true variant; 2) an error generated in library construction; 3) a base calling error; 4) a 97 

mapping error; and 5) an error in the reference genome. Reasons 3 and 4 are explicitly 98 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 5 

captured in our model. For reasons 2 and 5, we include two error probabilities, Ps for SNP 99 

error and Pd for indel error. We define Perr=Ps+Pd, where Ps and Pd are set to 0.01 and 0.005, 100 

respectively. These two values were set empirically based on the observation that SNP 101 

errors are more common than indel errors in library construction and in the reference 102 

genome. 103 

 104 

In addition, most short read aligners use a dynamic programming algorithm to enable 105 

gapped alignment, using a scoring scheme that usually penalizes gap opening and 106 

extension more than mismatch. Consequently, authentic gaps that occur at an end of a read 107 

are more likely to be substituted by a set of false SNPs or alternatively to get trimmed or 108 

clipped. Thus, we applied a coefficient γ to weight indel observations more than SNPs, in 109 

order to increase the sensitivity on indels. 110 

 111 

Calculating the probability of the genotype L 112 

Given 1) a known rate of single nucleotide differences between two unrelated haplotypes; 2) 113 

a known rate of single indel differences between two unrelated haplotypes; and 3) a known 114 

Transitions to Transversions ratio (Ti/Tv), the 16GT model’s prior probabilities are calculated 115 

as shown in Table 1.  116 

 117 

 118 

 119 

 120 

 121 

Table 1. P(L), Genotype prior probabilities for a reference allele ‘A’. 
Hom.: homozygous. Het.: heterozygous. 
 

L Zygosity 
Number 
of SNPs 

Number of 
Indels 

Number of 
Transversions 

Prior 
Probability 

P(L) 

AA Hom. - - 0 1 

GG Hom. 1 0 2 θ/2*ε*ε 
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 6 

CC, TT Hom. 1 0 0 θ/2 

AG Het. 1 0 1 θ*ε 

AC, AT Het. 1 0 0 θ 

CG, GT Het. 2 0 1 θ*θ/2*ε 

CT Het. 2 0 0 θ*θ/2 

AX Het. 0 1 0 ω 

GX Het. 1 1 1 ω*θ/2*ε 

CX, TX Het. 1 1 0 ω*θ/2 

XX Hom. 0 1 0 ω/2 

XY Het. 0 2 0 ω*ω/2 

 122 

Given 1) a known rate θ of single nucleotide differences between two unrelated haplotypes; 123 

2) a known rate ω of single indel differences between two unrelated haplotypes; and 3) a 124 

known Transitions to Transversions ratio (Ti/Tv) ε, where transition is expected to occur 125 

more frequently than transversion under selective pressure. The default known rates for 126 

human genome are: 𝜃 = 0.001, 𝜔 = 0.0001, 𝜀 = 2.1, where ε is set to the value for human 127 

and needs to be changed for other species.  128 

 129 

Results 130 

We benchmarked 16GT with GATK UnifiedGenotyper, GATK HaplotypeCaller (GATK , 131 

RRID:SCR_001876) [1], Freebayes (FreeBayes, RRID:SCR_010761) [6], Fermikit [7], ISAAC 132 

(Isaac, RRID:SCR_012772) [8] and VarScan2 [9] using a set of very high-confidence variants 133 

developed by the Genome-in-a-bottle (GIAB) project for genome NA12878 (Coriell Cat# 134 

GM12878, RRID:CVCL_7526) [10] (version 2.19, Additional File 1: Supplementary Note). 135 

The results are shown in Table 2 and as ROC curves in Supplementary Figure 1. 136 

 137 

Table 2. Benchmark comparisons between 16GT and five other variant callers on a dataset from the Genome in a 
Bottle project consisting of 787M read pairs (53-fold) from genome NA12878. UG: GATK UnifiedGenotyper; HC: 
GATK HaplotypeCaller. FP: false positive, FN: false negative. 
 

