SUPPLEMENTARY FIGURE LEGENDS

Figure S1: Icicle representation and analysis in MiSTIC

A) MiSTIC Introductory web page. The main menu of MiSTIC is presented at the top in bold with 3 tabs for access to the "Datasets and Icicle" view, to "Single gene correlation analysis" (waterfall format) and to "Pair-wise correlation scatterplots". The list of datasets available on the server can be sorted or filtered in the Datasets and Icicle view to identify the appropriate dataset to visualize. Each row corresponds to a dataset available on the MiSTIC server. The first four columns (dataset, tissue, project and technology) are name tags for which the key is displayed as column header. Columns can be reordered, sorted and each one can be used for reordering datasets alphabetically (here, the project tags were used). The search box dynamically limits the dataset presented in this view by filtering on all tags. 'n' indicates the number of samples used for each dataset and the 'icicle' link leads to the icicle page (blue arrow). B) Basic icicle view visualizing the correlation peaks in the selected dataset. By clicking on individual grey grid circles, the corresponding threshold(s) can be indicated with bold lines for easier reference. Enrichment in a specific gene set can be mapped onto the icicle by entering the appropriate type, category, and geneset terms in the search boxes in the geneset enrichment tool (red arrow). C) A specific gene can be located in the cluster with which it correlates most using the "Locate" tool (red arrow). The corresponding peak or layer appears in red in the icicle representation. D) Selection of another dataset in the "Dataset comparison" tool (red arrow) superimposes a colour-coded conservation score onto each cluster; the scale ranges from light blue (for the least conserved clusters) to dark blue (for the most conserved ones). The Kappa coefficient associated with each cluster appears when holding the cursor on this cluster.

Figure S2: Gene correlation analysis in MiSTIC

A) Clusters of co-expressed genes correspond to sub-graphs of the minimum spanning tree and can be viewed in a graph form with edges representing the optimal pair-wise correlation between genes (nodes); a table of enriched gene sets is shown at the upper right side of the screen). P values (Fisher's exact test) and odds ratios are provided for each gene set, as well as its name, type category and ID. Upon selection of a gene set, pertinent genes in the cluster are highlighted in orange with a list at the top of the graph in orange letters (selection). Alternatively, individual genes can be iteratively selected by clicking on the corresponding tags in the graph, providing links to different databases (lower right side of the screen) for the last selection. Clicking on the Scatterplot tab generates scatterplots for each pair of selected genes (blue arrow) B) Pair-wise scatterplots are presented in a table format with gene names shown on the diagonal. Each scatter plot represents the relation between expression levels of the two corresponding genes in all patient samples of the current data set. Scales are logarithmic and use untransformed data, with all values below 0.0105 being replaced by 0.01. Samples can be highlighted by clicking on any dot or using the gating tool (which displays the proportion of samples in the selection). Specimen identifiers are shown at the bottom of the screen in plain text (HTML) to allow simple export of these selections using copy/paste. Samples can also be highlighted by selection of a clinical feature ("Select a characteristic" menu). A sample selection can be saved by clicking on the + sign in the "Highlight groups" tool box (blue arrow). Enrichment in clinical characteristics appears in the "Sample term enrichment" tab (red arrow). C) The sample selection saved in the first group appears in orange by default. The color can be modified by clicking on the colored dot in the "Highlight groups" tool box (red arrow), and a name can be attributed to the sample selection (Group 1 by default). Groups of samples can be removed from this selection by clicking on the - sign.

The selection can be removed using the trash icon. Finally, the samples in the selection can be highlighted in green by clicking on the arrow. New groups can be added to track simultaneously several groups of samples (see examples in **Fig 7** and Figs **S6C&8C**) D) in the "**Single gene correlations**" display (red arrow), both dataset and query gene are selected from the menu ("*Dataset*" and "*Gene*" tabs). The most correlated or anticorrelated genes (10 by default, but the number of labels to display can be increased in the "*More options*" menu) are shown in a waterfall display. Enrichment in selected gene sets ("*Gene set tab*") is visualised by blue ticks on the X axis of the graph.

Figure S3: Comparing gene expression clusters in cancer and/or normal tissues with MiSTIC.

A) Leucegene AML (dataset 1, **Table S1**) icicle highlighted for conservation with CD34+ cells (dataset 5, **Table S1**). B) TCGA breast cancer (dataset 7, **Table S1**) icicle highlighted for conservation with colon cancer (dataset 24, **Table S1**).

Figure S4: The AML HOXA/B cluster includes transcription factors PBX and Meis1

A) Minimum spanning tree representation of the *HOXA-MEIS-PBX* cluster from the NK-AML dataset (#4, **Table S1**). B-C) Waterfall representation of genes correlated to *MEIS1* in leukemia (dataset #4, **Table S1**) (B) and in lung cancer from TCGA (dataset #23, **Table S1**) (C).

Figure S5: Use of the Toggle label option for improved visualization of the correlation graph structure.

The cell cycle cluster in the TCGA breast cancer dataset is visualized with (A) or without (B) labels.

Figure S6: TP63 and FOXC1 correlation clusters enriched in the PAM50 gene set.

Genes present in the correlation peaks containing TP63 and FOXC1 are shown.

Figure S7: Use of the Locate gene set tool for visualization of the genes in a set.

Genes in the PAM50 (A) or Oncotype Dx (B) gene sets are visualized on the TCGA breast cancer icicle, revealing genes in these signatures that are found in different correlation peaks or in large clusters of less correlated genes.

Figure S8: Analysis of sample enrichment in the breast cancer dataset

A-B) Samples in the breast cancer dataset (#7) were ordered according to expression levels of AURKA and CENPA, which are highly correlated (r=0.83). Windows corresponding to low (A) or high (B) expression levels of these genes were manually selected. The sample term enrichment list indicates strong enrichment in PAM50 subtypes LumA and Basal. C) Tumors annotated as LumA, LumB, HER2+ and Basal were selected from the "Select a characteristic" list and highlighted in different colors in the "Highlight groups" tool-box by adding selected samples with the + tool. Names were attributed to each group by clicking on the colored dot and entering the name in the label box.

Figure S9: Discrepancies between ER and HER2 levels defined by immunohistochemistry and by mRNA levels.

A) Breast tumors were sorted according to expression levels of *ESR1* and *ERBB2*, defining four subpopulations, i.e. *ESR1*^{hi}*ERBB2*^{lo} (orange) *ESR1*^{hi}*ERBB2*^{hi} (blue) *ESR1*^{lo}*ERBB2*^{hi} (purple) *ESR1*^{lo}*ERBB2*^{lo} (dark grey). B-C) ER+ tumors were selected (B) and added to a new highlight group of tumors. *ESR1*^{hi} tumor group were then selected and removed from this group to generate an ER+*ESR1*^{lo} group of tumors, highlighted in red (C). D) Sorting the ER+ *ESR1*^{lo} tumors for expression levels of *GREB1* and *ESR1* indicates that these tumors express mostly low levels of *GREB1* in spite of being classified as ER+ tumors. E) Conversely, ER-*ESR1*^{hi} tumors were highlighted by selection of ER- tumors and removal of the *ESR1*^{lo} groups. F) Expression levels of *GREB1* are high in most ER-*ESR1*^{hi} tumors, suggesting active ER signaling. G) HER2+*ERBB2*^{lo} tumors were highlighted by selection of HER2+ tumors and removal of the *ERB2*^{hi} group. H) HER2+*ERBB2*^{lo} tumors express low levels of *GREB7*.

Figure S10: Analysis of sample enrichment in the AML Leucegene dataset

A-B) Samples in the AML Leucegene dataset (#1) were ordered according to expression levels of *AURKA* and *CENPA*, which are highly correlated (r=0.87). Windows corresponding to low (A) or high (B) expression levels of these genes were manually selected. The sample term enrichment list indicates strong enrichment in categories Heparinized blood and Bone marrow. C) Tumors annotated as Blood or Bone marrow were selected from the "*Select a characteristic*" list and highlighted in different colors in the "*Highlight groups*" tool-box by adding selected samples with the + tool. This was done in an iterative manner to pool the two Blood or the two Bone marrow in the label box. Characteristic "Disease free survival < 3 yrs" was selected in the "*Select a characteristic*" window, highlighting relevant samples in green.

Figure S11: Analysis of cell line transcriptome datasets.

A) Icicle comparison between the CCLE and GNE datasets B) Icicle comparison between the CCLE and breast cancer datasets C) enrichment in the gene set associated with epithelial differentiation in normal breast tissue in a peak of the CCLE dataset. D) GRHL2 and RAB25, two genes of the epithelial differentiation gene set, separate groups of cell lines enriched in hematopoietic-lymphoid origin vs carcinoma annotations in the CCLE dataset. E) Distribution of breast cancer, lung cancer and melanoma cell lines between the two clusters, suggesting mesenchymal characteristics for variable proportions of cell lines for each cancer type in the CCLE dataset.

Figure S12: Analyzing correlations between miRNAs and protein-coding genes.

