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1 Rationale for construction of the chromosome models 

1A Selection of growth conditions 

Because, as outlined in the main text, the architecture of our chromosomal models depends on 

the cell’s transcriptional profile, and because we are interested in representing a single, 

unreplicated chromosome (see below), we have selected carefully the conditions in which the 

putative cell harboring our chromosome is cultured. Extensive ChIP-chip and ChIP-seq data are 

now available, at quite high resolution, for rapidly growing E. coli cells grown in LB medium (1-

4). While it would certainly be of interest to construct models of chromosomes in rapidly 

growing conditions, cells grown under these conditions contain, on average, several genomic 

equivalents and a “typical” chromosome (if one can even be defined) is a template both for 

ongoing transcription and for replication. Our models, therefore, seek to represent instead the 

chromosomes of E. coli cells in slow growing conditions (i.e., more relevant to growth in 

minimal medium). The slower growth rate in minimal medium reduces the number of genomic 

equivalents per cell (5), and crucially, at sufficiently slow growth rates, cells will undergo a 

“rest” phase in which they include a single, unreplicated chromosome (6): it is this state of the 

cell that we attempt to model.  

 In anticipation of future studies, in which we eventually hope to explicitly model 

interactions between DNA and nucleoid-associated proteins (NAPs), the minimal medium 

model also has the advantage that ChIP data generated under these conditions are relatively 

complete. Notwithstanding the subsequent improvements in ChIP-chip coverage and the 

advent of ChIP-seq techniques (7), the data reported by the Busby group ten years ago (for 

minimal medium growth with a fructose carbon source), offer what is, to our knowledge, still 
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the only complete condition-matched set of data for the crucially important NAPs Fis, IHF, H-

NS, and CRP (1,8).  

1B Design of a transcription-centric chromosome model  

The Church and Laub groups have previously shown how “5C” and “HiC” data – which 

identify regions of close physical contact between DNA – can be used to guide the construction 

of structural models of the 4 Mb chromosome of C. crescentus (9,10). While data obtained with 

another “all-by-all” sequencing technique (genome conformation capture – “GCC”) have 

recently become available for E. coli (11), we have not used these data in the construction of our 

models for two reasons. First, the data are for rapidly growing cells in LB medium, and so are 

likely to arise from cells containing multiple (partially replicated) chromosomes and with 

transcriptional profiles different from those of more slowly growing cells. Second, the cell 

populations whose chromosomes are analyzed are not synchronized, complicating 

interpretation of the contact data and obscuring potential conformational changes that might 

depend on progress through the cell cycle (see section S1C below). Fortunately, a key finding 

from the Laub group’s studies of the C. crescentus chromosome was that the boundaries of 

domains identified by DNA-DNA contacts consistently fall at regions of active transcription 

(including, for example, highly active rRNA operons) (10), and data from E. coli as well suggest 

that interaction boundaries depend on RNAP activity (11,12). These important results indicate 

that the cell’s transcriptional profile can be used to situate these boundaries.  

 Our model, then, assumes that regions of high transcription delimit higher-order 

domains in the E. coli chromosome. Using well-established RNAP occupancy data reported by 

the Busby group (see above) to identify these regions, and adapting the “bottlebrush” model 
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previously devised by the Laub and Mirny groups (10), we divide the genome into plectoneme-

abundant regions (PARs) and plectoneme-free regions (PFRs): the latter we assume correspond 

to highly-transcribed regions of the chromosome (10,13). In order to divide the chromosome in 

this way we proceed as follows.  

 The data provided by the Busby group consist of signal intensities at ~20,000 ChIP-chip 

probes, each 60 basepairs in length, uniformly scattered throughout the E. coli chromosome. 

Since the intensities at individual probes are subject to some noise, we first smoothed the data 

slightly by averaging the intensities from each probe and its first neighbor to each side. To 

identify “hits,” we then specified a cutoff (a signal intensity ratio > 5.0) above which RNAP was 

assumed to be bound at the probe location. We then defined PFR boundaries by beginning with 

each identified hit and extending it to include all successive probe locations in either direction 

with intensity ratios > 1.5; when a boundary determined in this way fell within a defined 

transcriptional unit, the region was further extended to reach the end of the gene or operon (as 

defined by Ecogene (14) and RegulonDB (15), respectively). Under the simplifying assumption 

that plectonemes do not form in regions of length < 2000 bp, all regions less than this distance 

from one another were consolidated into single PFRs. In rough accord with previous studies 

assigning a minimum of ~3000 bp to PFRs (10) in order to preserve distinct interaction domains, 

all highly-transcribed regions were expanded – if necessary – to include a minimum of 2000 

basepairs. Use of the specified cutoff coupled with this consolidation procedure produced a 

total of forty PFRs. This number is somewhat higher than the Laub group specified for C. 

crescentus, which may be a reflection of the greater number of genes active in slower growth 

and/or a consequence of the use of RNAP-binding data rather than expression data to identify 
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PFRs. In any event, the behavior of the model is not expected to differ dramatically as a function 

of its PFR count, and the principles of its construction are readily adaptable to data that suggest 

the number of PFRs should be larger or smaller. In total, only 159312 base-pairs (~3%) of the 

chromosome are included within PFRs; this coverage falls between the ~5% suggested to be in 

PFRs based on contacts maps and the ~2% of the genome allocated to PFRs in the models 

derived from these maps (10). The full set of PARs and PFRs is listed in Table S4.  

1C Rationale for constructing alternative models based on the position of oriC 

The partition of the chromosome into PARs and PFRs allows us to describe the topology of 

subgenomic regions of the chromosome, but in order to build structural models we also have to 

consider its global arrangement and positioning. Extensive efforts have been made to determine 

the spatial organization of the E. coli chromosome in vivo (16); fluorescent labeling systems have 

been particularly useful in determining the relative locations of the origin of replication (oriC), 

the left and right replichores, and the ter region that is essentially half a genome distant from 

oriC (and so appears opposite it when the chromosome is drawn as a circle). These same 

labeling techniques have established that, in C. crescentus swarmer cells, the origin is confined to 

one cell pole, while the terminus is located at the opposite end of the cell, with left and 

chromosomal arms extending between them along the length of the cell (9).  

 But the positioning of the analogous chromosomal elements in slow-growing E. coli cells 

is more ambiguous (17). Tracking of labeled oriC-proximate sites in cells undergoing a pre-

replicative “rest” phase suggests that the origin in a daughter cell begins at one cell pole before 

migrating to a position at midcell in preparation for DNA replication: before the initiation of 

replication, then, the cell is organized such that the left and right replichores run in parallel 
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along the long axis of the cell (6,16). Other studies, however, suggest that the localization of oriC 

to midcell prevails even before the onset of replication, with left and right replichores extending 

in either direction from the cell center to the cell poles and loci within them maintaining their 

position with little variance; a loosely-packed region surrounding ter traverses the length of the 

cell to connect the left and right replichores (17-19).   

 Because the relative positions of oriC and ter in the chromosomal structure appear to be 

acutely sensitive to differences in model strains and growth rates (20), and since both 

conformations appear to be physiologically relevant, we have designed two alternative sets of 

models to reflect these different locations of oriC (Figures 3B-C of the main text). In the first type 

of model (oriC@pole), oriC is located at the center of the left-hand edge of the initial “blueprint” 

structure (Figure 3B; see below), in a position corresponding to the cell pole in the final 

condensed volume of the nucleoid. The compaction procedure that we use to drive the 

chromosome structure into the nucleoid region of a typical cell (see section S2A below), does 

not change this global arrangement, so oriC and ter remain at opposite poles of the nucleoid in 

the final chromosome models, bridged in parallel by the left and right chromosomal arms.  

 In the second type of model (oriC@midcell), oriC is instead located at the center of the top 

edge of the initial “blueprint” structure, with the left and right replichores now extending to 

opposite cell poles (Figure 3C). As has been pointed out in the literature, an arrangement in 

which the two replichores extend in opposite directions necessitates the presence of a 

“crossing” region (18) that extends across the nucleoid to complete the chromosomal “circuit.” 

The oriC@midcell model, therefore, allocates ~100,000 plectoneme-free base-pairs to this 

crossing region, with ~60% of the genome linearly arranged on either side of oriC and with the 
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remainder at the poles. The size of the crossing region in our models (100 kb) lies within the 

range of previous estimates, which include ~50 kb (21), 80 kb (22), and ~400 ± 200 kb (18). The 

conservative sizing of the crossing region reflects, in part, uncertainty about the nature of the 

proposed crossing “fiber,” the packaging density of which is likely to be intermediate between 

that of PFRs and PARs. In the absence of additional data describing this lower-density fiber, the 

inclusion of a crossing region in our model necessitates unspooling two of the PARs, creating 

regions of lower RNAP density but with packaging density characteristic of PFRs. Again, the 

compaction procedure that we use to drive the chromosome structure into the nucleoid region 

does not change this overall arrangement. 

 Since the ChIP-chip data defining both the RNAP density and the distribution of PFRs 

and PARs cannot distinguish between the oriC@pole and oriC@midcell models (and may well 

reflect a mixed population of them), we have attempted to maintain consistent PFR/PAR 

boundaries in both models within the limits imposed by the presence of the crossing region in 

the oriC@midcell variant.  

1D Generation of populations with varied plectoneme lengths and branching patterns 

While the ChIP-chip data enable us to define PARs and PFRs, they say nothing about the 

physical characteristics of the plectonemes within the PARs. In particular, in order to build 

structural models, we need to know both the expected length distributions of plectonemes and 

the extent to which they are likely to be branched. Data for both come from the Cozzarelli 

group, who have shown: (a) that plectoneme lengths in the E. coli chromosome are distributed 

according to an exponential distribution with a mean of ~10 kb (23), and (b) that supercoiled 
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plasmids have branching patterns that are predictable on the basis of their lengths (24). We use 

these two sets of data in the construction of our models as follows. 

 Since the total numbers of basepairs allocated to PARs are 4482340 and 4351586 for the 

oriC@pole and oriC@midcell models, respectively (see above), and since the mean length of 

plectonemes is 10 kb (23), the total number of plectonemes to include is fixed at 448 and 436 in 

the oriC@pole and oriC@midcell models, respectively. Within those constraints, however, it is 

desirable to produce a range of structures that differ in the arrangements of their plectonemes. 

For this reason, we made 20 independent structures for both the oriC@pole and oriC@midcell 

models, each differing in the positions, lengths and branching patterns of the plectonemes 

assigned to each PAR.  

 To achieve a reasonable distribution of plectoneme lengths, we first randomly assigned 

lengths to each of the plectonemes within each PAR and then adjusted them iteratively – subject 

to the condition that no plectoneme could contain fewer than 1000 basepairs – until the lengths 

of the entire population of plectonemes matched the expected exponential distribution 

identified by the Cozzarelli group (23). One benefit of applying this randomized assignment 

procedure to each of the 20 structures representing each global orientation (oriC@pole or 

oriC@midcell), is that it allows genomic loci to sample very different local environments even 

while remaining part of a larger domain (i.e., PAR) whose size and position is maintained 

across the structures. For example, a given locus may be on a branch off a long (~40 kb) 

plectoneme in one structure, but on the trunk of a short (~5 kb) plectoneme in another model. 