Caller 

Time 
(minutes 

w/ 36 
cores) 

SNP Indel 

TP 

FP 

FN TP 

FP 

FN 
Total 

dbSNP 
138 

dbSNP 
138 % 

TP in 
Omni 

2.5 
Total 

dbSNP 
138 

dbSNP 
138 % 
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 7 

16GT 121 2,663,179 5,346 4,220 79% 20/20 918 167,549 1,462 944 65% 3,180 

UG 29 2,655,608 1,639 563 34% 15/15 8,489 163,839 624 546 88% 6,890 

HC 539 2,653,684 419 143 34% 4/4 10,413 168,444 1,232 726 59% 2,285 

Freebayes 52 2,655,513 724 353 49% 11/14 8,584 162,505 559 0 0% 8,224 

Fermikit 45 2,567,672 2,036 509 25% 9/9 96,425 161,916 1,996 1,076 54% 8,813 

ISAAC 63 2,659,438 1,115 586 53% 15/15 4,659 158,642 1,239 710 57% 12,087 

VarScan2 136 2,658,358 1,680 718 43% 10/10 5,739 158,906 574 481 84% 11,823 

 138 

For SNPs, 16GT produced the most true positive calls and the fewest false negative calls; 139 

i.e. it has the highest sensitivity and specificity among all tools. 79% of 16GT's false positive 140 

calls were also reported by dbSNP version 138, which is highest among other callers. 141 

However, we should point out that the GIAB variant set is biased towards GATK because it 142 

was primarily derived from GATK-based analyses, as reported previously [11]. As an 143 

orthogonal test, we further assessed the false positive calls against a set of unbiased calls 144 

made by the Illumina Omni 2.5 SNP array (Additional File 1: Supplementary Note). Among 145 

the 5,346 false positive calls for 16GT, 20 were covered by the Omni array and all 20 (100%) 146 

had the correct genotype. Although limited by the small number of measurable alleles in the 147 

Illumina Omni 2.5 SNP array, only allowing us to reassess 20 ‘false positive' calls as true 148 

positives, the observation that all 20 genotypes out of the 20 covered alleles are correct 149 

suggests that a number of the remaining “false positive" calls are actually correct. 150 

 151 

For indels, 16GT produced slightly fewer true positive calls and slightly more false negative 152 

calls than HaplotypeCaller, but less than half as many false negative calls as 153 

UnifiedGenotyper. 65% of 16GT's false positive indels were covered by dbSNP version 138. 154 

Further investigation into the 1,462 false positive indels shows that 981 (67%) of them meet 155 

all three of the following criteria: 1) at least three reads supporting the variant; 2) at least one 156 

read supporting both the positive and negative strands, and; 3) in over 80% of the reads that 157 

support the variant, there exists no other variant in its flanking 10bp. This suggests that 158 

some of these “false positives” might be correct, although further experimental validation 159 
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 8 

would be required to confirm this suggestion. Supplementary Figure 2 shows three 160 

examples where the putative false positive from 16GT is likely to be correct. 161 

 162 

Conclusions 163 

16GT is the firstly publicly available implementation using a 16-genotype probabilistic model 164 

for variant calling. Compared with local assembly based variant callers, 16GT provides 165 

better sensitivity in SNP calling and comparable sensitivity in indel calling. In the current 166 

implementation, 16GT can only be applied to germline variant detection. In the future, we will 167 

enhance 16GT to support multi-sample variant calling and GVCF output, to support somatic 168 

variant detection and extend the model to support variant calling in species with more than 169 

two haplotypes. 170 

 171 
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We appreciate the constructive comments from the editor and all the reviewers as well as their 
extra work on the evaluation of 16GT.  
 
Editor 
---------------------- 
Comments: 
 
1. One referee flags the comparisons you make, so please make sure there is 
sufficient comparisons and citation of the state-of-the-art in this field (e.g. 
its been highlighted on the pre-print that Scalpel, VarScan2, VarDict, Mutect2 
and Strelka have not been included as benchmarks). 
 