A) Icicle generated from the TCGA breast cancer miRNA dataset (dataset 17 in **Table S1**). Comparison with the TCGA breast normal miRNA dataset (dataset 16 in **Table S1**) is shown. The number of features is lower and fewer peaks are formed compared to protein-coding gene datasets. Enrichment analysis can be performed as above to assess whether miRNA clusters are linked to individual chromosomal loci (whether due to amplification/deletion or to co-localization in miRNA clusters) or coregulated by common TFs. B) Icicle generated from the fusion of the TCGA breast normal datasets for miRNAs and protein-coding genes, resulting in the "BRCA miRNA coding normal" dataset (dataset 19 in **Table S1**). The miRNAs *MIR200A*, *MIR200B*, *MIR200C* and *MIR141* are found in the "Epithelial differentiation" peak (highlighted in blue). C) The waterfall tool indicates high anti-correlations of *MIR200A/B/C* with several genes (highlighted in blue) found in the "mesenchymal/adipocyte differentiation" peak (highlighted in red in B). These miRNAs are known to target *ZEB1/ZEB2* (1, 2), which

are part of this cluster. D) ZEB/AREB6 sites are enriched in the "Epithelial differentiation" gene cluster, consistent with a reciprocal transcriptional/post-transcriptional regulation between genes in these two clusters. Accordingly, reciprocal down-regulation between *GRHL2* and *ZEB1* has recently been described (3), and *MIR200A/B/C* and several "Epithelial differentiation" genes have been shown to be down-regulated by ZEB1/2 (1).

SUPPLEMENTARY REFERENCES

- 1. Bracken CP, *et al.* (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. *Cancer research* 68(19):7846-7854.
- 2. Diaz-Lopez A, Moreno-Bueno G, & Cano A (2014) Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives. *Cancer Manag Res* 6:205-216.
- 3. Cieply B, Farris J, Denvir J, Ford HL, & Frisch SM (2013) Epithelial-mesenchymal transition and tumor suppression are controlled by a reciprocal feedback loop between ZEB1 and Grainyhead-like-2. *Cancer research* 73(20):6299-6309.

С

Fig S1

ets and leicle] Single pore corre	iaton Painvos constation scatterpols Help								PDF
Nodes selection () all Clear Copy Go to Scatterpiet	Options () Change labels Toggle labels			/		Occedent Envictment Test Results			
\sim						Bearch:			Copy Several U
	• Code		P-value *	Q-salue (Dess :	Name TCGA-69CA Delloyde	0 Type 0	MISTIC	62
		• (Stard)	5.07e-	7.03e-	222.30	GOBERT_OLIGODENDROCYTE_DIFFERENTIATION_UP	neiptb	CROSP	M2368
_			1.85e-	1.000-	218.23	Breast_Wisspatch_355genes_AURKA_Module	GeneSigDB	Ennant	3208
			1.10e- 189	7.64e- 187	322.04	Genes downegulated by Vitamin D (Calcinio) from the Comparativ Toxicogenomics Database	* super_peres	стр	29
- CO	V E-V		8.68e- 150	5.37#- 165	170.53	down T47D ELPS overexpression	nicroanaya	Dreast concer cell lines	95
	- VZ		4.10e- 160	1.89e- 167	446.19	SOTIRIOU_BREAST_CANCER_GRADE_1_VS_3_UP	nsigdo	CROSP	M2786
			2.82e- 159	5.12a- 156	141.75	down siPool 1 MCP7	meroamiyo	Dreast concer cell lines	
			1,440- 187	5.00e- 168	195.19	DUTERTRE_ESTRADIOL_RESPONSE_XHIR_UP	meigdb	CROSP	M2156
• HA22			2.04e- 196	6.28e- 164	472.27	ROSTY, GERVION, GANGER, PROLIFERATION, GLUSTER	neigdb	CROOP	M15864
-			2.330- 194	6.46e- 162	120.25	Breast, Miler05, p53	GeneSigDB	Dreast	259
	46 / X	TOPIA Nicona Topia	Showing I to 18 of 2,775	rities			First Previous		6 5 Not La
		and the second s	Gene : ALRIKA :	urora kinar	eΑ				
		2744	0010: 8888	BL OD	CARDO	DITREDUDIE WROPEDIA			
	- Contraction of Cont		Ersenbi						
			E-standards						

В × [Datase Datasets (1)
+ BRCA_Sum **K**ivî Choose clates Choose dataset Genes (3) Sect a gone CETE CALLER CONST Samples (3) Highligh propa Const 7 • E2F1 E2F transcription factor 1 Mean = 2.67 Std = 0.36 [245, 4.62] 0 48 0 1 T X + - 8 # K AURKA survive Minaster A bleast = 2.91 Std = 0.35 (3.01, 4.96) New group • •
 P.
 A
 O Selected ()
 Key Main

 4.56
 140
 22.2
 250/076
 subtype, (Mido): Lunk

 5.36
 8-40
 30.0
 63.16
 subtype, (Mido): Lunk

 1.26
 1.26
 .
 .
 .
 .
 (nos Neen - 3.5 555 - 0.35

Fig S2

Fig S3

Fig S4

Α

Fig S5

Fig S6

В

В

Fig S7

С

ę	Sample term enrichment								
٦	Number of selected points with annotations : 65/78								
	P- 🔺 Odds 🌲		Selected 🖕	Key : Value					
	3.4e- 10	11.9	54/73	Clinical.tissue : Heparinised blood					
	6.9e- 4	4.4	66/120	Cytogenetics.MLL translocations : 0					
	6.9e-								

С

CCLE GNE

D

В

A

Supp Table 1: Lists of datasets

Project and Dataset names	Dataset id	Tissue/Type of Cancer	Sub category	Source	Nb. Specimens	Technology	Description
AML Leucegene RNASeq	1	AML	Various karyotypes	BCLQ	152	RNASeq	Gene Expresion Omnibus (GSE49642, GSE52656, GSE62190, GSE67040, GSE67039
AML NK Leucegene RNASeq	2	AML	Normal karyotype	BCLQ	48	RNASeq	Gene Expresion Omnibus (GSE49642, GSE52656, GSE62190, GSE67040, GSE67039
LAML tumor TCGA RNASeq	3	AML	Various karyotypes	TCGA	179	RNASeq	PMID: 23634996
LAML tumor NK TCGA RNASeq	4	AML	Normal karyotype	TCGA	89	RNASeq	PMID: 23634996
CD34+/CD34+CD45RA- Leucegene RNASeq	5	Cord blood	CD34+	Héma-Qc	17	RNASeq	Gene Expresion Omnibus (GSE48846)
BRCA normal TCGA RNASeq	6	Breast	Normal	TCGA	102	RNASeq	PMID: 23000897
BRCA tumor TCGA RNASeq	7	Breast	Cancer	TCGA	754	RNASeq	PMID: 23000897
BRCA tumor TCGA RNASeq ER+	8	Breast	Cancer - ER+	TCGA	553	RNASeq	PMID: 23000897
BRCA tumor TCGA RNASeq ER-	9	Breast	Cancer - ER-	TCGA	165	RNASeq	PMID: 23000897
BRCA tumor TCGA RNASeq HER2+	10	Breast	Cancer - HER2+	TCGA	105	RNASeq	PMID: 23000897
BRCA tumor TCGA RNASeq HER2-	11	Breast	Cancer - HER2-	TCGA	606	RNASeq	PMID: 23000897
BRCA tumor TCGA RNASeq triple negative	12	Breast	Cancer - Triple -	TCGA	117	RNASeq	PMID: 23000897
BRCA tumor TCGA RNASeq not triple negative	13	Breast	Cancer - Not triple -	TCGA	637	RNASeq	PMID: 23000897
BRCA tumor TCGA RNASeq luminal A	14	Breast	Cancer - Luminal A	TCGA	276	RNASeq	PMID: 23000897
BRCA tumor TCGA RNASeq luminal B	15	Breast	Cancer - Luminal B	TCGA	192	RNASeq	PMID: 23000897
BRCA miRNA normal	16	Breast	Normal	TCGA	87	RNASeq	PMID: 23000897
BRCA miRNA tumor	17	Breast	Cancer	TCGA	659	RNASeq	PMID: 23000897
BRCA miRNA coding normal	18	Breast	Normal	TCGA	80	RNASeq	PMID: 23000897
BRCA miRNA coding tumor	19	Breast	Cancer	TCGA	440	RNASeq	PMID: 23000897
KIRC normal TCGA RNASeq	20	Kidney	Normal	TCGA	68	RNASeq	PMID: 23792563
KIRC tumor TCGA RNAseq	21	Kidney	Cancer	TCGA	470	RNASeq	PMID: 23792563
LUAD normal TCGA RNASeq	22	Lung	Normal	TCGA	37	RNASeq	PMID: 22980975
LUAD tumor TCGA RNASeq	23	Lung	Cancer	TCGA	129	RNASeq	PMID: 22980975
COAD tumor TCGA RNASeq	24	Colon	Cancer	TCGA	192	RNASeq	PMID: 22810696
CCLE	25	Cell lines	Cancer	CCLE	917	Affymetrix	PMID: 22460905
GNE_RPKM	26	Cell lines	Cancer	GDSC	675	RNASeq	PMID: 25485619
GNE_VSD	27	Cell lines	Cancer	GDSC	675	RNASeq	PMID: 25485619

Supp. Table 2. Patient annotations.