Alternatively, it may be on a plectoneme at a PFR/PAR boundary in one structure, but several 

plectonemes distant from the boundary in another.  
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 The assignment of branches to the plectonemes was achieved as follows. Analysis of 

electron micrographs by the Cozzarelli group has shown that a negatively supercoiled 3.5 kb 

plasmid has, on average, 1.63 ± 0.9 branches while a similarly supercoiled 7 kb plasmid has 2.94 

± 1.2 (24). These numbers translate into “branching lengths” of 2147 and 2381 basepairs per 

branch for the 3.5 and 7 kb plasmids, respectively. In order to obtain similar estimates for 

plectonemes of arbitrary lengths, we fit these two data points to a straight line, and obtained the 

following relationship:  

branching length       =       2147       +       (nbp – 3500)  0.066775            (1) 

Here nbp is the number of basepairs in the plasmid or plectoneme. We then used this 

relationship to compute the expected number of branches for the ~450 plectonemes in each of 

the 20 structures generated for the two types of model. For reasons outlined in section S2A, we 

applied the additional condition that the total number of branches in each plectoneme must be 

an even number. This can be achieved, in such a way that maintains the correct average, by 

rounding the value calculated with Eq. 1 to one of the two even integers either side of the value 

with a probability weighted by the difference between the calculated value and the lower 

integer. Figure 4B verifies that the number of branches assigned to the plectonemes of the 20 

oriC@pole structures using this approach (red) matches the numbers expected, on the basis of 

the plectoneme lengths, using Eq. 1 (blue).  

 An additional feature of branching revealed by the study of Boles et al. (24) is the 

distribution of the fractional branch lengths within a 7 kb plasmid. To parameterize an 

approach that reproduces this distribution, we first randomly assigned branches within a single 
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7 kb plectoneme such that they matched, on average, the number determined experimentally 

for the same-sized plasmid (see above). We then randomly positioned these branches within the 

plectoneme subject to the following two restrictions: (a) the minimum possible length of a 

branch is Mmin bp, and (b) the minimum possible length of the trunk between two branches is 

Nmin bp. As shown in Figure 4C, we achieved good agreement with the experimental fractional 

branch length observed by Boles et al. (24) using values of Mmin = 350 bp and Nmin = 200 bp. 

These parameters, together with the additional criterion (relevant only to very large 

plectonemes) that the maximum possible length of a plectoneme trunk between branches is 

10,000 bp, were then used to determine the branching patterns in all plectonemes.   

1E Note on the E. coli genome used for model generation and gene definitions 

All of the models described here represent the 4641652 basepairs of the E. coli K12 MG1655 

(U00096.3) genome. When experimental data refer to older genome builds, we have updated 

coordinates for comparison with our models using the Ecogene Gene Interval Updater (14). 

1F Note on the role of nucleoid-associated proteins (NAPs) 

The critical role played by nucleoid-associated proteins (NAPs) in controlling the structure, 

activity, and dynamics of the bacterial chromosome is well established (25-27). But as is clear 

from previous studies, some of the structuring effects of proteins like HU can be modeled 

approximately without their explicit representation (10). Since the models that we have 

constructed reflect a variety of experimental data on the behavior of the E. coli chromosome in 

vivo, many of the roles played by NAPs in contributing to the structural organization of the 

chromosome should be captured implicitly by the models: partitioning of the chromosome into 
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~450 plectonemic domains, for example, implicitly reflects the roles played by H-NS and Fis 

(28). In passing we note that, for similar reasons, the possibly significant effects of membrane 

protein transertion on nucleoid structure (29) should also be indirectly accounted for in the 

models. Given the considerable computational expense involved in producing the models 

described here, we have chosen to leave explicit modeling of the role of NAPs to the future. But 

future work will clearly need to address the roles played not only by the more generally acting 

NAPs such as HU, Fis, IHF, and H-NS, but also by proteins, such as MatP, whose effect on 

chromosome structure depends on a smaller set of high-affinity interactions (30). We note, 

however, that we will not be required to model the two separate foci reported for H-NS within 

the E. coli chromosome since this finding (31) was later shown to be an artifact (32) by the same 

group who performed the original work. 

2 Details of the molecular simulations used to construct the chromosome models 

2A Generation of low-resolution (500 BPB) chromosome structures 

As briefly outlined in the main text, the protocol used to construct the chromosome models 

involved the use of multi-resolution simulation techniques. With plectoneme lengths, positions, 

and branches all specified for a given structure (see section S1D above), an initial, atomic model 

was constructed using in-house modeling code that assembles each chromosome, one basepair 

at a time, with the twist angles at basepair steps in the PARs reduced slightly from their 

standard B-DNA values of 34.3° in order to produce an overall supercoiling density, σ, of -0.05. 

The σ value chosen corresponds to estimates based on chromosomal psoralen binding (33) and 

falls between estimates of ~-0.025 (34) and ~-0.07 (35). In order that this initial “blueprint” model 
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be a fully connected circular chromosome, with no structural discontinuity where the “tail” of 

the chromosome meets the “head,” two minor geometric constraints were introduced to 

simplify model construction. These are that: (a) the number of plectonemes along the left- and 

right-hand sides of the models must be equal (see Figures 3B-C), as must the number of 

plectonemes along the top- and bottom-edges of the model, and (b) the number of branches off 

any plectoneme trunk must be an even number, with equal numbers of branches emerging from 

the outward- and inward-directed arms of the plectoneme. With those geometric constraints 

imposed, the initial model thus obtained represents a highly idealized view of the chromosome, 

in which uniformly straight regions of non-plectonemic B-DNA bend smoothly upon entry to 

plectonemic regions, which themselves form uniformly twisted plectonemes with the right-

handed super-helical arrangement expected of negatively-supercoiled DNA. The pitch of each 

plectoneme super-helix was set to 95.5 Å/rad (such that one complete turn required 600 Å) and 

the radius of each super-helix was set to 42 Å; these numbers are in rough agreement with 

theoretical predictions for a plectoneme with σ = -0.05 made by Marko and Siggia (36). The 

overall arrangement of the resulting model is largely confined to a plane, but the plectonemic 

branches that emerge smoothly from the main trunks of plectonemes do so in a way that means 

they extend above and below the plane.  

 In principle, it would be possible to take such an idealized atomic model of the 

chromosome, and subject it to a simulation protocol that seeks to confine it within progressively 

smaller volumes until it reaches the physical dimensions of the nucleoid (see below): such an 

approach would have the advantage of immediately yielding a fully connected, atomic model 

of the bacterial chromosome as it might look in vivo. In practice, however, the extraordinarily 
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large distances over which atoms would be required to move during compaction (thousands of 

Ångstroms), coupled with the computational expense associated with simulating many millions 

of atoms, make this approach currently infeasible. 

 Instead, therefore, we use each atomic chromosome model to generate three 

independent coarse-grained (CG) models, each with a different level of resolution, and carry 

out the compaction process using these cheaper alternatives. The CG models used range from a 

1 nucleotide-per-bead (1 NTB) model at the finest level of detail, through a 5 basepairs-per-bead 

(5 BPB) model at an intermediate level of detail, to a ~500 basepairs-per-bead (500 BPB) model at 

the coarsest level of detail. Importantly, both of the CG model types that have been used in 

dynamics simulations – i.e. the 5 BPB and 500 BPB models – have been explicitly parameterized 

to reproduce physical properties of the DNA polymer (see section S2F below).  

 The most computationally expensive stage of the procedure involves the confinement of 

the 500 BPB model, whose initial length is nearly sixty times that of the cell in which it will be 

finally enclosed, to successively smaller capsule-shaped volumes over the course of a series of 

Brownian dynamics (BD) simulations. Although cell size estimates vary significantly depending 

on conditions (37), a “typical” E. coli cell might be considered as being composed of a cylindrical 

region 1.6 μm in length with a radius of 0.4 μm, capped at either end by a hemisphere of the 

same radius, such that its total length is 2.4 μm. Within that, the chromosome typically occupies 

a still-smaller region of the cell, which here is defined such that the hemisphere-capped cylinder 

has a total length of 1.78 μm and a radius of 0.395 μm; these values reflect the dimensions of the 

nucleoid under slow growth conditions determined by immunofluorescence (38-41). We note 

that in the absence of other cellular components we have had to enforce confinement of the 
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chromosome within the nucleoid; previous simulation work from the Yethiraj and Weisshaar 

groups, however, suggests that explicit inclusion of ribosomes and polysomes – which could be 

added to the current models in the future – can be sufficient to cause formation of a distinct 

nucleoid region even in the absence of enforced confinement (5).  

 BD simulations of the compaction process were carried out with in-house simulation 

code (uiowa_bd) that employs standard molecular mechanics terms to describe the bonded 

energy contributions of CG beads to the total energy of the chromosome: 

Ebonded       =       Σbonded Kr(r – r0)2       +       Σangles Kθ(θ – θ0)2                       (2) 

Here r and θ represent inter-bead bond lengths and angles, respectively, and r0 and θ0 represent 

the equilibrium values of the bond lengths and angles in the initial (idealized) chromosomal 

build. For the 500 BPB model, CG beads are placed at approximately 500 basepair intervals in 

plectonemic regions, with the positions of any beads that fall near the tips and bases of all 

plectonemes (including branches) being adjusted so that they are more precisely positioned at 

the tips and bases. For non-plectonemic regions – which it will be recalled account for only 3% 

of the basepairs in the model (see section S1B above) – CG beads are instead placed at 

approximately 250 basepair intervals; this ensures that the bonds connecting beads in both the 

PARs and PFRs are similar in length. While the equilibrium r0 value varies somewhat 

throughout the chromosome, it averages ~846 Å for bonds between beads within plectonemes 

and ~856 Å for bonds between beads in PFRs. The equilibrium θ0 value, on the other hand, is 

almost always 180° except in those cases where: (a) a bond is formed between a bead ending a 

PFR and a bead starting a PAR, or (b) an angle includes bonds between beads in both the trunk 
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and branch of a plectoneme. The force constant opposing changes in the bond length, Kr, was 

set to a value of 0.0005 kcal/mol/Å2: while this might seem small, it equates to a force constant of 

~160 kcal/mol/Å2 for a (chemical) bond of equilibrium length 1.5 Å. The force constant opposing 

changes in the bond angle, Kθ, having been parameterized to match the persistence length of 

DNA (see section S2F below), was set to 0.14 and 0.37 kcal/mol/rad for bonds involving non-

plectonemic and plectonemic beads, respectively. 