Response: 
The comparison to VarScan2 has been added to the manuscript. Table 2 now comprises comparisons to six 
germline variant callers including two state-of-the-art callers named GATK-HC and Freebayes, and four 
other callers named, GATK-UG, Fermikit, ISAAC and VarScan2. VarDict, Mutect2 and Strelka are somatic 
variant callers, thus not compared to 16GT. Scalpel is an indel caller that doesn’t detect SNPs, thus we did 
not compare it to 16GT. (Please note that one of us – MCS – is a co-author of Scalpel, so we know it well.) 
 
 

 
Reviewer: 1 
---------------------- 
 
The authors present a new model that can call both SNPs and INDELs by 
expanding the number of possible allele states to 16. The paper is well 
written, the model is an interesting contribution, and the results are 
compelling. I would like to see a little more detail in a few sections of the 
paper. 
 
The standard method for communicating the true positive / false negative trade 
off in variant calling is a ROC-style line plot. The shape of this curve can 
be insightful for readers who need place their experiments at different points 
along this plot depending on the particulars of their experiment. Since table 
2 only reports a single point on that curve, the readers do not have this 
context. It is also not clear that these numbers represent comparable points 
along their curves. 
 
Response: 
We have added 7 ROC curves to our analysis, all shown in supplementary figure 1. 
 
 
I don't understand why the proportion of false positives in dbSNP v138 is 
interesting when calling against NA12878 and why having a higher proportion in 
dnSNP v183 is better. I recognize that these are polymorphic sites, but what 
about that property is relevant to this analysis? 
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Response: 
For a set of variants that are reported by any variant caller, previous studies show that variants found in 
dbSNP are much more likely to be true positives, because as you say these sites are known to be 
polymorphic in the population. Thus for any variant caller, a higher rate of overlap with dbSNP suggests a 
higher true positive rate. Similarly, if a "false positive" is also reported as a variant in dbSNP, previous 
studies suggest that it might not be false at all. This is why we mention how many of 16GT's "false" 
predictions are found in dbSNP - it suggests that some of them are true rather than false. 
 
The idea has been utilized in multiple papers and presentations. Here I list and excerpt from three of them: 
 
1) Screening the human exome: a comparison of whole genome and whole transcriptome sequencing, 
Cirulli et al., 2010. “SNVs called in the gDNA and cDNA were also compared with entries in dbSNP. It was 
found that 90% of the gDNA exonic SNVs corresponded to a dbSNP entry, while this was true of only 56% 
of the cDNA SNVs. However, a further breakdown revealed that 94% of the true positive cDNA SNVs 
corresponded to a dbSNP entry, while only 23% of the false positives did the same. The false negatives 
corresponded to dbSNP entries 89% of the time.” 
Link: https://dx.doi.org/10.1186%2Fgb-2010-11-5-r57 
 
2) Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples, Cibulskis 
et al., 2013. “Figure 3d: Somatic miscall error rate for true germ-line heterozygous single-nucleotide 
polymorphism sites by sequencing depth in the normal sample when the site is known to be variant in the 
population (in dbSNP) and previously unknown (not in dbSNP)” 
Link: http://www.nature.com/nbt/journal/v31/n3/full/nbt.2514.html 
 
3) Improving the Specificity of SNP Calls in the 1000 Genomes Project, Melgar et al., 2009. “Slide 7: SNPs 
that passed filter have 91% dbSNP. SNPs removed by filter have 33% dbSNP” 
Link: 
https://www.broadinstitute.org/files/shared/diversity/summerprogram/2009/mmelgar_presentation.pdf 
 
We agree that the suggestion is relative not absolute. Thus, we highlighted in the manuscript that further 
experimental validation would be required to confirm this observation. 
 
 
The model has several "empirically defined" parameters. It would be nice to 
describe this analysis so that users could modify the parameters for their own 
experiments. For example, the model will need to be retuned for long reads. 
 