BCLQ ID	Exome sequenced (HiSeq)	Transcriptome sequenced (HiSeq)	Chemical screen	(OHW) XQ	DX (short)	DX (FAB)	Age	Sex	Karyotype (seq)	Normal karyotype	Blasts (%)	Tissue	WBC x 10 ¹ / L	NPM1 (exon Mut2)	FLT-3-ITD	CD34 (%)	Total reads	Passing filters	Mapped reads	Basepairs	% Mapped reads	Mean Exon RPKM
02H053	1	1	0	AML without maturation	AML	M1	60	м	46,XY[20]	1	96%	Bone Marrow	99.0	Mut	Mut	0	2.54E+08	2.44E+08	1.66E+08	1.38E+10	68%	19.72
02H066	1	1	0	AML without maturation	AML	M1	53	F	46,XX[22]	1	95%	Bone Marrow	125.0	Mut	Mut	2	2.02E+08	1.90E+08	1.38E+08	1.10E+10	73%	18.76
03H041	1	1	0	Acute monoblastic and monocytic leukaemia	AML	M5	4/	F	46,XX[22]	1	83%	Bone Marrow	102.0	WI Mut	Mut	28	1.39E+08	1.34E+08	9.89E+07	8.31E+09	74%	18.52
03H119	1	1	0	AML without maturation	AMI	M1	55 68	м	46,XX[21] 46 XY[20]	1	97%	Bone Marrow	6.4	WILL W/T	WT	98	2.10E+08 2.40E±08	2.03E+08	1.02E+08	1.16E+10 1.35E+10	75%	14.71
04H024	1	1	ō	AML without maturation	AML	M1	45	F	46.XX[21]	1	76%	Bone Marrow	231.0	Mut	WT	8	2.36E+08	2.19E+08	1.69E+08	1.39E+10	77%	17.76
04H112	1	1	0	AML without maturation	AML	M1	64	F	46,XX[21]	1	91%	Bone Marrow	361.2	Mut	Mut	36	3.14E+08	2.90E+08	2.11E+08	1.75E+10	73%	18.73
04H133	1	1	0	AML without maturation	AML	M1	62	F	46,XX[20]	1	91%	Bone Marrow	60.3	Mut	Mut	1	2.54E+08	2.39E+08	1.85E+08	1.48E+10	77%	18.75
05H050	1	1	0	Acute myelomonocytic leukaemia	AML	M4	61	М	46,XY[20]	1	94%	Bone Marrow	80.6	WT	Mut	10	2.44E+08	2.13E+08	1.62E+08	1.31E+10	76%	18.09
05H094	1	1	0	Acute monoblastic and monocytic leukaemia	AML	M5B	35	М	46,XY[23]	1	94%	Bone Marrow	68.4	Mut	WT	24	2.41E+07	2.25E+07	1.61E+07	1.19E+09	72%	15.49
05H149	1	1	0	AML without maturation	AML	M1	55	M	46,XY[20]	1	80%	Blood	30.5	WT	WT	98	1.35E+08	1.17E+08	8.95E+07	6.36E+09	76%	15.38
05H163	1	1	0	Amil without maturation	AML	MI	20	M	46,XY[22]	1	86%	Blood	136.0	VV I	VV I	96	1.31E+08	1.29E+08	1.03E+08	7.46E+09	80%	15.//
06H028	1	1	0	AMI without maturation	AMI	M1	70	F	46,XX[11]	1	95%	Bone Marrow	258.8	Mut	WT	2	2 40E±08	2.32E±08	1.18E+08	1.27E+10	83%	13.40
06H045	1	1	1	AML with maturation	AML	M2	30	F	46.XX[22]	1	70%	Bone Marrow	16.6	WT	WT	70	9.58E+07	9.41E+07	6.89E+07	5.07E+09	73%	15.74
06H144	1	1	0	AML without maturation	AML	M1	71	F	46,XX[20]	1	90%	Blood	56.1	Mut	WT	2	2.75E+08	2.62E+08	2.09E+08	1.34E+10	80%	11.95
07H042	1	1	1	Acute myeloid leukaemia, NOS	AML	NC	23	М	46,XY[20]	1	83%	Blood	69.0	Mut	Mut	7	1.40E+08	1.37E+08	1.06E+08	7.88E+09	77%	16.67
07H062	1	1	0	AML without maturation	AML	M1	58	м	46,XY[20]	1	90%	Blood	105.0	Mut	Mut	28	1.53E+08	1.51E+08	1.22E+08	8.82E+09	81%	16.51
07H135	1	1	0	AML without maturation	AML	M1	67	м	46,XY[20]	1	97%	Blood	106.7	Mut	Mut	2	2.38E+08	2.24E+08	1.79E+08	1.32E+10	80%	15.91
08H048	1	1	1	AML without maturation	AML	M1	45	M	46,XY[21]	1	96%	Blood	127.7	WT	WT	41	2.20E+08	2.14E+08	1.59E+08	1.32E+10	74%	18.28
09H031	1	1	1	AML with myelodysplasia-related changes	AMI	M1	52 54	F	46,X1[20]	1	85%	Blood	28.3	Mut	Mut	10	2.40E+08	2.31E+08	1.00E+08	1.23E+10 1.31E+10	72%	17.83
09H043	1	i	0	AML without maturation	AMI	M1	53	M	46.XY[21]	1	80%	Bone Marrow	33.2	Mut	Mut	8	2.00E+08	1.91F+08	1.49E+08	1.16E+10	78%	17.48
09H083	1	1	0	AML without maturation	AML	M1	63	F	46,XX[20]	1	94%	Blood	65.3	Mut	Mut	5	2.73E+08	2.56E+08	2.10E+08	1.21E+10	82%	13.76
09H111	1	1	0	Acute monoblastic and monocytic leukaemia	AML	M5B	59	F	46,XX[21]	1	80%	Blood	46.8	Mut	WT	2	1.98E+08	1.90E+08	1.54E+08	1.22E+10	81%	16.14
09H113	1	1	1	AML without maturation	AML	M1	56	М	46,XY[22]	1	95%	Bone Marrow	68.7	WT	WT	96	2.02E+08	1.91E+08	1.54E+08	9.47E+09	81%	14.54
09H115	1	1	0	AML without maturation	AML	M1	46	М	46,XY[24]	1	90%	Blood	101.0	WT	Mut	3	1.78E+08	1.72E+08	1.40E+08	8.64E+09	82%	15.00
10H031	1	1	0	Acute monoblastic and monocytic leukaemia	AML	M5B	25	F	46,XX[27]	1	73%	Blood	184.6	WT	WT	47	2.94E+08	2.77E+08	2.28E+08	1.60E+10	82%	14.51
10H038	1	1	0	AML with minimal differentiation	AML	MO	67	F	46,XX[20]	1	91%	Blood	147.8	WI	WI	99	2.78E+08	2.61E+08	2.04E+08	1.28E+10	78%	13.98
10H052	1	1	0	Acute myeloid leukaemia, NOS	AMI	M1	57	F	46,XX[20] 46 XX[18]	1	83%	Bone Marrow	6.3	WILL W/T	WT	97	2.40E+08	2.35E+06 1.45E±08	1.00E+08	8.34E±09	76%	20.04
10H072	1	1	ō	Acute monoblastic and monocytic leukaemia	AML	M5B	69	M	46.XY[20]	1	77%	Bone Marrow	23.5	Mut	WT	1	2.00E+08	1.92E+08	1.61E+08	1.08E+10	84%	15.71
10H089	1	1	0	Acute myeloid leukaemia, NOS	AML	NC	49	F	46,XX[26]	1	80%	Blood	4.0	WT	WT	11	3.45E+08	3.32E+08	2.53E+08	1.62E+10	76%	14.41
10H092	1	1	0	AML without maturation	AML	M1	69	F	46,XX[21]	1	90%	Bone Marrow	72.9	Mut	Mut	0	1.32E+08	1.11E+08	8.65E+07	6.37E+09	78%	16.14
10H095	1	1	0	AML without maturation	AML	M1	65	F	46,XX[24]	1	91%	Blood	52.0	Mut	Mut	0	1.08E+08	1.00E+08	8.09E+07	5.47E+09	81%	13.64
10H101	1	1	0	AML with myelodysplasia-related changes	AML	M1	49	F	46,XX[22]	1	70%	Bone Marrow	24.5	Mut	Mut	1	1.87E+08	1.80E+08	1.42E+08	8.53E+09	79%	15.06
10H115	1	1	0	AML without maturation	AML	M1	43	M	46,XY[23]	1	88%	Bone Marrow	21.6	Mut	Mut	0	2.33E+08	2.22E+08	1.76E+08	1.06E+10	79%	14.41
10H166	1	1	0	Acute myelomonocytic leukaemia	AML	M4	63	M	46,XY[20]	1	89%	Blood Bono Marrow	226.2	Mut	Mut	1	4./3E+0/	4.51E+07	3.61E+07	2.62E+09	80%	15.57
11H006	1	1	0	Acute monoblastic and monocytic leukaemia	AMI	M2	20 53	м	46,XX[23] 46 XY[20]	1	94% 70%	Blood	17.6	WILL W/T	Mut	6	1.97E+08	1.00E+08	9.75E±07	5.78E±09	82%	14.50
11H021	1	1	ō	AML with maturation	AML	M2	21	F	46.XX[20]	1	70%	Blood	23.1	WT	Mut	97	9.90E+07	9.30E+07	7.20E+07	4.99E+09	77%	15.03
11H058	0	1	0	AML without maturation	AML	M1	58	м	46,XY[20]	1	90%	Bone Marrow	1.6	Mut	Mut	1	2.13E+08	2.07E+08	1.59E+08	1.23E+10	77%	17.48
11H072	1	1	0	AML with maturation	AML	M2	52	F	46,XX[20]	1	80%	Blood	32.2	Mut	Mut	0	1.54E+08	1.47E+08	1.16E+08	7.69E+09	79%	14.50
11H083	1	1	0	Acute monoblastic and monocytic leukaemia	AML	M5A	52	м	46,XY[20]	1	80%	Blood	77.1	Mut	Mut	0	1.48E+08	1.41E+08	1.09E+08	7.83E+09	78%	15.93
11H095	1	1	0	Therapy-related myeloid neoplasms	t-AML	M5A	50	м	46,XY[20]	1	87%	Bone Marrow	1.4	WT	WT	0	8.47E+07	8.03E+07	6.40E+07	4.99E+09	80%	17.71
11H126	1	1	U	Acute monoplastic and monocytic leukaemia	AML	M5B	/4 50	M	46,XY[21]	1	68%	Bone Marrow	12.9	Mut	W I	3	1.16E+08	1.10E+08	9.08E+07	7.00E+09	83%	16.14
11H151	1	1	1	AMI without maturation		M1	52 61	M	40,77[21]	1	78%	Blood	53.3	Mut	Wt	5	2 40E±08	2.33E±08	1.42C+00	1.30E+10	76%	15.57
11H160	1	i	ò	Acute myelomonocytic leukaemia	AML	M4	36	F	46.XX[22]	1	65%	Blood	84.8	WT	Mut	56	3.16E+08	3.02E+08	2.48E+08	1.93E+10	82%	16.44
12H030	1	1	1	AML with minimal differentiation	AML	MO	78	М	46,XY[20]	1	93%	Blood	144.8	WT	WT	94	2.36E+08	2.29E+08	1.76E+08	1.29E+10	77%	16.15