 BD simulations with the 500 BPB model were performed with the inclusion of 

hydrodynamic interactions using the Ermak-McCammon algorithm (42) implemented in 

uiowa_bd: 

ri(t + Δt)       =       ri(t)       +       Σj DijFjΔt/kBT       +       Ri                         (3) 

Here ri is the position vector of bead i, Δt is the simulation timestep, Dij is the i-jth 3  3 

submatrix of the diffusion tensor D, Fj is the total force acting on the jth bead, and Ri is a 

random displacement applied to bead i; kB is Boltzmann’s constant and T is the temperature in 

Kelvin. During compaction simulations, the only forces acting on beads were those due to the 

bonded interactions (Eq. 2) and those acting to restrain beads within the ever-shrinking cell 

capsule: the latter were modeled with a one-sided harmonic potential function with a force 

constant initially set to 2.5  10–5 kcal/mol/Å2 but set to 0.005 kcal/mol/Å2 in the final stages of 

the protocol to ensure that all beads were safely confined to the nucleoid region. No nonbonded 

interactions (either steric or electrostatic) between beads were included – at this stage – since: (a) 

at this level of resolution, spherical beads cannot meaningfully model the shape of the ~500 

basepair DNA that they are supposed to represent, and (b) it was desirable to allow 
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plectonemes and other regions of non-plectonemic DNA to freely pass through each other in 

order to crudely mimic the effects of the topoisomerases that would otherwise relieve 

conformational strain (43) that might accompany compaction within the cell.  

 While nonbonded energetic interactions between beads were not included, pairwise 

hydrodynamic interactions between beads were included, at the Rotne-Prager-Yamakawa level 

of theory (44,45). The inclusion of hydrodynamic interactions in the compaction simulations has 

the advantage that the correlated motions they induce between neighboring beads act to 

dissipate any conformational strain that builds up during compaction. The effective 

hydrodynamic radius assigned to each bead was 2000 Å, which, while much larger than is 

realistic for a 500 basepair bead, both ensures a strong hydrodynamic communication between 

the beads and allows a comparatively long timestep to be used in the simulations. In any case, it 

should be remembered that hydrodynamic interactions affect only the rates at which beads 

diffuse in the simulations (46), and do not play a role similar to energetic interactions in 

controlling the conformational energetics of the chromosome model. The timestep during the 

majority of stages of the compaction process was 20 ps, but this was reduced to 10 ps for later 

stages when the capsule restraint force constant was increased (see above). 

 The total number of simulation time steps allocated for the compaction of the 

chromosome was 2.65 million (corresponding to 51.5 μs). We note that since the compaction 

process has no direct biological counterpart, the timescale of the simulations is a nominal one 

that attempts to strike a balance between, on the one hand, allowing the DNA to “keep up” and 

remain relatively unstrained as the cell-shaped capsule in which it resides shrinks, and, on the 

other hand, allowing the simulations to be completed sufficiently quickly that multiple 
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chromosome models can be constructed using the allocated computational resources (recall that 

a total of 20 complete structures were built for both the oriC@pole and oriC@midcell models). 

Compaction of each chromosome structure required ~130 hours on a 64-core AMD Opteron 

6272 server. It is worth noting that, while (faster) exploratory simulations that excluded 

hydrodynamic interactions between the DNA beads were also carried out, the DNA was unable 

to rapidly adjust during compaction and instead, became pressed up against the sides of the 

ever-shrinking capsule. 

2B Optimization to reproduce spatial distributions of RNAP and DNA 

The 20 structures obtained for each type of model (oriC@pole and oriC@midcell) after the initial 

periods of compaction represent plausible, but preliminary, low-resolution models of the 

bacterial chromosome. As outlined in the main text, a crucial next step in the protocol is to 

adjust both types of model so that their structures, as a population, reproduce the experimental 

distributions of: (a) transcribing RNA polymerases (RNAP), and (b) DNA, as obtained from 

recent single-molecule fluorescence experiments (40). Such experiments record projections of 3D 

objects onto a 2D plane, which are accumulated and then expressed in the form of probability 

distributions along the short axis of the cell. Represented in this way, however, it is difficult to 

use these experimental distributions to directly guide the simulation models into better 

agreement with experiment.  

 To solve this problem, we first attempted to determine the radial distributions of RNAP 

and DNA that would explain the observed short axis distributions when projected onto the 2D 

plane. This was achieved by systematically optimizing the statistical weights of points evenly 

distributed within a cylindrical volume equivalent to the central 10000 Å occupied by the 
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chromosome. Ten million points were first randomly assigned positions within the cylinder by 

sampling from a uniform distribution and assigned a weight of one. All points were then 

Boltzmann-reweighted by an energy, E, determined by applying a one-sided harmonic potential 

function to each point’s radial distance from the cylindrical axis, where: 

ERNAP       =       ½ KradRNAP ( c – c0RNAP )2   EDNA       =       ½ KradDNA ( c – c0DNA )2         (4) 

Here, the Krad entries are the force constants acting in the radial direction, c is the radial distance 

of the point, and the c0 entries are the radial distances at which the reweighting energy is zero; 

because the potential is one-sided, the reweighting energy of all points beyond c0 is also zero. 

The total populations within each 50 Å shell were determined by summing the weights of all 

the points residing within each shell. These populations were then projected onto the 2D plane, 

analyzed via the same procedure used in the experimental work, and compared with the 

symmetrized experimental distributions.  

 The energy functions used to reweight the points (Eq. 4) are sufficiently simple that their 

parameters (Krad and c0) can be optimized by performing a grid search in both dimensions. 

Performing such a search to maximize (separately) the reproduction of the experimental RNAP 

distributions and the DNA distributions, yields the following optimized values: KradRNAP = 1  

10-6 kcal/mol/ Å2, c0RNAP = 2750 Å, KradDNA = 2  10-7 kcal/mol/ Å2, and c0DNA = 900 Å. The exact 

values assigned to these parameters are less important than the fact that, when used to reweight 

points uniformly distributed in space, they generate projected, 2D short axis distributions that 

closely follow the experimental distributions for both RNAP and DNA. It is, however, 

interesting to note that the reweighted radial distribution of DNA is not uniform, reaching peak 
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density at about 1000 Å from the nucleoid axis and declining to densities below average 

nucleoid density beyond 3000 Å, while that of bound RNAP is densest at ~2800 Å (Figure S15). 

It is these final, reweighted populations of points within each radial shell that represent the 

“target” populations that we next attempted to make the 500 BPB models of the chromosome 

reproduce.  

 With target radial populations defined for both RNAP and DNA, we performed a 

second round of BD simulations aiming to adjust the CG chromosome models to reproduce 

them. This was carried out in the following way. CG beads of the 500 BPB models were first 

assigned one of two identities: either as a RNAP-containing bead or a DNA-only bead. In 

accord with an estimated total RNAP copy number per cell of 2500 (47), and with single-

molecule tracking data indicating that ~48% of this population is specifically bound to DNA 

(40,48,49), we determined that 1200 RNAPs would be subject to the density-fitting while the 

remaining ~1300 would be considered diffusely distributed throughout the cell and therefore 

not modeled. 

 Likely chromosomal locations at which these RNAPs would be bound were identified 

based on the ChIP-chip data from the Busby group (8) that we used earlier to define the 

positions of PFRs (see section S1B above). We selected the centers of the 1200 non-overlapping 

probes with the highest signal-intensity ratios from their data set, and used these as initial 

positions for placing the RNAPs. We then made minor adjustments based on the use of 

additional data describing the chromosomal locations of promoters and genes as follows. When 

a probe’s range of coverage (200 bp) was found to encompass a σ70 promoter, as defined in 

RegulonDB (15), the RNAP associated with that probe was moved to the promoter. When, on 
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the other hand, a probe center was located in an intergenic region but the probe’s coverage 

included a defined gene (14), the RNAP was resituated so as to be located within the gene body 

with minimal displacement from its original location. Finally, when a probe center was located 

in an intergenic region and no promoters or genes were found nearby, the RNAP was assumed 

to remain at the location initially defined by the probe center. After these refinements, final 

positions were adjusted when necessary to avoid clashes between pairs of RNAPs: this was 

carried by allowing only a single RNAP to occupy a promoter and assuming a “footprint” of 36 

basepairs for each RNAP within the gene body (50).  

 We next determined the number of RNAP molecules associated with each CG bead in 

each of the 500 BPB chromosome structures by summing all of the RNAPs assigned to the set of 

basepairs associated with that bead. Beads with at least one RNAP assigned to them are colored 

red in the representative structures pictured in Figures 3B-C of the main text. Having 

determined the number of RNAPs associated with each CG bead, and already knowing the 

number of DNA basepairs associated with each CG bead, the initial radial populations of RNAP 

and DNA in all 20 structures of each type of model were computed and compared with the 

target radial populations. Using an approach identical to that used in the Iterative Boltzmann 

Inversion method, which is commonly used to parameterize CG force fields for macromolecular 

simulations (51,52), the differences between the current and target radial populations were then 

converted into biasing energy functions acting in the radial direction using: 

E0(r)       =       RT  ln [  P(r)model  /  P(r)target  ]                     (5) 
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Here E0(r) is the energy associated with each radial bin (of width 50 Å), P(r)model is the fractional 

population of CG beads in this radial bin in the 20 initial CG structures of the chromosome, and 

P(r)target is the corresponding target fractional population. Eq. 5 was used to define two separate 

biasing energy functions: one used for matching the RNAP distribution, and one used for 

matching the DNA distribution; while the basepairs assigned to RNAP-containing beads were 

included in bin populations used to calculate the DNA energy function, in simulations these 

beads were subject only to the biasing functions aimed at matching RNAP distributions. A 100-

step steepest descent energy minimization of all 20 representatives of each model was 

performed with the two biasing functions applied, and the resulting radial populations of 

RNAP and DNA beads were recomputed and again compared with the target radial 

populations. The biasing functions were then updated to reflect the new populations using: 

Ei+1(r)       =       Ei(r)       +       α  RT  ln [  P(r)model  /  P(r)target  ]              (6) 

Here the subscripts i and i+1 indicate the iteration numbers, and α is a scaling factor (<1) that 

acts to suppress potentially large fluctuations in the biasing functions that might occur during 

the iterative process (53). Having updated the biasing functions, a further energy-minimization 

was performed, the radial populations were recomputed, and Eq. 6 was again used to update 

the biasing functions. This procedure was carried out for 5000 iterations, by which time the 

short-axis distributions of both RNAP and DNA were found to be in excellent agreement with 

the experimental distributions (see Figures 5A-C).  Since the use of repeated energy 

minimizations induced a modest, but noticeable change in bond angle distributions, after 5000 



– 24 – 
 

iterations, a final, short BD simulation of 50 ns duration was used to restore the initial 

distributions without affecting the fits to the experimental distributions. 

 We note that while the reported experimental data only include short axis distributions 

for the central cylindrical portion of the nucleoid (40), we also applied analogous potential 

functions to the hemispherical caps at either end of the capsule representing the final nucleoid 

volume. We did this because it appears likely that an effect similar to that which drives RNAP-

bound DNA outwards in the radial direction (40) might also drive RNAP-bound DNA to the 

poles of the nucleoid. Reflecting the greater uncertainty associated with this idea, however, the 

biasing potential functions applied along the long axis were arbitrarily scaled down in 

magnitude by a factor of 2. 