Response: 
Empirically defined parameters include Ps: SNP error rate, Pd: Indel error rate, θ: rate of single nucleotide 
differences between two unrelated haplotypes, and ω: rate of single indel differences between two 
unrelated haplotypes. We found that the appropriate values for these appear to be stable across different 
species including human, thus we do not suggest that users modify them. For advanced users, we added 
comments to the code such that users can change the parameters easily. One thing that should change is 
ε, which is the transitions to transversions ratio, and we have now highlighted in the manuscript that ε is 
preset to the value for human and it needs to be changed for other species. 
 
 
16GT does not appear to support multi-sample calling. I think the model 
presented here is good, but unless the software can handle many samples, or at 
least produce a GVCF, it may see little use. 
 
Response: 
We highlighted in the discussion that our next step to extend 16GT’s functionality will include 1) 
supporting multi-sample variant calling and GVCF output, 2) supporting somatic variant detection, and 3) 



extending the model to support variant calling in species with more than two haplotypes 
 
 
- Ryan Layer, University of Utah 
 
 
 
Reviewer: 2 
---------------------- 
 
Luo, R. etc described a new 16GT variant caller optimized for Illumina 
sequencing data that uses a new 16-genotype probabilistic model to unify SNP 
and indel calling.  They demonstrated the improved sensitivity for SNPs and 
comparable accuracy for indels comparing to GATK HaplotypeCaller, using genome 
of NA12878 in GIAB project.  16GT more comprehensively models 16 genotypes to 
unify SNP and indel calling in the same algorithm.  16GT appears to be a 
useful alternative tool for analyzing germline sequencing using Illumina 
platform. 
A few comments: 
 
1. Need to emphasize that at least at the moment, 16GT can only be applied to 
germline sequencing using Illumina sequencing platform, and not appropriate 
for cancer genome sequencing, especially clinical cancer samples, where tumor 
cellularity varies greatly and not fit those models. 
 
Response: 
We now emphasize in the conclusion that, for now, 16GT can only be applied to germline variant 
detection. In the future, we will improve 16GT to support multi-sample variant calling and GVCF output, to 
support somatic variant detection and extend the model to support variant calling in species with more 
than two haplotypes. 
 
 
2. Can authors comment on whether increased sensitivity of SNPs is due to 
incorporation of indels into the model, or are those additional SNPs called 
have indel as the 2nd allele? 
 
Response: 
16GT model performs better than the traditional 10-genotype model at a lower depth and when the 
authentic variant signals are mingled with noise of the other type. For example, investigation into the 
3,710 Indels that detected by 16GT but missed in UnifiedGenotyper shows that 95.7% of them are lower 
than the mean depth and mingled with at least one mismatch. We observed additional SNPs with indels 
as the 2nd allele being called by 16GT than UnifiedGenotyper but not the HaplotypeCaller. 
 
 
3. Can authors discuss the limitations of 16GT? What's the indel size 
limit?  Should sex chromosomes be treated differently if gender is known? 
 
Response: 
The largest indel 16GT can detect is bounded by the aligner used for input generation. 16GT’s algorithm 
has no limit on indel sizes. The 16GT implementation automatically detects the input gender and treats 
sex chromosomes differently. 
 
 
4. I'm not keen to highlight better indel performance over GATK's 
UnifiedGenotyper, as it's known to be not a good indel caller, and not widely 



used for indels nowadays. 
 
Response: 
We agree with the reviewer that UnifiedGenotyper is not widely used for indels after HaplotypeCaller has 
released. But since 16GT and UnifiedGenotyper are both Bayesian model based, a comparison between 
16GT and UnifiedGenotyper can give readers some clues on how the better model improves the 
performance on indel calling. Note, also this is just one of the many comparisons we have included. 
 
 
5. Given the run time in Table 2, I'm not sure "16GT ran faster" should be in 
the abstract. 
 
Response: 
We removed “ran faster” from the abstract. 