DX (FAB): NC, Not classifiable by FAB criteria

Supp Table 3

Supplementary Table 3. Genesets used for enrichment analysis in MiSTIC

geneset type	description	# genesets	website	version	main references (PMID)
chipseq	refseq genes and mirna	291	http://www.pazar.info/ http://genome.ucsc.edu/ENCODE/		23375374
Chromosome	chromosome and cytoband for refseq genes and mirna (UCSC cytoBand, refGene and wgRna annotation tracks)	841	http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/_		24270787 12700172 15608248 17991681 21527027 21720365 22895193 23060745 23090075 23000807
CNV	TCGA Copy Number Analysis consensus atabase integrating numan molecular interaction networks (protein-protein, genetic, metabolic, signaling, gene	469	http://qdac.broadinstitute.org/runs/analyses 2014 01 15/		23622249 23634996
CPDB	regulatory and drug-target)	4576	http://ConsensusPathDB.org http://cpdb.molgen.mpg.de/CPDB/	27 (12.08.2013)	23143270
GeneFamilies	Gene Families / Transcription Factor	1383	http://www.genenames.org/http://tfclass.bioinf.med.uni-goettingen.de/tfclass		23245209 23180794
GeneSigDB	Gene Signature DataBase	3485	http://compbio.dfci.harvard.edu/genesigdb/	4	22110038
GO	Gene Ontology	12600	http://www.geneontology.org/		10802651
microarrays	Gene sets extracted from microarray experiments	85			
miRNA	miRecords miRNA-target interactions	1257	http://mirecords.biolead.org/	4	18996891
MSigDB	Molecular Signatures Database	8513	http://www.broadinstitute.org/gsea/msigdb/index.jsp	3.1	16199517
			http://ctdbase.org/ http://rulai.cshl.edu/cgi-		
Target genes	Target genes sets Transcription factor binding site predictions within 10kb, 5kb or 2.5kb of	47	bin/TRED/tred.cgi?process=searchTFGeneForm		17202159 23093600 20887958
TFBS	transcription start site of refseq genes and mirna	2568			17986456 16381825

chipseq

Cat	Name	nmid
TF	AB I NCaP cells DHT	18971253
TF	ARNT LOVO cells	23953112
TF	ATF3 K562 cells	22955616
TF	BCL3 K562 cells	22955616
TF	BCLAF1 K562 cells	22955616
TF	CBX3 K562 cells	22955616
TF	CEBPB K562 cells	22955616
TF	CEBPB MCF7 cells	22955616
TF	ChIP-chip AR MCF7 cells	23375374
TF	ChIP-chip SPDEF MCF7 cells	23375374
TF	ChIP-chip XBP1 MCF7 cells	23375374
TF	CREB1 K562 cells	22955616
TF	CREB1 LoVo cells	23953112
TF	CREB3L4 LoVo cells	23953112
TF	CTCF K562 cells	22955616
TF	CTCF MCF7 cells	22955616
TF	CTCFL K562 cells	22955616
TF	E2f1 HeLa-S3 cells	22955616
TF	E2F4 Human mesenchymal stem cells	18971253
TF	E2F6 K562 cells	22955616
TF	EGR1 K562 cells	22955616
TF	EGR1 K562 cells PMA	18971253
TF	EGR1 MCF7 cells	22955616
TF	ELF1 K562 cells	22955616
TF	ELF1 MCF7 cells	22955616
TF	ESR1 LoVo cells	23953112
11-	ESR1 MCF7 cells E2	18971253
11-	ETS1 K562 cells	22955616
	ETST RWPE-T CEIIS	189/1253
	FOSIMUE/ Cells E2	211/902/
T	FOSLI KSBZ CEIIS	22955010
TE	FOSE2 MICF7 cells	19071252
TE	FOXA1 MCF7 cells E2	22055616
TF	GABPA HI 60 cells	22955616
TE	GABPA K562 cells	22955616
TF	GABPA MCF7 cells	22955616
TF	GATA2 K562 cells	22955616
TF	GATA3 MCF7 cells	22955616
TF	GATA3 MCF7 cells E2	18971253
TF	GR A549 cells 100nM DEX	22955616
TF	GRHL2 primary bronchial epithelial cells	23690579
TF	HEY1 K562 cells	22955616
TF	HOXA1 LoVo cells	23953112
TF	HOXA10 LoVo cells	23953112
TF	JUND MCF7 cells	22955616
TF	KLF4 embryonic stem cells	18971253
TF	MAX K562 cells	22955616
TF	MAX MCF7 cells	22955616
TF	MCF7 cells RARA	20080953
TF	MEF2 K562 cells	22955616
TF	MYB LoVo cells	23953112
TF	Mybl2 HepG2 cells	22955616
TF	MYBL2 LoVo cells	23953112
TF	Nfkb GM12891 cells	22955616
TF	NFKB2 LoVo cells	23953112
TF	NKX2.2 LoVo cells	23953112
TF	NKX31 LNCaP cells	18971253
TF	NR2F2 K562 cells	22955616
IF	NR2F2 MCF7 cells	22955616
11	NK5F ML60 cells	22955616
	NK5F K562 CEIIS	22955616
TC TC	NKSF MICF7 Cells	22955616
TC TC	PDA1 WICH/ Cells	189/1253
т	PIVIL NJUZ CEIIS	22955616
т		22900010
TF	PLL1 K562 cells	22955616
TF	RAD21 K562 cells	22955616
TF	RAD21 MCF7 cells	22955616
TF	RARG LOVO cells	23953112
 TF	Rxra HepG2 cells	22955616