2C Final adjustment of 500 BPB chromosome structures 

While the chromosome structures obtained by this stage remain low-resolution models, they 

now explicitly reproduce the experimental distributions of RNAP and DNA in the nucleoid of 

E. coli. Prior to using these structures to guide the construction of increasing-resolution 

structures (see section S2D below), we performed two additional stages of simulation to finalize 

the 500 BPB structures. First, we took steps took to correct the fact that the bond lengths 

connecting beads in the structures are, at this stage, unrealistically long since they were derived 

from the highly idealized “blueprint” model. In reality, DNA on the lengthscale of the 500 BPB 

model’s typical bond lengths (~850 Å; see section S2A above) will exhibit significant flexibility, 

so the “true” bond length to apply should be considerably shorter than the idealized value. To 

account for this, we changed the equilibrium bond lengths, over the course of five 10,000 step 

steepest-descent energy-minimizations, from their initial, idealized values to the quadratic 
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mean of lengths predicted for a Worm-Like Chain with a persistence length, lp, of 50 nm or 79 

nm depending on whether the bond represents a pair of PFR or PAR beads, respectively. In 

order not to adversely affect the already excellent fits to RNAP and DNA distributions, these 

changes in equilibrium bond lengths were applied while CG beads representing the tips or 

bases of plectonemes (and their branches) were harmonically restrained to their initial (fit) 

positions. 

 Second, since at this stage the structures look unrealistically angular, we attempted to 

smooth out the path followed by the beads in a manner again consistent with the DNA 

behaving like a Worm-Like Chain. To this end, additional CG beads were added halfway along 

each bond connecting 500 BPB beads (Figures S16A-B). The newly added beads were displaced 

in a randomly selected direction normal to the original bond axis, such that the “new” bonds 

connecting them to the original beads were again of lengths consistent with end-to-end 

distances predicted by a Worm-Like Chain model of appropriate persistence length; these 

distances were determined using Eq. 3 of Zhou (54). If the sum of the two “new” bonds 

exceeded the contour length of the original bond, a different random displacement was 

selected. The result of this bead-adding procedure is a noticeable smoothing of the path 

described by the CG beads and a reduction in the local angularity of the model consistent with 

the persistence length of the final higher-resolution structures (Figure S16C). 

2D Generation of medium-resolution (5 BPB) chromosome structures 

The finalized 500 BPB structures obtained using the simulations outlined in sections S2A-S2C 

were used to construct higher resolution, 5 BPB structures in the following stages. In the first 

stage, a series of “morphing” simulations was performed with the aim of producing 5 BPB 



– 26 – 
 

structures that match the 500 BPB structures produced from the simulations described in 

sections S2A and S2B. To this end, 1330 “snapshots” were extracted from the above simulations 

and concatenated to form trajectories that were used as guides for the “morphing” simulations. 

Morphing was carried out using in-house code that: (a) applies harmonic springs (force 

constant of 2.5  10–5 kcal/mol/Å2) to the 5 BPB beads so that they follow the pre-computed 

trajectory of the 500 BPB beads as closely as possible, and (b) applies additional springs (force 

constant of 8.4  10–6 kcal/mol/Å2) between all pairs of 5 BPB beads that are separated by < 100 Å 

in the initial structure so that the models retain their branched-plectonemic “shapes” during the 

sometimes drastic changes that accompany compaction within the nucleoid. Since the structure 

of the chromosome is maintained by springs only – with no additional potential functions 

applied – the model used at this stage is essentially an elastic network model (ENM, (55)). Each 

of the 1330 stages of the morphing simulation involved a total of 400 steps of steepest-descent 

energy-minimization: over the first 300 steps, the 500 BPB beads moved with constant velocity 

from their positions in the “initial” snapshot to their positions in the “final” snapshot while the 

5 BPB beads endeavored to “keep up.” Over the next 50 steps the 5 BPB beads were allowed to 

continue relaxation to the positions dictated by the 500 BPB beads, and over the last 50 steps, the 

springs connecting the 5 BPB beads to the 500 BPB beads were removed to allow further 

structural relaxation. 

 The second stage involved making the 5 BPB structures emulate the changes that 

occurred to the 500 BPB structures during the simulations described in section S2C. To this end, 

the 5 BPB structures obtained after the morphing simulations were first subjected to 20 ns of BD 

simulation, during which Lennard-Jones (Gō) potential functions were gradually introduced 
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between only those pairs of 5 BPB beads that were: (a) part of the same plectoneme and (b) were 

separated by < 85 Å in the initial “blueprint” structures. The well-depth of these potential 

functions was set to 1 kcal/mol; they play the same role as the elastic network model used in the 

earlier morphing simulations, in that they act to retain the shape of the plectonemes during 

subsequent simulations. Next, an additional 40 ns of BD simulation was performed during 

which the Lennard-Jones functions were retained but during which position restraints were 

applied so as to induce, in selected 5 BPB beads, the same series of displacements undergone by 

their “parent” 500 BPB beads in the simulations described in section S2C. The force constant 

used in these position restraints was 2 kcal/mol/Å2, which was sufficient, when maintained 

during a further BD simulation of duration 250 ns, to cause the 5 BPB model to adopt a 

conformation essentially identical to that originally assumed by its 500 BPB “parent” at the 

positions defined by the 500 BPB beads, while being structurally relaxed at all intervening 

points (Figure S17). 

 Beyond this stage, the 500 BPB structures had no further role to play, and the goal was to 

add increasingly realistic features into the 5 BPB structures, without allowing them to deviate 

too far from their initial positions: since the deviations that follow were not drastic, no potential 

functions were included to explicitly restrain the shapes of plectonemes. First, a 1000 step 

steepest-descent energy-minimization was performed so that the lengths of the bonds 

connecting neighboring 5 BPB beads reached the values expected of B-DNA (i.e. 17 Å). Next, 

over the course of 25 consecutive 100 step steepest-descent energy-minimizations, steric 

interactions (modeled using conventional 1/r12 terms) were introduced between all pairs of 5 

BPB beads that were not involved in bonding interactions. This is a crucial stage since it 
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represents the first time that steric effects have been introduced during the entire protocol used 

to generate the chromosome structures: without this stage, any claim to have generated truly 

realistic chromosome structures would be critically compromised. During these simulations, the 

σ value describing the diameters of the 5 BPB beads was increased from 0 to 25 Å in 1 Å 

intervals; this final value is larger than is strictly necessary (the diameter of double helical DNA 

is ~20 Å) but it ensures that there is no danger of steric clashes occurring at any subsequent 

stage of simulation.  

 We next introduced a more sophisticated energy model (see below) and used it to 

perform a 250 ns BD simulation of the 5 BPB structure in order to allow modest conformational 

fluctuations to occur, before performing a final 1000 step steepest-descent energy-minimization. 

The energy model used in these final two simulations contains both electrostatic and steric 

interaction terms as well as bond stretch and bond angle terms. As before, therefore, we 

performed a series of BD simulations to parameterize the angle bending force constant, Kθ (see 

section S2F below). The total charge placed on each 5 BPB bead was -5 e, which in being 

reduced from the “true” value of -10 e, is intended to crudely mimic the condensation of 

positive ions around the double-helical DNA (56). The electrostatic interaction, Eelec, between 

beads not involved in bonding interactions with each other was then modeled using the Debye-

Hückel approximation: 

Eelec       =       332.08 qi qj exp ( –κ / rij) / ε rij               (7) 

Here qi and qj are the charges on the beads, κ is the Debye-Hückel screening parameter (related 

to the square root of the ionic strength), rij is the distance between the beads (in Ångstroms), ε is 
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the dielectric constant of the medium (approximated here as that of water – i.e. 78.4), and 332.08 

is the conversion factor that ensures the energy is returned in units of kcal/mol. 

2E Generation of high-resolution (1 NTB) chromosome structures 

Once generated, the final 5 BPB chromosome structures were converted into final structures 

with a resolution of 1 nucleotide-per-bead (NTB) as follows. Four intermediate beads were first 

added to the 5 BPB structure by placing them at uniform intervals between each pair of bonded 

beads, before a simple 1000 step steepest-descent energy-minimization was performed to 

smooth out the path of the double-helical axis. During this energy-minimization, the parameters 

used for bonded interactions modeled with equation 2 were: r0 = 3.4 Å, Kr = 20 kcal/mol/Å2, θ0 = 

180°, Kθ = 2.5 kcal/mol/rad; owing to the extremely modest change to the structure that occurs 

during this stage no nonbonded interactions were found to be necessary. This procedure yields 

a 1 BPB structure in which the position of each bead represents the double-helical axis of the 

DNA.  

 The 1 NTB structure – in which each CG bead is placed at the position expected of the 

backbone phosphorous atom – was then obtained through a series of structural superpositions 

of DNA fragments, taken from the initial, “blueprint” structure, onto beads of the 1 BPB 

structure. The phosphates of the first 3 bp were placed by superposing their 3 helical axis beads 

onto the corresponding 3 beads of the 1 BPB structure; given that these 3 beads are essentially 

co-linear in both structures, the rotational orientation of the first 3 bp fragment around the 

helical axis is effectively arbitrary. From this point on, however, all additional phosphate beads 

are placed in a way that continues the initially defined pitch of the helical axis. Specifically, to 

place the phosphate beads of a “new” basepair, i+1, we simultaneously superposed the helical 
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axis beads of basepairs i, i+1, and the two phosphate beads of basepair i (i.e. 4 beads in total), 

and then applied the same coordinate transformation to the phosphate beads of basepair i+1. In 

order to ensure that each new basepair added to the growing 1 NTB model stayed close to the 

helical axis that was so laboriously defined by all the earlier simulations, the helical axis beads 

were assigned a weight 3 times greater than the weight attached to the phosphate beads of 

basepair i in the above superposition. Having placed the phosphate beads of basepair i+1, the 

superposition process could be repeated using helical axis beads from basepairs i+1 and i+2 in 

order to place the phosphate beads of basepair i+2. Continued in this way, all 4641652 pairs of 

phosphate beads could be placed in approximately 40 hours. 

 As the very final stage of the entire process, a 10,000 step energy minimization was 

performed to remove any slight discontinuity that might be present where the 4641652nd 

basepair met the 1st basepair, to remove any slight steric clashes, and to ensure that the major 

and minor grooves were properly formed. In this energy minimization, a so-called Gō or 

“native-centric” energy function, similar to that widely used to simulate protein folding events 

(57-59), was applied in order to encourage the structure to take on the appearance of B-DNA, 

while remaining subject to the local environmental constraints acting on the DNA. For this 

purpose, we made use of the same energy function used in our previous simulations of protein 

folding (46,60), with bonded interactions described using: 

Ebonded      =      Σbonded Kr(r – r0)2      +      Σangles Kθ(θ – θ0)2      +      Σdihedrals Kφ(n)[1 – cos(n(φ – φn))]  (8) 

Here, Kr, r, r0, Kθ, θ and θ0 have the same meanings as before (see Eq. 2), but with the following 

values being used: r0 = 6.495 Å, Kr = 20 kcal/mol/Å2, θ0 = 149.4°, Kθ = 10 kcal/mol/rad. The final 
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summation over the dihedral angles (i.e. involving four consecutive phosphate beads on each 

DNA strand) expresses the energy as a sum of two cosine terms, with n = 1 and n = 3, 

respectively; in both cases, φn represents the phase angle defining the energy maximum of the 

cosine term (set such that the energy minimum occurs at a dihedral angle of 19.2°), and Kφ 

represents the height of the energy barrier for rotating around the dihedral. For these 

calculations, Kφ1 = 0.5 kcal/mol/rad, and Kφ3 = 0.25 kcal/mol/rad. 