Supp Table 3

TF	SIN3AK20 K562 cells	22955616
TF	SIN3AK20 MCF7 cells	22955616
TF	SIX5 K562 cells	22955616
TF	SOX2 LoVo cells	23953112
IF TE	SP1 K562 cells	22955616
TE	SPDEF MCF7 cells	24043118
TF	SRF K562 cells	22955616
TF	SRF MCF7 cells	22955616
TF	STAT5A K562 cells	22955616
TF	TAF1 K562 cells	22955616
TF	TAF1 MCF7 cells	22955616
1F	TAF7 K562 cells	22955616
TE	TEAD4 K562 cells	22955616
TF	TEAD4 MCF7 cells	22955616
TF	TFAP2C MCF7 cells	18971253
TF	THAP1 K562 cells	22955616
TF	TP53 IMR90 cells	18971253
TF	TR4 HepG2 cells	22955616
TF	TRIM28 K562 cells	22955616
IF TE	USF1 K562 cells	22955616
TE	78TB33 K562 cells	22955616
TF	ZBTB7A K562 cells	22955616
microarrays		
Cat	Name	nmid
Breast cancer cell lines	down MCF7 12h vs 0h E2	17013392
Breast cancer cell lines	down MCF7 24h E2	17986456
Breast cancer cell lines	down MCF7 24h E2 CHX	17986456
Breast cancer cell lines	down MCF7 3h vs 0h E2	17013392
Breast cancer cell lines	down MCF7 6h vs 0h E2	17013392
Breast cancer cell lines	down MCF7 CHX RA 8h	Rozendaal M et al. in prep.
preast cancer cell lines Breast cancer cell lines	down MCE7 TSA 24b	Kuzendaai IVI et al. in prep.
Breast cancer cell lines	down MCF7 TSA 3h	ismail H et al. in prep. Ismail H et al. in prep.
Breast cancer cell lines	down siFSR1 MCF7	22174013
Breast cancer cell lines	down siFoxA1 MCF7	21151129
Breast cancer cell lines	down siFoxA1 MCF7 E2	21151129
Breast cancer cell lines	down siGATA3 MCF7	23172872
Breast cancer cell lines	down siGATA3 MCF7 E2	23172872
Breast cancer cell lines	down SKBR3 CHX RA 8h	Rozendaal M et al. in prep.
Breast cancer cell lines	down SKBR3 FOXA1 overexpression	Rozendaal M et al. in prep.
Breast cancer cell lines	down SKBR3 GATA3 overexpression	Rozendaal M et al. in prep.
Breast cancer cell lines	down SKBR3 Herceptin 24h	Rozendaal M et al. in prep.
Breast cancer cell lines	down SKBR3 RA 24h	Rozendaal M et al. in prep.
Breast cancer cell lines	down SKBR3 RA 8h	Rozendaal M et al. in prep.
Breast cancer cell lines	down SKBR3 RA+Herceptin 24h	Rozendaal M et al. in prep.
Breast cancer cell lines	down SKBR3 SOX9	Rozendaal M et al. in prep.
Breast cancer cell lines	reg MCF7 E2 24h	17986456
Breast cancer cell lines Breast cancer cell lines	reg MCF7 RA 8h	Rozendaal M et al. in prep.
Breast cancer cell lines	up MCF7 12h vs 0h F2	17013392
Breast cancer cell lines	up MCF7 24h E2	17986456
Breast cancer cell lines	up MCF7 24h E2 CHX	17986456
Breast cancer cell lines	up MCF7 3h vs 0h E2	17013392
Breast cancer cell lines	up MCF7 6h vs 0h E2	17013392
Breast cancer cell lines	up MCF7 CHX RA 8h	Rozendaal M et al. in prep.
Breast cancer cell lines	up MCF7 RA 8h	Rozendaal M et al. in prep.
Breast cancer cell lines	up MCF7 TSA 24n	Ismail H et al. in prep.
Breast cancer cell lines	up MCF7 TSA Sh	22174013
Breast cancer cell lines	up siFoxA1 MCF7	21151129
Breast cancer cell lines	up siFoxA1 MCF7 E2	21151129
Breast cancer cell lines	up siGATA3 MCF7	23172872
Breast cancer cell lines	up siGATA3 MCF7 E2	23172872
Breast cancer cell lines	up SKBR3 CHX RA 8h	Rozendaal M et al. in prep.
preast cancer cell lines Breast cancer cell lines	UP SNOKS ELF3 OVEREXPRESSION	Rozendaal M et al. in prep.
Breast cancer cell lines	up SKBR3 FOXO3A overexpression	Rozendaal M et al. in prep.
Breast cancer cell lines	up SKBR3 GATA3 overexpression	Rozendaal M et al. in prep.
Breast cancer cell lines	up SKBR3 Herceptin	Rozendaal M et al. in prep.
Breast cancer cell lines	up SKBR3 RA 24h	Rozendaal M et al. in prep.
Breast cancer cell lines	up SKBR3 RA 8h	Rozendaal M et al. in prep.
Breast cancer cell lines	up SKBR3 RA+Herceptin 24h	Rozendaal M et al. in prep.
Breast cancer cell lines	up SOX9 SKBR3 overexpression	Rozendaal M et al. in prep.
Breast Cancer Co-Expressio Breast Cancer Co-Expressio	r module #1 EK: estrogen signaling r module #10 ECM : extracellular matrix	24516633
Breast Cancer Co-Expressio	r module #10 Prolif: cell proliferation	24516633
Breast Cancer Co-Expressio	r module #2 Dev/Basal: development/differentiation	24516633
Breast Cancer Co-Expressio	r module #3 Immune	24516633
Breast Cancer Co-Expressio	r module #4 Immune	24516633
Breast Cancer Co-Expressio	r module #5 Immune	24516633
Breast Cancer Co-Expressio	r module #6 Histone	24516633
Breast Cancer Co-Expressio	r moaule #7 ERBB2	24516633
Breast Cancer Co-Expressio	r module #8 Mixea	24010000
Signature	Breast Cancer ENDOPREDICT	21807638
Signature	Breast Cancer GGI	16478745
Signature	Breast Cancer Mammaprint	11823860
Signature	Breast Cancer molecular subtype [CIT]	21785460
Signature	Breast Cancer molecular subtype [CIT] - cluster a (basL)	21785460
Signature	Breast Cancer molecular subtype [CIT] - cluster b (cycle/proliferation)	21/85460
Signature	Breast Cancer molecular subtype [CIT] - cluster c (IumA) Breast Cancer molecular subtype [CIT] - cluster d (AR)	21785460
Signature	Breast Cancer molecular subtype [CIT] - cluster e1 (lumB)	21785460
5	······	

Supp Table 3

Signature	Breast Cancer molecular subtype [CIT] - cluster e2 (ESR1)	21785460
Signature	Breast Cancer molecular subtype [CIT] - cluster f (lumA/normL)	21785460
Signature	Breast Cancer molecular subtype [CIT] - cluster g (mApo)	21785460
Signature	Breast Cancer molecular subtype [CIT] - cluster h (normL)	21785460
Signature	Breast Cancer molecular subtype [claudin-low vs others]	20813035
Signature	Breast Cancer molecular subtype [PAM50]	19204204
Signature	Breast Cancer molecular subtype [TNBC]	21633166
Signature	Breast Cancer molecular subtype [TNBC] - BASAL -LIKE 2 (cluster 3)	21633166
Signature	Breast Cancer molecular subtype [TNBC] - BASAL-LIKE1 (cluster 2)	21633166
Signature	Breast Cancer molecular subtype [TNBC] - IMMUNOMODULATORY (clu	21633166
Signature	Breast Cancer molecular subtype [TNBC] - LUMINAL AR (cluster 7)	21633166
Signature	Breast Cancer molecular subtype [TNBC] - MESENCHYMAL (cluster 5)	21633166
Signature	Breast Cancer molecular subtype [TNBC] - MESENCHYMAL STEM-LIKE (c 21633166
Signature	Breast Cancer molecular subtype [TNBC] - UNSTABLE (cluster 1)	21633166
Signature	Breast Cancer OncotypeDx	15591335

target genes

Cat	Name	pmid
CTD	Genes downregulated by Dihydrotestosterone (DHT) from the Compara	23093600
CTD	Genes downregulated by Doxorubicin from the Comparative Toxicogen	23093600
CTD	Genes downregulated by estrogen from the Comparative Toxicogenomi	23093600
CTD	Genes downregulated by retinoic acid from the Comparative Toxicogen	23093600
CTD	Genes downregulated by Tamoxifen from the Comparative Toxicogenor	23093600
CTD	Genes downregulated by TSA from the Comparative Toxicogenomics Da	23093600
CTD	Genes downregulated by Vitamin D (Calcitriol) from the Comparative To	23093600
CTD	Genes regulated by Dihydrotestosterone (DHT) from the Comparative T	23093600
CTD	Genes regulated by Doxorubicin from the Comparative Toxicogenomics	23093600
CTD	Genes regulated by estrogen from the Comparative Toxicogenomics Da	23093600
CTD	Genes regulated by retinoic acid from the Comparative Toxicogenomics	23093600
CTD	Genes regulated by Tamoxifen from the Comparative Toxicogenomics D	23093600
CTD	Genes regulated by TSA from the Comparative Toxicogenomics Databas	23093600
CTD	Genes regulated by Vitamin D (Calcitriol) from the Comparative Toxicog	23093600
CTD	Genes upregulated by Dihydrotestosterone (DHT) from the Comparative	23093600
CTD	Genes upregulated by Doxorubicin from the Comparative Toxicogenom	23093600
CTD	Genes upregulated by estrogen from the Comparative Toxicogenomics	23093600
CTD	Genes upregulated by retinoic acid from the Comparative Toxicogenom	23093600
CTD	Genes upregulated by Tamoxifen from the Comparative Toxicogenomic	23093600
CTD	Genes upregulated by TSA from the Comparative Toxicogenomics Datab	23093600
CTD	Genes upregulated by Vitamin D (Calcitriol) from the Comparative Toxic	23093600
E2F ChIP-chip	E2F regions 1.5kb TSS MCF7	17908821
Erg ChIPseq	Erg regions within 50kb of a gene in HPC-7 cells	20887958
ESR1	Estrogen targets	15001666 17986456
ESR1	Known ERE	17986456
Fli-1 ChIPseq	Fli-1 regions within 50kb of a gene in HPC-7 cells	20887958
Gata2 ChIPseq	Gata2 regions within 50kb of a gene in HPC-7 cells	20887958
Gfi1b ChIPseq	Gfi1b regions within 50kb of a gene in HPC-7 cells	20887958
Lmo2 ChIPseq	Lmo2 regions within 50kb of a gene in HPC-7 cells	20887958
Lyl1 ChIPseq	Lyl1 regions within 50kb of a gene in HPC-7 cells	20887958
Meis1 ChIPseq	Meis1 regions within 50kb of a gene in HPC-7 cells	20887958
MiSTIC peak	TCGA-BRCA Cell cycle	
MiSTIC peak	TCGA-BRCA EGR/FOS normal	
MiSTIC peak	TCGA-BRCA FOXC1 Triple negative	
MiSTIC peak	TCGA-BRCA GRHL2 normal	
MiSTIC peak	TCGA-BRCA ZEB1 normal	
Pu.1 ChIPseq	Pu.1 regions within 50kb of a gene in HPC-7 cells	20887958
RAR (RARa, RARb or RARg)	Known RARE	16081280
RAR (RARa, RARb or RARg)	Retinoic acid targets	12401878
Runx1 ChIPseq	Runx1 regions within 50kb of a gene in HPC-7 cells	20887958
Scl ChIPseq	Scl regions within 50kb of a gene in HPC-7 cells	20887958
Transcriptional Regulatory	EAP1 targets	17202159
Transcriptional Regulatory	EAP2 targets	17202159
Transcriptional Regulatory	EE2F targets	17202159
Transcriptional Regulatory	EGR targets	17202159
bimodal genes	TCGA-BRCA tumor Bimodality Index >1.5	
bimodal genes	TCGA-BRCA tumor Bimodality Index >1.2	