 The formation of realistic major and minor groove dimensions (see below) was achieved 

through the addition of favorable Lennard-Jones potential functions acting between the DNA 

strands, for which the equilibrium distances were set to those found in B-DNA. Specifically, 

favorable interactions were included between phosphate i on strand A, and phosphates i-2 to 

i+3 on strand B; for all such pairs of beads, the energy well-depth, ε, was set to 0.5 kcal/mol. For 

all other pairs of beads, very weakly favorable Lennard-Jones interactions were included to 

prevent the formation of steric clashes; for such interactions we used σ = 10 Å and ε = 0.1 

kcal/mol. Finally, nonbonded electrostatic interactions were again described using Eq. 7, but 

with each phosphate bead assigned a charge of -0.5 e in order to again crudely mimic the effects 

of counterion condensation. After this final energy-minimization, the absence of any steric 

clashes in each of the final 1 NTB chromosome structures was confirmed using in-house code 

that explicitly measures the shortest distances between all beads. 

2F Parameterization of the coarse-grained simulation models 

While the non-biological nature of the compaction process gives us some leeway in the 

description of its timescale and the modeling of hydrodynamic interactions (see above), one 

aspect that is certainly important to model correctly is the persistence length of the DNA. A CG 
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model that predicts a persistence length that is too small, for example, will likely allow the DNA 

to adopt conformations that are much more bent than is realistic; a CG model that predicts a 

persistence length that is too large, on the other hand, may be so stiff that compressing the DNA 

into the cell might prove impossible. Prior to performing the compaction simulations outlined 

above, therefore, a series of preliminary simulations was performed in order to properly 

parameterize the angle-bending force constant, Kθ, for plectonemic and non-plectonemic 

regions of DNA. To this end, isolated polymers representing 25 kb (i.e., 50 beads using the 500 

BPB CG model) were simulated for periods of 200 μs (without confinement) with a range of 

values for Kθ. The “target” value of the persistence length for beads representing non-

plectonemic DNA (i.e. regular B-DNA) was 50 nm (24). The target value for beads representing 

plectonemic DNA was estimated instead at 79 nm: this value was obtained using the 

relationship derived by Odijk (61): Ps = 2P sin α, where P is the persistence length of dsDNA 

and, if the plectonemic supercoil is imagined as a duplex wrapped around a central cylinder, α 

is the angular displacement (52°) of the rising duplex from a line perpendicular to the length of 

the cylinder (61,62). 

 Persistence lengths from BD simulations performed with the CG simulation models 

were calculated directly from the mean-squared value of the end-to-end length of the DNA, 

using the Worm-Like Chain relationship (63): 

<R2>       =       2 lp lc       –       2 lp2 ( 1   –   e( –lc / lp ) )                 (9) 

Here R is the end-to-end distance, lc is the contour length of the polymer, and lp is the desired 

persistence length. Figure S3 shows that for both non-plectonemic (blue) and plectonemic DNA 



– 33 – 
 

(red), satisfactory reproduction of the target persistence lengths can be achieved using the Kθ 

values noted earlier (see section S2A). 

 A similar procedure was used to parameterize the 5 BPB simulation models. The force 

constant opposing changes in the bond length, Kr, was set to 20 kcal/mol/Å2, while that 

opposing changes in the bond angle, Kθ, was parameterized to match the persistence length of 

DNA. In this case, parameterization was performed by simulating a 500 basepair double-

stranded DNA (i.e. 100 5 BPB beads) for 10 µs using a timestep of 500 fs and including 

electrostatic interactions as noted above (see section S2D above). For Kθ, a range of values was 

used, with the value of 3.5 kcal/mol/rad selected for all subsequent simulations. While not 

exploited further in this work, it is worth noting that the inclusion of a Debye-Hückel 

approximation to the electrostatic interactions means that the 5 BPB model can also describe 

quite well the salt-dependence of the persistence length of double-stranded DNA (Figure S3C). 

2G Construction of a “uniform,” nonplectonemic model 

To assess the role that the plectonemic arrangement of the chromosome might make in the 

compactness of genomic regions, including macrodomains, we constructed a chromosomal 

model at 1 NTB resolution consisting entirely of single-duplex DNA. The protocol for its 

construction was essentially as described above, moving from an extended CG representation to 

higher resolutions, except that minor modifications were found to be necessary owing to the 

fact that the structure was initially refractory to further compaction when the shrinking volume 

reached ~150% that of the nucleoid. To overcome this problem, the coordinates and equilibrium 

bond lengths of the already-substantially-contracted model, were scaled down so that it would 

fit within the final nucleoid volume. A series of simulations was then performed during which 
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the scaled-down equilibrium bond lengths were progressively increased to their original values. 

Although the model was then fitted to the DNA probability density distribution described 

above (40), allowing comparison to plectonemic models with equivalent density distributions, it 

was not subject to RNAP density fitting: this allowed the same model to be used to represent 

both of the alternative global orientations.  

 For purposes of comparison with oriC@pole and oriC@midcell models, basepair 

numberings were adjusted in the following way. To match the oriC@pole arrangement we 

searched the genome in 100 bp blocks.  The mean distance of each block to the nearest nucleoid 

pole was calculated; then, the mean distance of a 100 bp block, displaced one half-genome (2.3 

Mb) from the trial block, to the opposite nucleoid pole was calculated. The center of the block 

for which the sum of these distances was smallest was selected to represent basepair 3925860 (in 

the center of oriC); all other beads were numbered accordingly. To match the oriC@midcell 

arrangement, we identified all beads within 1000 Å of the cell center. For each of these beads, 

mean distances were then calculated between (1) a designated “left” locus (a 100 bp block at a 

fixed genomic displacement of -0.3 genomes from the trial bead) and the nucleoid pole closest 

to it, and (2) a designated “right” locus (+0.3 genomes from the trial bead) and the opposite 

nucleoid pole.  The bead whose selection minimized the sum of these distances was selected as 

the central basepair in oriC. The apparent persistent length of DNA, calculated as in section S3A 

below, in regions corresponding to PFRs in these models is 475 ±129 Å. 
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3 Methods used to analyze physical characteristics of the chromosome models 

3A Groove widths and bend angle distributions; measurement of persistence lengths 

Major and minor groove widths in the final 1 NTB resolution structures were calculated from 

the distances between phosphate beads using the same convention used by El Hassan and 

Calladine (64). Specifically, the major groove width was defined using the distance between 

phosphate i on the first strand of the DNA and phosphate i+4 on the second strand. The minor 

groove width was defined using the distance between phosphate i on the first strand and 

phosphate i–3 on the second strand. 

 Although there is no reason to expect particularly good agreement, the measured groove 

widths from our structures (major and minor groove widths of ~16.9 ± 0.9 and ~14.2 ± 0.8 Å, 

respectively) are in reasonable agreement with the average values identified for NMR structures 

by Perez et al. (65) (major and minor groove widths of ~18 ± ~2 and ~13 ± ~2 Å, respectively), in 

reasonable agreement with the average values obtained from MD simulations performed with 

the AMBER force field with parmbsc0 parameters (66) (~19 ± ~2 and ~12-13 ± ~2 Å, respectively, 

based on inspection of Figure 3 of Perez et al.), and in surprisingly good agreement with the 

corresponding values obtained using the CHARMM27 force field (67,68) (~17 ± ~2 and ~13-14 ± 

~2 Å, respectively, again based on inspection of Figure 3 of Perez et al. (65)).  

 Bending angle distributions of the double-helical DNA were calculated using 3 beads 

placed at the position of the helical axis, spaced at 15 basepair intervals: i.e., by measuring the 

angle made by axis-beads placed at basepair positions: i-15, i, i+15. Following the convention 

that an unbent DNA has a bending angle of zero, we subtract the measured angle from 180°. 

The bending angle defined in this way was calculated for all 4641652 possible values of i. The 
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persistence length was then computed from the observed distribution of bending angles 

assuming a Worm-Like Chain model as follows. From Mazur (69), we have that the probability 

distribution for bending angles is given by: 

dP       ~       exp ( – lp θ2 / 2 lc ) sin θ dθ              (10) 

Here θ is the bending angle, lc is the contour length of the fragment over which bending is 

measured (i.e. 30 basepairs  3.4 Å), and lp is the persistence length. We compared the 

probability distribution of bend angles predicted by Eq. 10 with that obtained from direct 

measurement of the structures (see above), and used the Goal Seek function in Microsoft Excel 

to adjust lp so as to minimize the absolute error between the two distributions.  

 Persistence lengths for the B-DNA in the PFRs of the 1 NTB resolution structures were 

also obtained using end-to-end distance measurements as described in section S2F. In this case, 

the end-to-end distance of the central 1 kb stretch of each PFR in each structure was measured, 

squared, averaged over the 20 models, and then fit to the prediction of the Worm-Like Chain 

(WLC) model (Eq. 4); error bars were obtained from the standard deviation of the persistence 

length values obtained for each of the 40-44 PFRs.  

 Finally, we also measured apparent persistence lengths from analysis of contact 

probabilities averaged over entire chromosome structures: such an analysis allows comparison 

to be made with experimental estimates of the apparent persistence length, which are derived 

from the effective molar concentration of interacting DNA sites in gene expression studies (70). 

To this end, we again assumed a Worm-Like Chain model and used the following equation 

taken from Zhou (54): 
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G0(r|lc) = 4πr2(3/4πlplc)3/2 exp(-3r2/4lplc)(1 – 5lp/4lc + 2r2/lc2 – 33r4/80lplc3 – 79lp2/160lc2 –  

    329r2lp/120lc3 + 6799r4/1600lc4 – 3441r6/2800lplc5 + 1089r8/12800lp2lc6)         (11) 

Here, G0(r|lc) is the probability density for end-to-end distance, r, given a contour length lc, and 

lp is the persistence length of the polymer. We determined the probability of contact (i.e., the 

probability that the inter-bead distance was < 100 Å) between all basepairs separated by a given 

genomic distance in each of the model populations. Then, we adjusted lp for each genomic 

separation until the integrated probability from 0 to 100 Å calculated using Eq. 11 matched the 

probability of contact we had determined for that separation. We note that since, as observed in 

the main text, probabilities of contact scale as s-1, rather than as s-3/2, the apparent persistence 

lengths derived in this way decline as genomic separation increases: a similar trend can be 

observed in studies of DNA looping in vivo, where the effective molar concentration (which is 

proportional to contact probability) of interacting sites also declines less rapidly than s-3/2 (71).  