Supplemen Selected e	tary Table 4: nriched gene	Geneset enrichment in the epithelial, mesenchymal/adipocyte and sets in the Epithelial differentiation peak (second cluster from the t	(ap)		
P-value	Odds	Name	Type	Cat	ID
8.29e-12	4.90	GRHL2 primary bronchial epithelial cells [25kb TSS]	chipseq	TF	60
9.98e-18	8.23	GRHL2 primary bronchial epithelial cells [10kb TSS]	chipseq	TE	237
2.83e-14	7.85	GRHL2 primary bronchial epithelial cells [5kb TSS]	chipseq	TF	139
8.29e-12	4.90	GRHL2 primary bronchial epithelial cells [25kb TSS]	chipseq	TF	60
1.17e-7	30.73	TECHLINGER EPITHELIAL TO MESENCHYMAL TRANSITION DN	msigdh	C2/CGP	M1417
1.01e-4	18.39	BOSCO EPITHELIAL DIFFERENTIATION MODULE	msigdb	C2/CGP	M2533
1.41e-3	41.67	REACTOME_TGF_BETA_RECEPTOR_SIGNALING_IN_EMT_EPITHELIAL	1msigdb	C2/CP:REACTOME	M627
1.59e-3	38.89	TGF-beta receptor signaling in EMT (epithelial to mesenchymal transition	CPDB	Reactome	3870
7.00e-3	288.08	columnar/cuboidal epithelial cell development	qo	BP	2066
7.00e-3	288.08	epithelial-mesenchymal signaling involved in prostate gland developme	100	BP	60738
1.05e-2	144.03	intestinal epithelial cell development	qo	BP	60576
1.39e-2	96.02	epithelial cell maturation involved in prostate gland development	ao	BP	60743
1.39e-2	96.02	negative regulation of epithelial cell migration	qo	BP	10633
1.39e-2	96.02	secretory columnal luminar epithelial cell differentiation involved in pro-	sqo	BP	60528
1.69e-2	5.84	SARRIO_EPITHELIAL_MESENCHYMAL_TRANSITION_DN	msigdb	C2/CGP	M11513
1.74e-2	72.01	regulation of epithelial cell proliferation	go -	BP	50678
2.77e-2	41.14	epithelial cell-cell adhesion	qo	BP	90136
2.77e-2	41.14	lung epithelial cell differentiation	ĝo	BP	60487
3.45e-2	32.00	epithelial tube branching involved in lung morphogenesis	qo	BP	60441
3.45e-2	32.00	EPITHELIAL_CELL_DIFFERENTIATION	msigdb	C5/BP	M3
3.79e-2	28.80	negative regulation of epithelial to mesenchymal transition	go	BP	10719
8.59e-12	12.08	cell junction	go	CC	30054
8.06e-10	31.58	tight junction	go	CC	5923
9.95e-10	44.54	REACTOME_CELL_CELL_JUNCTION_ORGANIZATION	msigdb	C2/CP:REACTOME	M820
1.45e-9	41.96	Cell-cell junction organization	CPDB	Reactome	2328
1.07e-8	30.71	REACTOME_CELL_JUNCTION_ORGANIZATION	msigdb	C2/CP:REACTOME	M19248
1.80e-8	28.30	Cell junction organization	CPDB	Reactome	2505
4.53e-7	17.12	Tight junction - Homo sapiens (human)	CPDB	KEGG	980
4.53e-7	17.12	KEGG_TIGHT_JUNCTION	msigdb	C2/CP:KEGG	M11355
3.10e-6	47.91	REACTOME_TIGHT_JUNCTION_INTERACTIONS	msigdb	C2/CP:REACTOME	M17967
3.57e-6	46.06	Tight junction interactions	CPDB	Reactome	2327
5.97e-6	39.92	adherens junction organization	go	BP	34332
1.02e-5	19.66	CELL_JUNCTION	msigdb	C5/CC	M11246
4.78e-5	22.57	cell-cell junction organization	go	BP	45216
8.03e-5	19.60	INTERCELLULAR_JUNCTION	msigdb	C5/CC	M15597
1.14e-4	36.93	REACTOME_ADHERENS_JUNCTIONS_INTERACTIONS	msigdb	C2/CP:REACTOME	M11980
1.40e-4	16.83	cell junction assembly	go	BP	34329
1.42e-4	34.09	Adherens junctions interactions	CPDB	Reactome	2414
1.73e-4	31.65	TIGHT_JUNCTION	msigdb	C5/CC	M2166
2.29e-4	28.58	APICAL_JUNCTION_COMPLEX	msigdb	C5/CC	M4718
3.35e-4	97.27	apical junction complex	go	CC	43296
4.31e-4	22.71	adherens junction	go .	CC	5912
2.92e-3	21.17	ADHERENS_JUNCIION	msigdb	CS/CC	M9849
3./3e-3	24.30	cell-cell adherens junction	go		5913
9.9/e-3	14.21	Stabilization and expansion of the E-cadherin adherens junction	CPDB	PID	2958
1./1e-2	10.59	Posttranslational regulation or adherens junction stability and dissassen	CPDB	PID	1966
2.08e-2	57.61	light junction interactions	CPDB	PID	1332
2./1e-2	8.20	Adherens junction - Homo sapiens (human)	CPDB	KEGG	956
2.858-2	1.97	KEGG_ADHERENS_JUNCITON	msigdb	C2/CP:KEGG	M638
5.90e-2	0.00	cen-cen junction	go	LL	5911

Selected enriched gene sets in the Adipocyte differentiation peak (first cluster from the top)									
9.10e-19	6.10	Breast Cancer molecular subtype [TNBC] - MESENCHYMAL STEM-LIKE	(microarrays	Signature		77			
7.63e-9	5.31	MesenchymalStemCells_Yamamoto08_1252genes	GeneSigDB	Mesenchymal Ste	r	2308			
2.58e-4	4.23	CHARAFE_BREAST_CANCER_LUMINAL_VS_MESENCHYMAL_DN	msigdb	C2/CGP	M9192				
9.86e-3	14.50	StemCells_Secco09_29genes	GeneSigDB	Mesenchymal Ste	er 🛛	3478			
2.44e-10	27.42	REACTOME_TRANSCRIPTIONAL_REGULATION_OF_WHITE_ADIPOCYTE	msigdb	C2/CP:REACTOME	M1008				
8.18e-9	23.06	URS_ADIPOCYTE_DIFFERENTIATION_UP	msigdb	C2/CGP	M15476				
1.11e-2	179.97	Transport of Glycerol from Adipocytes to the Liver by Aquaporins	CPDB	Reactome		1880			
2.50e-2	8.62	Transcriptional Regulation of White Adipocyte Differentiation	CPDB	Reactome		1406			
3.42e-20	215.40	STEGER_ADIPOGENESIS_UP	msigdb	C2/CGP	M2270				
4.67e-16	20.29	BURTON_ADIPOGENESIS_6	msigdb	C2/CGP	M1678				
1.36e-13	49.70	GERHOLD_ADIPOGENESIS_UP	msigdb	C2/CGP	M1675				
1.58e-11	6.27	WAKABAYASHI_ADIPOGENESIS_PPARG_RXRA_BOUND_8D	msigdb	C2/CGP	M2417				
3.11e-10	102.28	LI_ADIPOGENESIS_BY_ACTIVATED_PPARG	msigdb	C2/CGP	M1645				
3.34e-10	20.57	NAKAMURA_ADIPOGENESIS_LATE_UP	msigdb	C2/CGP	M2026				
3.02e-9	16.09	Adipogenesis	CPDB	Wikipathways		818			
5.40e-8	66.40	VERNOCHET_ADIPOGENESIS	msigdb	C2/CGP	M2432				
1.24e-7	12.66	WAKABAYASHI_ADIPOGENESIS_PPARG_RXRA_BOUND_WITH_H4K20M	4msigdb	C2/CGP	M2420				
7.06e-4	7.64	BURTON_ADIPOGENESIS_5	msigdb	C2/CGP	M1564				
1.14e-3	3.23	WAKABAYASHI_ADIPOGENESIS_PPARG_BOUND_8D	msigdb	C2/CGP	M2419				
1.04e-2	4.95	WAKABAYASHI_ADIPOGENESIS_PPARG_RXRA_BOUND_36HR	msigdb	C2/CGP	M2415				
1.21e-2	12.94	BURTON_ADIPOGENESIS_10	msigdb	C2/CGP	M1500				
1.48e-2	6.14	BURTON_ADIPOGENESIS_9	msigdb	C2/CGP	M1666				

Foloctod on	ichod cono co	to in the Lymphonyte activation peak (cluster at the base of the p	aak)		
1.74e-31	11.04	Immune Kong10 5640genes ImmPort Comprehensivel istofImmune-F	GeneSigDB	Immune	111
2.69e-20	10.40	Immune System	CPDB	Reactome	1358
7.46e-20	42.71	Immune Carmodv02 151genes	GeneSiaDB	Immune	2456
1.15e-19	13.60	Adaptive Immune System	CPDB	Reactome	1573
2.18e-18	18.35	Immune_Rioja04_438genes	GeneSigDB	Immune	415
3.17e-18	17.99	IMMUNE_SYSTEM_PROCESS	msigdb	C5/BP	M13664
3.00e-17	12.77	REACTOME_ADAPTIVE_IMMUNE_SYSTEM	msigdb	C2/CP:REACTOME	M1058
1.28e-16	9.21	REACTOME_IMMUNE_SYSTEM	msigdb	C2/CP:REACTOME	M1045
6.24e-14	40.02	regulation of immune response	go	BP	50776
3.36e-11	11.82	immune response	go	BP	6955
4.75e-11	25.51	Immune_Allen10_106genes	GeneSigDB	Immune	1950
1.07e-10	30.21	module #5 Immune	microarrays	Breast Cancer Co-E:	51
9.486-10	12.97	IMMUNE_RESPONSE	msigab	CS/BP	M19817
1.050-9	7.42	modulo #4 Immune	CPDB microarraws	Reactome Broact Cancor Co.F:	4327
1.200-9	0.91	inodale #4 Inimane	nicroarrays	Diedst Calicel CO-L.	45097
5.10e-8	17.86	Immune Allen10 162genes	GeneSigDB	Immune	983
1.20e-7	15.86	Immune Kong10 135genes ImmPort NaturalKillerCellCytotoxicity	GeneSigDB	Immune	475
2.08e-6	18.21	IMMUNE SYSTEM DEVELOPMENT	msigdb	C5/BP	M3457
2.54e-6	3.60	Immune_Kong10_2491genes_ImmPort_CD40LandAnti-IgMvsControl	GeneSigDB	Immune	2434
3.15e-6	12.55	Immune_Kong10_148genes_ImmPort_AntigenProcessingandPresentati	GeneSigDB	Immune	950
3.81e-6	24.53	POSITIVE_REGULATION_OF_IMMUNE_SYSTEM_PROCESS	msigdb	C5/BP	M4046
1.48e-5	18.18	REGULATION_OF_IMMUNE_SYSTEM_PROCESS	msigdb	C5/BP	M5017
4.68e-5	6.80	REACTOME_INNATE_IMMUNE_SYSTEM	msigdb	C2/CP:REACTOME	M1036
5.23e-5	2.98	Immune_Allen10_2900genes	GeneSigDB	Immune	217
6.24e-5	47.45	ACTIVATION_OF_IMMUNE_RESPONSE	msigdb	C5/BP	M19789
6.34e-5	438.75	Immune response-inhibiting cell surface receptor signaling pathway	go	BP	2767
2 260-4	14.47	Immune_Kong10_355genes_Immune_Kong10_appart Contract	GeneSigDB	Immune	2429
2.506-4	4 50	Immune_Kong10_79geles_Inimule_Kong10_geles_InimPort_Celicoc	GeneSigDB	Immune	917
3.22e-4	25.54	POSITIVE REGULATION OF TMMUNE RESPONSE	msindh	C5/BP	M4618
4.74e-4	22.13	REGULATION OF IMMUNE RESPONSE	msigdb	C5/BP	M12336
8.26e-4	2.91	Immune Kong10 1790genes ImmPort Anti-IgMvsControl	GeneSiaDB	Immune	1021
2.14e-3	33.73	adaptive immune response	ao	BP	2250
4.63e-3	Infinity	positive regulation of gamma-delta T cell activation involved in immune	go	BP	2001193
5.48e-3	19.92	ADAPTIVE_IMMUNE_RESPONSE_GO_0002460	msigdb	C5/BP	M16548
5.93e-3	19.06	ADAPTIVE_IMMUNE_RESPONSE	msigdb	C5/BP	M13450
9.23e-3	217.23	regulation of humoral immune response	go	BP	2920
9.23e-3	217.23	leukocyte migration involved in immune response	go	BP	2522
9.23e-3	217.23	Innate Immune response-activating signal transduction	go o' oo	BP	2/58
1.02e-2	14.13	Immune_Allen10_42genes	Genesigue	Immune	107
1.346-2	12.17	IMMUNE_EFFECTOR_PROCESS	msigub	C5/DP	2021
2 200-2	54 30	negative regulation of cytokine secretion involved in immune response	90	BD BD	2740
2 200-2	54.30	T cell proliferation involved in immune response	90	BP	2309
4.09e-2	27.14	positive regulation of immune response	go	BP	50778
4.97e-2	21.71	regulation of innate immune response	qo	BP	45088
6.97e-20	27.46	LEE_DIFFERENTIATING_T_LYMPHOCYTE	msigdb	C2/CGP	M2200
1.31e-8	29.85	LYMPHOCYTE_ACTIVATION	msigdb	C5/BP	M2297
1.65e-8	28.78	HADDAD_T_LYMPHOCYTE_AND_NK_PROGENITOR_DN	msigdb	C2/CGP	M999
5.97e-6	40.65	LYMPHOCYTE_DIFFERENTIATION	msigdb	C5/BP	M18190
1.55e-5	83.06	BIOCARTA_BLYMPHOCYTE_PATHWAY	msigdb	C2/CP:BIOCARTA	M1473
1.06e-4	18.23	MORI_IMMATURE_B_LYMPHOCYTE_UP	msigdb	C2/CGP	M11262
5.658-4	20.74	REGULATION_OF_LYMPHOLYTE_ACTIVATION	msigab	CS/BP	M16183
6.15e-4	20.11	SIG_PIP3_SIGNALING_IN_B_LYMPHOCYTES	msigab	C2/CP	M1315
4 620-2	12.00	nocitive regulation of humphocate differentiation	nsigub	DD	45621
4.63e-3	Infinity	regulation of lymphocyte activation	90	BP	51249
4.63e-3	Infinity	positive regulation of lymphocyte activation	ao	BP	51251
5.48e-3	19.92	POSITIVE REGULATION OF LYMPHOCYTE ACTIVATION	msiadb	C5/BP	M18946
5.49e-3	8.95	MORI_PRE_BI_LYMPHOCYTE_DN	msigdb	C2/CGP	M6455
6.11e-3	8.60	MORI_PRE_BI_LYMPHOCYTE_UP	msigdb	C2/CGP	M1395
8.45e-3	7.61	MORI_MATURE_B_LYMPHOCYTE_UP	msigdb	C2/CGP	M17083
4.09e-2	27.14	lymphocyte chemotaxis	go	BP	48247
4.18e-2	6.43	HOFFMANN_SMALL_PRE_BII_TO_IMMATURE_B_LYMPHOCYTE_UP	msigdb	C2/CGP	M13760
4.18e-2 4.39e-2	6.43 6.25	HOFFMANN_SMALL_PRE_BII_TO_IMMATURE_B_LYMPHOCYTE_UP HOFFMANN_LARGE_TO_SMALL_PRE_BII_LYMPHOCYTE_DN	msigdb msigdb	C2/CGP C2/CGP	M13760 M19523