3B Calculation of twist, writhe, and linking number and consideration of knots 

We calculated twist (Tw) and writhe (Wr) parameters for 1NTB resolution structures using 

either the WrLINE software released by the Noy group (University of Leeds, UK) or using in-

house code that is heavily based upon it. The WrLINE Python software was downloaded from 

http://ccpforge.cse.rl.ac.uk/gf/project/wrline. A slight modification was made to the code to 

make it write out twist, which is computed as an intermediate step of the WrLINE procedure: in 

that code, twist is calculated using equation 6 of Sutthibutpong et al. (72). Each twist calculation 

on a complete chromosome structure containing 4641652 basepairs modeled at a 1 NTB 

resolution took less than 10 minutes. For the purposes of calculating writhe, however, (which 
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uses equation 5 of Clauvelin et al. (73)), the code did not complete even after three days of 

calculation time when applied directly to a 1NTB chromosome structure. We therefore ported 

the Python code into C++ and used OpenMP constructs to parallelize the most expensive parts 

of the calculation. To verify that our C++ code was correct, we first performed validation tests 

on a number of relaxed and supercoiled plasmids containing 500 or 2100 basepairs (Figure S18; 

Table S1) and compared the results of our code with those of the original WrLINE code. When 

applied to a complete 1NTB chromosome structure, our code completes the calculation of 

writhe in ~7 hours running on a 64-core AMD Opteron 6272 server. The linking number (Lk) 

was calculated using OpenMP-parallelized C++ code written entirely in-house, and using the 

procedure outlined by equations 14, 15 and 16 in (73). Correctness of the linking number code 

was verified, again using the supercoiled plasmid structures, by comparison with the sum of 

the twist and writhe values obtained with WrLINE, i.e. using Lk = Tw + Wr. Calculation of the 

linking number for a complete 1NTB chromosome structure requires ~8 days running on a 64-

core server. For this reason, we made use of the relation Lk = Tw + Wr for all other chromosome 

structures.  

 Following studies of plasmids indicating that, even in cells with a full complement of 

topoisomerases, some amount of DNA knotting occurs naturally (74,75), we also attempted to 

assess knotting in our structures. In principle, evaluation of knots can be performed using the 

Rknots package (76) – which was originally intended to analyze knots in protein structures – 

implemented in the statistical program R (77). Calculations using Rknots typically proceed in 

two stages. First, the knot diagram is projected and “reduced” in a process that decreases the 

number of points that a structure contains while preserving its topology. Second, to determine 
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the complexity of the resulting knot, a polynomial invariant (a formula defined by the knot type 

but independent of its particular projection) (78) is calculated from the reduced structure. We 

determined that the cost of the first stage rises quadratically with the number of beads in the 

structure. Using an entire chromosome structure represented with bead numbers ranging from 

100 to 2500, for example, we found the computational time increasing from 1.153 s to 1284 s. 

These data fit to the following quadratic relationship: computational time = 0.00020064x2 + 

0.01147x, where x is the number of beads in the structure, with an r2 of 0.997. When extrapolated 

to the total number of beads that would be present in a 5 BPB model (928,331), we estimate that 

completion of the first stage of the calculation would require ~2000 days on a single CPU.  

 Although it might be possible to complete reduction of structures with fewer beads, it 

should be noted that success in the second stage – calculation of the polynomial invariant – is 

harder for us to be sure of since computing it can also become prohibitively expensive when a 

projection contains many crossings (78). In preliminary tests, we found no obvious trend 

connecting the time required to compute the polynomial invariant and the number of beads in 

the structure, and attempts to analyze larger structures generated errors. While the complexity 

of knotting in the chromosome structures could not be determined, visual inspection of them 

reveals occasional passage of one strand of a plectonemic supercoil through the helical axis of 

another plectoneme. We are unable to characterize the effects of this interstrand passage 

topologically, but we suspect that the low-frequency knotting suggested in the structures is 

consistent with the fact that knots can be observed in plasmids in wild-type cells (74,75). 
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3C Distributions of void sizes in the chromosomal interior  

The distribution of void diameters accessible within the core of the nucleoid was calculated in 

the following way. At each spatial location of interest (see below), we attempted to determine 

the diameter of the largest possible sphere that could be placed without encompassing an atom 

of the chromosome. This maximal diameter was determined by trial and error at each location, 

starting with a sphere of diameter 10 Å and incrementing the diameter in intervals of 10 Å. In 

the coordinate frame used in our models, the chromosome extends from approximately -8000 Å 

to +8000 Å in the x direction, and from approximately -4000 to +4000 Å in both the y & z 

directions. Since we wish to focus on the steric accessibility of the nucleoid interior, the void 

diameter was determined only at grid points stretching from -4000 Å to +4000 Å in x, and from -

2000 to +2000 Å in y & z (i.e. at a total of 81  41  41 = 136161 grid points). Histograms of the 

maximal diameter values were made from all 20 structures of each model type, and the mean 

values and standard deviations of each histogram were determined. 

3D Distributions of distances between loci 

2D maps showing the distances between all possible pairs of DNA segments in the chromosome 

models were constructed in the following way. The chromosome was first divided into 10 kb 

blocks, and reference points within each block were placed at the position of the helical axis for 

every 100th basepair. The mean distance between each pair of 10 kb blocks was then computed 

by averaging the distance between all pairs of reference points within the two blocks (i.e., as the 

average of 10,000 distances). This calculation yields a 464 × 464 map of distances for all 20 

structures; these were then averaged to give the final maps shown in Figure 6B and in Figure 

S7. 
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3E Fractal globule characteristics 

In several eukaryotic cell types, DNA seems to be arranged in a non-equilibrium state known as 

a “fractal globule” (79-81). The well-defined domains associated with PARs in contact maps 

derived from experiment and simulation (9,10) (Figure 6B), suggest that the organization of 

DNA in prokaryotic cells may also be consistent with the strong territorial definition 

characteristic of the fractal globule (81,82). Interestingly, while under some conditions, the 

physical distance between the origin and other loci in E. coli scales linearly with genomic 

distance (18) – which would not be consistent with the behavior expected of a fractal globule 

confined within a sphere – it has been proposed that these linear scaling regimes may 

nevertheless be consistent with a fractal globule confined within the elongated geometry of the 

bacterial nucleoid (81). 

 In the fractal globule model, the probability of contact between loci separated by a given 

genomic distance, s, is expected to scale as s–1 over a range of polymer and subchain lengths, 

while probabilities in the alternative equilibrium globule scale first as s–3/2 before arriving at a 

constant value at larger separations (81,83). Similarly, root-mean-square end-to-end distances 

have different characteristic scaling exponents in fractal and equilibrium globules: while both 

states scale as s1/2 at short genomic separations, at greater genomic separations the fractal 

globule scales as s1/3 while the equilibrium globule is expected to simply plateau. Although the 

existence of well-defined scaling regimes is apparent in simulations of confined polymers 

(82,83), experimental data from eukaryotic chromosomes (as well as simulations of them) do not 

always resolve as cleanly into distinct regimes: in some cases, for example, the final s1/3 scaling 

only appears at substantial genomic separations and is preceded by an abrupt rise in distance 
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and an “intermediate” scaling region where distances increase more slowly (80). In simulations 

in which reduced models of the C. crescentus chromosome are confined to a capsule, moreover, 

three scaling regimes are apparent, with larger scaling exponents associated with the smallest 

and greatest genomic separations (84). Finally, we note that although we have referred in the 

above to the “equilibrium globule,” a highly-knotted globule may display similar scaling 

characteristics (83). 

 To compare the properties of our chromosome structures to those of the fractal globule, 

we proceeded as follows. To calculate the probabilities of contact between basepairs as a 

function of their genomic separation, we generated a set of genomic displacements according to 

the procedure described by Imakaev et al.: bins were of logarithmically-increasing sizes, 

starting with 6bp and increasing with a step size of 1.1, with displacements rounded to the 

nearest integer and redundant bins removed, creating the pattern …,x, 1.1x, 1.12x,…,N (83).  The 

resulting displacements range from 6 bp to ~2 MB, representing approximately half the size of 

the E. coli genome. The probability of contact was determined by calculating distances between 

the axis of every chromosomal basepair and the axis of the basepair offset by the bin 

displacement in both model sets; loci were considered in contact if the distance between them 

was <100 Å. Root-mean-square end-to-end distances were calculated using the same sets of 

displacements over the entire chromosome in all structures. 

3F Determination of shortest paths between loci 

The shortest possible paths between all pairs of genomic loci were determined as follows under 

the assumption that each path consists only of: (a) linear diffusion along the DNA, and (b) 

jumps between genomically-distant loci at points of close DNA-DNA contact. For each 
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structure, we first determined all pairs of basepairs that were separated by more than 50 

basepairs in sequence but whose centers were in close physical contact (i.e. closer than 50 Å). 

We then divided the entire chromosome into contiguous blocks of size 1 kb and identified all 

pairs of blocks that contained at least one basepair-basepair contact satisfying the separation 

and distance criteria outlined above. For all such pairs of 1 kb blocks we set the length of the 

path connecting them to 1000 basepairs: this is the average of the path lengths connecting all 

possible pairs of basepairs in the two blocks. For all pairs of blocks that did not have at least one 

basepair-basepair contact, we set the length of the path connecting them to be equal to their 

genomic distance (measured between the centers of the two blocks). Having assigned path 

lengths to all 4652  4652 block pairs, we then used in-house code implementing the Floyd-

Warshall-Roy (85-87) algorithm to find the shortest possible paths between all pairs of blocks. 

This calculation was repeated over the 20 representative structures for each type of 

chromosome model in order to obtain an average path-length for all pairs of blocks. Finally, 

these average path lengths were grouped according to the genomic distance separating the two 

blocks in each pair, and the average path lengths within each group were themselves averaged.  

4 Methods used to analyze genetic characteristics of the chromosome models 

4A Long axis distribution of genomic loci 

To compare with the fluorescence analysis of genomic loci reported by the Wiggins and Kondev 

groups (18), we divided the chromosome into 463 contiguous blocks of size 10 kb, determined 

the long axis position of the center of each block (expressed relative to the total cell length of 2.4 

μm), and averaged these values over the 20 representative structures for each type of 
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chromosome model. We then grouped these values according to the genomic distance 

(expressed in genome units) of each block from the origin of replication, oriC, and averaged all 

of the values within each group. Error bars plotted in Figure S10 represent the standard 

deviations of the values within each group. 

4B Radial distributions of EPODs and genes organized by protein subcellular location 

Information on the genomic coordinates of the 272 EPODs identifed by Vora et al. (88) was 

downloaded from their publication. The radial positions of the centers of each EPOD were 

determined and averaged over the 20 representative structures for each type of chromosome 

model. The EPODs were then grouped into five categories according to the log10 of their RNA 

expression levels reported by Vora et al. (88). The average radial positions of all EPODs within 

each category were then themselves averaged and plotted versus the average log10 of the RNA 

expression levels within each category.  

 A similar approach was used to analyze the radial distributions of genes grouped 

according to the final subcellular localization of their protein products. Genes in each of the 

following four categories were identified from the EcoCyc server (89): cytoplasmic (2002 genes), 

periplasmic (209 genes), inner membrane (1175 genes), and outer membrane (123 genes). The 

radial positions of the centers of all genes in each category were then determined, averaged over 

the 20 representative structures for each type of chromosome model, before these averaged 

radial positions were themselves averaged over all genes in each category. As shown in Figure 

S9C, no discernible difference can be seen between the average radial distributions of genes in 

any of the four categories. 
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4C Analysis and attempted enforcement of macrodomain organization 

Macrodomain boundaries were obtained from previous studies on chromosome organization 

(90,91). To assess the levels of compaction of these various domains, radii of gyration, Rg, were 

calculated using Rg2 = (1/N)Σi(ri – rmean)2, where ri – rmean is the distance between each basepair 

and the domain’s geometric center and N is the number of basepairs in the domain. Rg values 

were calculated for all 20 structures in each model set and then averaged. Separate calculations 

of Rg were performed for the oriC@pole, oriC@midcell and non-plectonemic models. 

 Since our analysis found little difference between levels of compaction in macrodomains 

and non-structured regions (Figure 8A), we attempted to impose macrodomain structure on the 

chromosomal models. While previous attempts to do this with lower resolution models have 

involved explicit confinement of the genomic regions corresponding to macrodomains within 

spheres (41), the availability of structural models allowed us to adopt an alternative approach. 

Mean distances between recombination sites were calculated and subsequently fitted to 

reported recombination frequencies between the loci (91) in order to establish a relationship 

between physical distance and rates of recombination. Target distances between loci—i.e., 

distances between them that would “reproduce” their experimentally-determined 

recombination frequency by matching the distance associated with their recombination rate—

were determined from the exponential fit. In the process designed to enforce these distances, 

bonds were established between potentially-combining loci in the complete coarse-grained 

model set. In a series of 2500 short BD simulations in which biasing potentials for fitting RNAP 

and DNA distribution (section S2B) continued to be applied, bond lengths, which began at the 

mean distance between loci in unaltered models, were progressively reduced or increased until 
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their equilibrium length matched the target distance for each locus-locus pair; analysis of 

distances between loci before and after this process tracked mean interlocus distances. Radii of 

gyration were then recalculated to determine the effect of enforcement on the compactness of 

chromosomal regions.  

 We note that although the correlation of target and final model distances is robust 

(Figure S12) and recombination frequencies derived from the final distances fit well with 

experimental data (Figure S11), in at least one case (attL7, for a recombining locus at ~0.89Mb) 

the model set is unable to realize the mean target distance between loci and the corresponding 

increase in recombination frequency (bottom-middle panel of Figure S11). We suspect that the 

models’ inability to enforce this distance arises from the high density of restraints in the vicinity 

of 1Mb that must be enforced simultaneously in accord with experimental data for the attR17 

site: within the limits of the model population, satisfaction of all distance restraints within this 

region does not appear to be possible. While increasing the model population might allow the 

greater variance across models necessary to match the calculated target distance, we think that a 

closer fit to this distance would not appreciably change the structuring of macrodomains. 

  We also note that, for the future, information incorporated in an attempt to better define 

macrodomains could include not only recombination rates for additional loci, but also region-

specific supercoiling density data. Although work focused on these regions in Salmonella (92) 

and E. coli (93) has indicated differences in density between Ter and other regions it is not clear 

to what extent these results are consistent with a gradient of decreasing supercoiling density 

from Ori to Ter (94). With the exception of Ter, for example, supercoiling is reported to be 

approximately constant across the Salmonella chromosome (92), and regional differences in 
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supercoiling have only been described in stationary phase in E. coli (93). Details of the 

dependence of any such gradient on energy availability and local supercoiling density continue 

to emerge, and future iterations of the models should be able to readily accommodate these data 

as they become available. 

4D Analysis of distributions of selected gene pairs 

Gene expression data were obtained from the M3D database (95). To determine their 

coexpression, we adopted methods employed by Xie at al. (96), calculating Pearson correlation 

coefficients for expression levels of the ~9 million pairs from a set of 4297 genes whose 

expression was assayed in 466 experiments.  Using a list of gene locations from EcoCyc (89), we 

measured distances between all gene pairs in the chromosome at a resolution of 10 bp. Gene 

pairs were rank-ordered by the Pearson correlation coefficients of their expression levels, and 

distances of genes separated by more than 1.5 Mb for which there was expression data were 

plotted: dividing the pairs into deciles by correlation coefficients generated 10 sets, each 

including ~315000 gene pairs. In heat maps comparing the oriC@pole and oriC@midcell models 

(Figures S13 and S14C), gene-pairs were binned according to their mean physical distances in 

the two models (using bin sizes of 100 Å) and colored according to the mean Pearson 

correlation coefficients of all gene-pairs sorted into each bin. Lists of genes in pairs from the 

bottom and top deciles were submitted to PantherDB to test for overrepresentation using the 

complete gene-ontological categories of molecular function, biological process, and cellular 

component (97) but did not reveal clear trends among the gene sets. 
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4E Variance of the long axis separation distance between genomic loci and oriC 

To extend the comparison with the work of the Wiggins and Kondev groups (18), we attempted 

to determine the variance of the distance (expressed in units of cell length) measured from each 

of the 463 10 kb blocks to oriC. This was achieved by first determining the variance  of each 

block’s distances measured in each of the 20 representative structures for each type of 

chromosome model, grouping these variances according to the genomic distance of each block 

from oriC, and averaging all of the values within each group. Interestingly, when the cell length 

is assumed to be fixed at 2.4 μm, the distribution of variances does not follow the characteristic 

V-shape seen in the data of Wiggins et al (Figure S19A). When, however, the cell length is 

assumed to vary around a mean value of 2.4 μm but with a standard deviation of 0.5 μm, a 

much closer agreement with the experimental data is obtained (Figure S19B). Given that the 

present analysis has been carried out using only 20 representative structures, a more in-depth 

analysis of variance distributions should probably wait until a much larger sample of structures 

has been obtained. 
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Figure S1. The oriC@pole model set. Twenty 1 NTB-resolution structures with the oriC@pole 

global orientation are depicted. The coloring scheme indicates genomic regions as described by 

Valens et al. (91): Ori (green), Ter (cyan), Right (red), Left (blue), NS-L, and NS-R (both dark 

gray). 
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Figure S2. The oriC@midcell model set. Twenty 1 NTB-resolution structures with the 

oriC@midcell global orientation are depicted.  The coloring scheme is as in Figure S1. 
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Figure S3. Parameterization of CG simulation models to match DNA persistence length. A. 

500 BPB models match experimental estimates of persistence length. Since beads in these 

structures can represent either plectonemic or nonplectonemic DNA, two fittings were required. 

Angle force constants were adjusted in the 500 BPB model to match a predicted persistence 

length of 79 nm for plectonemic supercoils (red) and 50 nm for single-duplex DNA (blue). B. 5 

BPB models match experimental estimates of persistence length.  Persistence lengths of a 500 bp 

polymer represented at 5 BPB resolution are plotted. Since plectonemes are explicitly 

represented at this resolution, only a single fitting is required. C. Persistence length as a 

function of salt concentration.  Simulated values (blue) using the force constant determined in B 

are compared with experimental values (red) for a range of salt concentrations (98); simulated 

values match experiment at ~150mM. 
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Figure S4. Model-to-model variation in DNA and RNAP densities. Short-axis probability 

densities are plotted for DNA (blue) and RNAP (red) as in Figure 5 of the main text. Mean 

densities of the model population are plotted in bold; finer lines represent densities in 

individual models. At left, distributions for oriC@pole models are plotted; at right, distributions 

for oriC@midcell models. 
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Figure S5. Groove width and bending angle distributions. A. Distribution of minor groove 

(red) and major groove widths (blue) in the most representative 1NTB structure of the 

oriC@pole models. Red dashed lines indicate the range of minor groove widths measured in 

NMR structures and reported by Perez et al. (65); blue dashed lines represent the same, but for 

major groove widths. B. Same as A but for the most representative 1NTB structure of the 

oriC@midcell models. C. Distribution of bending angles obtained from the most representative 

1NTB structure of the oriC@pole models (red) compared with corresponding distribution 

obtained from assuming a Worm-Like Chain (WLC) model with a best-fit persistence length 496 

Å (blue) (see section S3A). D. Same as C but showing results for the most representative of the 

oriC@midcell models and comparing with a WLC model distribution obtained with a best-fit 

persistence length of 495 Å. 
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Figure S6. DNA does not fill the cell interior uniformly. A. Distribution of local DNA 

densities. Densities are reported for cubes of the indicated size in the oriC@pole (blue) and 

oriC@midcell (red) models. B. Same as A, but with frequencies plotted on a log scale. C. 

Snapshot of the region with highest density in the most representative oriC@midcell structure. 

Beads shown in red are those in the 50 Å cube with highest density (~300 mg/mL); beads shown 

in blue are beads occupying the neighboring cubes. D. (Upper panel) Isocontour plot of DNA 

density in the nucleoid region of the most representative oriC@pole structure. The blue 

wireframe represents regions of intermediate density while the solid red surface represents 

regions of high density (1.6 times more dense than the wireframe).  (Lower panel): same as 

upper panel, but for the most representative oriC@midcell structure.  
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Figure S7. Contact map for the oriC@midcell model. Mean distances between chromosomal 

loci binned into 10 kb blocks in the oriC@midcell model set are plotted; coloring is as in Figure 

6B of the main text, with color in bins ranging from red to blue as interlocus distance increases. 
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Figure S8. Distribution of interplectonemic contacts. The mean number of other plectonemes 

making close contact with a plectoneme is plotted as a function of the plectoneme’s length for 

oriC@pole (blue) and oriC@midcell (red) models. To determine the number of contacts, basepairs 

closer than 50 Å and separated by more than 50 bp were identified; plectoneme affiliations of 

basepairs making close contact were then determined. 
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Figure S9. Radial and longitudinal positioning of genomic loci. A. Long-axis position varies 

as a function of genomic distance from oriC in oriC@midcell structures. Positions as a fraction of 

cell length plotted as a function of distance from oriC in the 20-structure set (blue) are compared 

with experiment ((18); red). B. Highly-expressed protein-rich domains are biased toward the 

nucleoid periphery. Radial positions of extended protein-occupancy domains (EPODs) are 

plotted as a function of their expression level (88); highly-expressed domains, which have not 

been explicitly built in to the structures, tend to be located at greater radial distances. C. 

Subcellular location of gene products does not affect the genes’ radial positioning. Genes were 

classed by the location of their products according to EcoCyc. Mean radial distances of genes 

within each class were determined in the oriC@pole and oriC@midcell populations. 
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Figure S10. Cellular positioning of macrodomains. A. Location by region in oriC@pole. Mean 

positions of genomic regions as defined by Valens et al. (91) were calculated. To determine 

mean short-axis position, a mean radial position was first calculated for each model by rotating 

a structure through 360 degrees and projecting its radial position onto the short axis for each 

increment of the rotation; radial positions for all models were then averaged. Macrodomains are 

stably positioned across the model set, but are no more strongly positioned than non-structured 

regions. B. Location by region in oriC@midcell. Same as A, but describing oriC@midcell models. 

 

 

 

 

 

 

 

 



– 66 – 
 

 

Figure S11. Comparison of experimentally-determined and fitted recombination frequencies. 