Supplementary Table 5: Genes	n the CC cluster containing regions a	ssociated with E2F1, Mybl2 or FOXM1	
E2F1 HeLa 5 kb (ChIPSeq #157) Mybl2 HepG2 5 kb (ChIPSeq #147) FOXM1 MCF7 cells 5 kb (ChIP-Seq #120) # TFs associated wit	h 5kb flanking regions
ANLN ASF1B	ANLN ASF1B	ANLN ASF1B	3
ATAD2	ASPM ATAD2	ASPM ATAD2	2 3
AURKA	AURKA	AURKA	3
DI M	BIRC5	BIRC5	2
BUDAD	BUB1		1
BUBIB	C15orf23	C15orf23	2
C17orf53	C15orf42 C17orf53	C15or142	2
C1orf135	C1orf135 CASC5		2
	CCNA2 CCNB1	CCNA2 CCNB1	2 2
	CCNB2	CCNB2	2
CDC25A	CDC25A	00020	2
CDC45	CDC25C CDC45	CDC25C	2
CDC6 CDCA2	CDC6 CDCA2	CDCA2	3
	CDCA3 CDCA5		1
CDCA8 CDK1	CDCA8 CDK1	CDCA8 CDK1	3
	CDKN3 CENDA	CDKN3 CENDA	2
CENDE	CENPE	CENDE	1
CENPI	CENPI		2
CENPL	CENPL	CENPL	2
	CENPN CENPW		1
CEP55	CEP55 CIT	CEP55 CIT	3
	CKAP2L CKS2	CKAP2L CKS2	2
CLSPN	CNC2		1
	DEPDC1	DEPDC1	2
DEPDCIB	DLGAP5	DLGAP5	2
DSCC1 DTL	DTL		1 2
E2F1 E2F2	E2F1		2
E2F8	E2F8 ECT2	ECT2	2
ESC02	ESC02	ESDI 1	2
EX01	EX01		2
EZHZ	FAM54A	FAM54A	2
	FAM83D	FAM64A FAM83D	1
FANCA FANCB	FANCA		2
FANCI FBX05	FBX05	FANCI FBXO5	2 3
FEN1	FEN1		2
Child	GAS2L3	GAS2L3	2
GTSE1	GTSE1	GTSE1	2 3
H2AFZ HELLS	H2AFZ		2
HJURP	HJURP HMMR	HJURP HMMR	3
	IQGAP3 KIAA1524	KIAA1524	1 2
KIF11	KIF11 KIF14	KIF11 KIF14	3
KIF15	KIF15	KIF15	3
KIF18B	KIF18B	KIF 10A KIF 18B	3
	KIF20A KIF20B	KIF20A KIF20B	2
KIF23 KIF2C	KIF23 KIF2C	KIF23 KIF2C	3
KIF4A KIFC1	KIF4A KIFC1	KIF4A KIFC1	3
KNTC1	KNTC1 KPNA2	KPNA2	2 2
LMNB1 MAD2L1	LMNB1 MAD2L1	LMNB1 MAD2L1	3
MCM2			1
		MCM10	1
MELK MKI67	MELK MKI67	MKI67	3
MND1	MTBP		1
MYBL2 NCAPD2	NCAPD2	NCAPD2	3
NCAPG NCAPG2	NCAPG NCAPG2	NCAPG2	2 3
NCAPH NDC80	NCAPH NDC80	NCAPH NDC80	3
	NEIL3	NEIL3	2
NUF2	NUF2	NUF2	3
OIP5	OIP5	OIP5	3
	PARPBP	PARPBP	2
PBK	PBK PLK1	PBK PLK1	3
PLK4	PLK4 POLQ		2 1
PRC1 PRR11	PRC1 PRR11	PRC1 PRR11	3
BACGAP1	PTTG1 BACGAP1	PTTG1 BACGAP1	2
RAD51	PADE1AD1		1
RAD54L	RAD54L		2
RNASEH2A	RNASEH2A		2
RRM2	RRM2 SGOL1	RRM2 SGOL1	3
	SGOL2 SHCBP1	SGOL2	2 1
SKA3 SPAG5	SKA3 SPAG5	SKA3 SPAG5	3
STIL	SPC24 STIL	SPC24 STU	2
STMN1	STMN1 TACC3	 TACC3	2
TCF19	TCF19	1000	2
IMELESS	ткі		1
IMPO	TOP2A	ТОР2А	3 2
	TPX2 TROAP	TPX2 TROAP	2 2
TYMS	TTK TYMS	ттк	2 2
UBE2T	UBE2C UBE2T	UBE2C UBE2T	2
UHRF1 ZNE367	UHRF1 ZNF367	UHRF1	3
ZWINT	ZWINT		2

Supplementary Table 6: Genes with chromatin regions associated with TFs in the FOXA1/ESR1 cluster

Gene ABCC8	Subcluster	ChIPSeq ER 10kb	ChIPSeq FOXA1 10 kb ABCC8	ChIPSeq GATA3 10 kb	ChIPSeq SPDEF 5kb ABCC8	ChIPSeq AR 10 kb
AFF3		AFF3			AFF3	AFF3
AGR2	FOXA1	AGR2	AGR2	AGR2		AGR2
AGR3	ESR1	AGR3	AGR3	AGR3		AGR3
ANXA9			ANXA9	ANXA9	ANXA9	
APBB2		ANXA9		APBB2	APBB2	APBB2
AR			AR	AR	AR	AR
ARSG		ARSG	ARSG		ARSG	ARSG
C17orf28		C17orf28	C17orf28		C17orf28	C17orf28
C1orf64		C1orf64				
C6orf211			C6orf211		C6orf211	
C9orf152		C9orf152	C9orf152	C9orf152	C9orf152	C9orf152
CA12	ESR1	CA12	CA12	CA12	CA12	
CCDC170	ESR1	CCDC170	CCDC170	CCDC170	CCDC170	
CMBL		CMBL	CMBL		CMBL	CMBL
CT62	ESR1	CT62	CT62		CT62	CT62
DACH1						
DEGS2		DEGS2		DEGS2	DEGS2	DEGS2
DNALI1						DNALI1
ESR1	ESR1	ESR1	ESR1	ESR1	ESR1	ESR1
FAM63A		FAM63A	FAM63A		FAM63A	FAM63A
FBP1		FBP1	FBP1	FBP1	FBP1	FBP1
FLJ45983	ESR1	FLJ45983	FLJ45983	FLJ45983	FLJ45983	
FOXA1	FOXA1	FOXA1	FOXA1	FOXA1	FOXA1	FOXA1
FSIP1		FSIP1	FSIP1	FSIP1	FSIP1	FSIP1
GATA3	ESR1	GATA3	GATA3	GATA3	GATA3	
GPR160		GPR160	GPR160	GPR160	GPR160	GPR160
GPR77	ESR1	GPR77		GPR77	GPR77	
KCNJ11			KCNJ11		KCNJ11	
LOC145837	FOXA1	LOC145837	LOC145837	LOC145837	LOC145837	LOC145837
MLPH	FOXA1	MLPH	MLPH	MLPH	MLPH	MLPH
PRR15	FOXA1	PRR15			PRR15	PRR15
RAB17		RAB17			RAB17	RAB17
RABEP1		RABEP1			RABEP1	
RMND1			RMND1		RMND1	
SIDT1		SIDT1	SIDT1	SIDT1		SIDT1
SLC16A6		SLC16A6	SLC16A6		SLC16A6	SLC16A6
SLC44A4		SLC44A4			SLC44A4	
SLC7A8		SLC7A8	SLC7A8	SLC7A8	SLC7A8	SLC7A8
SPDEF	FOXA1	SPDEF	SPDEF	SPDEF	SPDEF	SPDEF
TBC1D9	ESR1	TBC1D9			TBC1D9	
TFF1	FOXA1	TFF1	TFF1	TFF1	TFF1	TFF1
TFF3	FOXA1	TFF3	TFF3	TFF3	TFF3	TFF3
THSD4	ESR1					THSD4
XBP1	FOXA1	XBP1	XBP1	XBP1	XBP1	XBP1

Supplementary Table 7: Enrichement in basal genesets in the p63 cluster

P-value	Odds	Name	Туре	Cat	ID
8.32E-28	182.32	module #2 Dev/Basal: development/differentiation	microarrays	Breast Cancer Co-Expression module	48
2.25E-22	77.16	SMID_BREAST_CANCER_BASAL_UP	msigdb	C2/CGP	M8124
1.41E-17	57.66	CHARAFE_BREAST_CANCER_LUMINAL_VS_BASAL_DN	msigdb	C2/CGP	M14507
7.63E-16	224.15	Breast_Huper07_66genes_BasalCells	GeneSigDB	Breast	2535
1.05E-15	214.39	HUPER_BREAST_BASAL_VS_LUMINAL_UP	msigdb	C2/CGP	M13422
8.67E-13	87.01	CHARAFE_BREAST_CANCER_BASAL_VS_MESENCHYMAL_UP	msigdb	C2/CGP	M12795
1.56E-09	12.11	Breast_Farmer05_3198genes_basal_apocrine_luminal	GeneSigDB	Breast	1241
5.81E-09	101.57	Breast_Blick10_57genes_CD24_BasalB	GeneSigDB	Breast	1230
1.82E-06	20.29	FARMER_BREAST_CANCER_BASAL_VS_LULMINAL	msigdb	C2/CGP	M5652
3.54E-05	16.05	FARMER_BREAST_CANCER_APOCRINE_VS_BASAL	msigdb	C2/CGP	M2631
3.62E-05	6.11	Breast_Kreike07_3712genes_Basal_mets	GeneSigDB	Breast	3362
3.56E-04	84.14	Breast_Blick10_35genes_CD24_BasalB	GeneSigDB	Breast	1048
		squamous basal epithelial stem cell differentiation involved in prostate gland acinus			
2.33E-03	889.36	development	go	BP	60529
3.21E-03	11.33	Breast_Farmer05_269genesbasal_apocrine_luminal	GeneSigDB	Breast	690

Supplementary Table 8: enrichment in basal genesets in the FOXC1 cluster.

P-value	Odds	Name	Туре	Cat	ID
6.34E-13	323.74	module #2 Dev/Basal: development/differentiation	microarrays	Breast Cancer Co-Expression module	48
5.87E-10	118	SMID_BREAST_CANCER_BASAL_UP	msigdb	C2/CGP	M8124
2.46E-04	111.25	HUPER_BREAST_BASAL_VS_LUMINAL_DN	msigdb	C2/CGP	M5505
2.54E-04	33.52	FARMER_BREAST_CANCER_BASAL_VS_LULMINAL	msigdb	C2/CGP	M5652
3.59E-04	12.78	Breast_Farmer05_3198genes_basal_apocrine_luminal	GeneSigDB	Breast	1241
4.50E-03	24.74	Breast_Farmer05_269genesbasal_apocrine_luminal	GeneSigDB	Breast	690
7.36E-03	19.1	FARMER_BREAST_CANCER_APOCRINE_VS_BASAL	msigdb	C2/CGP	M2631
1.08E-02	6.65	Breast_Kreike07_3712genes_Basal_mets	GeneSigDB	Breast	3362
1.36E-02	13.75	CHARAFE_BREAST_CANCER_LUMINAL_VS_BASAL_DN	msigdb	C2/CGP	M14507
2.00E-02	56.64	CHARAFE_BREAST_CANCER_BASAL_VS_MESENCHYMAL_DN	msigdb	C2/CGP	M12895
2.08E-02	54.41	Breast_Sorlie06_54genes_Luminal_v_Basal	GeneSigDB	Breast	3126