Experimental recombination frequencies appear in blue; data are reproduced from (91). 

Recombination frequencies for the model sets were calculated using the exponential fit 

described in the main text and section S4C: frequencies calculated from model distances 

measured before enforcement of interlocus distances appear in red; frequencies calculated after 

the imposition of distance restraints to match experiment appear in green. The restraints ensure 

that distances will be brought into line with experimental recombination rates for all tested 

locations of recombining elements. 
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Figure S12. Enforcing distances between recombination loci does not structure 

macrodomains. A. Enforcement of distances determined by experimental recombination 

frequency. Target distances based on the exponential fit depicted in Figure 8B of the main text 

were enforced over 2500 short BD simulations. Distances before enforcing simulations appear in 

red; distances measured after enforcement appear in blue. Initial and final distances for 

oriC@pole are pictured in the left panel; oriC@midcell distances are at right. B. Fitting physical 

distances to recombination frequency does not appreciably alter structuring of macrodomains. 

Radii of gyration for each of the designated regions in 500 BPB model sets were calculated 

before (solid bars) and after (hashed bars) enforcement of recombination distances. Radii of 

gyration in both oriC@pole (left) and oriC@midcell (right) were essentially unchanged. 
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Figure S13. Expression levels of closely-apposed genes tend to be correlated in oriC@pole and 

anti-correlated in oriC@midcell. Genomically-distant gene pairs (separated by >1.5Mbp) were 

sorted into 100 Å bins by mean distance in each model set; the plot depicts the mean correlation 

coefficient in each xy (oriC@pole distance-by-oriC@midcell distance) bin. Gene pairs are 

partitioned into well-defined zones of high co-expression (blue), where genes in a pair are 

proximate in oriC@pole but distant in oriC@midcell, and low co-expression (red), where genes in 

a pair are distant in oriC@pole, but proximate in oriC@midcell. 
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Figure S14. Differences in relative gene positioning in oriC@pole and oriC@midcell depend 

on organization of the chromosome into plectonemes. A. Mean distances between gene pairs 

in the top, middle, and bottom 10% of coexpression rankings, as in Figure 9A of the main text, 

are plotted for models in which the entire chromosome is represented as a single duplex 

without plectonemic supercoiling. Separation of anti-correlated genes does not occur in the 

nonplectonemic oriC@pole model (upper panel), and differences in the positioning of strongly 

and weakly coexpressed gene pairs are substantially diminished in both nonplectonemic model 

types. B. Same as Figure 9B of the main text, but for entirely non-plectonemic reference models. 

C. Same as Figure S13, but for entirely non-plectonemic reference models. 
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Figure S15. DNA and RNAP densities depend on radial position. DNA density (blue) and 

RNAP density (red) in radial shells 50 Å thick are plotted for the central 10000 Å cylinder of the 

nucleoid. Densities were calculated on the basis of radial target populations derived to fit 

experimental short-axis probability densities for DNA and RNAP (see section S2B of the 

Supplementary Data); density within each shell is normalized by the mean density within the 

central cylinder. 
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Figure S16. Addition of intermediate beads in preparation for generating finer-grained 

structural models. A. Snapshot from a 500 BPB model. B. Introduction of intermediate beads.  

Beads are added at half bond-length across the chromosome; while original 500 BPB beads at 

plectoneme and branch tips and bases are held fixed, bonds between the original beads are 

contracted to fit the mean end-to-end length of 500bp of supercoiled DNA, effectively adding 

“slack” to the initially fully-extended DNA represented by the span between original beads, in 

conformity with the persistence length of the span. C. Displacement of intermediate beads.  

Subject to available “slack” in the contracted bond, added beads are displaced by lengths 

sampled from a distribution determined by the persistence length of single-duplex or 

plectonemic DNA (54), in a random direction normal to the bond axis. 
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Figure S17. Correspondence of 5 BPB and (500 BPB + Intermediate bead) models. A 5 BPB 

oriC@pole structure (green) is depicted along with a coarse-grained structure (red). The coarse-

grained structure is the result of the processes detailed in sections S2A-C of the Supplementary 

Data, in which a 500 BPB model is compacted, fitted to density distributions, and refined by the 

addition of intermediate beads. The close correspondence of the 5 BPB structure and the 

coarser-grained model indicates that morphing simulations have successfully followed the 

trajectory established by the 500 BPB model during compaction and that displacements 

analogous to those of the intermediate beads in the 500 BPB model have been accomplished at 

higher resolution (see section S2D for details). 
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Figure S18. Plasmid models used to verify twist and writhe calculations. Size and specific 

linking difference (supercoiling density, σ) are listed for each of the plasmids used. See section 

S3B of the Supplementary Data for additional details. 
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Figure S19. Dependence of the variance of locus positioning on genomic distance from oriC. 

A. Variances in the physical distances of 10 kb blocks from oriC (expressed in units of cell-

length) in the oriC@midcell model, grouped and averaged according to their genomic distance 

from oriC. The plot assumes no variation in the length of the cell (2.4 µm) enclosing the 

chromosome (see section S4E of the Supplementary Data for additional details). Red data points 

and line are taken from the work of the Wiggins and Kondev groups (18). B. Same as A but 

allowing variation in the length of the cell with standard deviation of 0.5 µm; blue lines are 

added to guide the eye. 
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Model Size (bp) 
Supercoil 

density(σ) 

Twist 

(Tw) 

Writhe 

(Wr) 
Tw+Wr 

Linking 

(Lk) 

Difference 

(%) 

A 500 0.00 48.0710 0.0000 48.0710 48.0000 0.15 

B 500 -0.06 46.3820 -2.4228 43.9592 44.0000 -0.09 

C 500 +0.07 49.5160 2.4531 51.9691 52.0000 -0.06 

D 2100 -0.06 195.7070 -7.7174 187.9896 188.0000 -0.01 

 

Table S1. Topological properties of tested plasmids. Topological properties calculated for 

plasmids depicted in Figure S18 as described in section S3B above. Properties were calculated 

from equations reported by Clauvelin et al. ((73): twist, according to equation (6); writhe, 

according to equation (5); and linking number, according to equations (14), (15), and (16)). 
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Model Tw Wr Lk Supercoil density Wr/ΔL 

1 434346.11 -13880.20 420465.9 -0.04885 0.643 

2 434387.91 -14173.20 420214.7 -0.04942 0.649 

3 434329.52 -14276.30 420053.2 -0.04979 0.649 

4 434312.65 -14131.30 420181.4 -0.04950 0.646 

5 434280.68 -14006.20 420274.5 -0.04929 0.643 

6 434323.51 -14195.40 420128.1 -0.04962 0.647 

7 434263.89 -13706.70 420557.2 -0.04865 0.637 

8 434326.61 -14189.70 420136.9 -0.04960 0.647 

9 434356.49 -14148.80 420207.7 -0.04944 0.647 

10 434359.25 -14112.80 420246.4 -0.04935 0.647 

11 434287.21 -14185.00 420102.2 -0.04968 0.646 

12 434304.06 -14349.00 419955.1 -0.05001 0.649 

13 434328.52 -14266.40 420062.1 -0.04977 0.648 

14 434278.48 -13946.50 420332.0 -0.04916 0.642 

15 434312.48 -14071.60 420240.9 -0.04936 0.645 

16 434334.319 -14176.30 420158.0 -0.04955 0.647 

17 434304.11 -13847.90 420456.2 -0.04888 0.641 

18 434334.48 -14457.50 419877.0 -0.05019 0.652 

19 434307.55 -14087.20 420220.3 -0.04941 0.645 

20 434258.32 -14156.10 420102.2 -0.04968 0.645 

mean 434316.81 -14118.21 420198.6 -0.04946 0.646 

std dev 32.14 170.89 162.3 0.00037 0.003 

 

Table S2. Topological properties of the final oriC@pole structures. Twist (Tw), writhe (Wr), 

linking number (Lk), and supercoiling density (σ) are reported for each of the oriC@pole 

structures. The fraction of the change in linking number (ΔLk) contributed by writhe is listed in 

column 6. 

 



– 77 – 
 

Model Tw Wr Lk Supercoil density Wr/ΔL 

1 433774.31 -13424.20 420350.1 -0.04912 0.618 

2 433725.05 -13071.40 420653.6 -0.04843 0.611 

3 433684.69 -13026.50 420658.2 -0.04842 0.609 

4 433712.60 -13177.30 420535.3 -0.04870 0.612 

5 433682.11 -13069.80 420612.3 -0.04852 0.609 

6 433659.29 -13003.20 420656.1 -0.04842 0.607 

7 433696.36 -13161.30 420535.1 -0.04870 0.611 

8 433695.72 -13290.00 420405.7 -0.04899 0.614 

9 433718.85 -13228.20 420490.6 -0.04880 0.613 

10 433676.85 -13039.90 420637.0 -0.04847 0.609 

11 433707.57 -13236.70 420470.9 -0.04884 0.613 

12 433683.47 -12847.30 420836.2 -0.04802 0.605 

13 433657.98 -12688.90 420969.1 -0.04772 0.602 

14 433705.50 -12823.50 420882.0 -0.04791 0.605 

15 433685.36 -13296.80 420388.6 -0.04903 0.614 

16 433665.56 -12865.90 420799.7 -0.04810 0.605 

17 433652.55 -13091.80 420560.7 -0.04864 0.609 

18 433730.67 -13228.60 420502.1 -0.04877 0.614 

19 433723.91 -13312.80 420411.1 -0.04898 0.615 

20 433663.84 -13114.70 420549.1 -0.04867 0.610 

mean 433695.11 -13099.94 420595.2 -0.04856 0.610 

std dev 29.63 183.18 166.3 0.0008 0.004 

 

Table S3. Topological properties of final oriC@midcell structures. Twist (Tw), writhe (Wr), 

linking number (Lk), and supercoiling density (σ) are reported for each of the oriC@midcell 

structures. The fraction of the change in linking number (ΔLk) contributed by writhe is listed in 

column 6. 
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Region PAR start PAR stop PFR start PFR stop 

1 4606402 223771 223772 230278 

2 230279 331458 331459 333459 

3 333460 848965 848966 850965 

4 850966 984519 984520 986982 

5 986983 1029418 1029419 1031418 

6 1031419 1129412 1129413 1140986 

7 1140987 1197588 1197589 1199588 

8 1199589 1290922 1290923 1292922 

9 1292923 1299566 1299567 1302812 

10 1302813 1620914 1620915 1622915 

11 1622916 1636335 1636336 1639335 

12 1639336 1969383 1969384 1972691 

13 1972692 1975329 1975330 1977330 

14 1977331 1990954 1990955 1994707 

15 1994708 1999585 1999586 2007643 

16 2007644 2011223 2011224 2023680 

17 2023681 2101396 2101397 2104396 

18 2104397 2174282 2174283 2176321 

19 2176322 2428719 2428720 2430763 

20 2430764 2521593 2521594 2523985 

21 2523986 2533763 2533764 2537237 

22 2537238 2563331 2563332 2565332 

23 2565333 2626694 2626695 2628938 

24 2628939 2726068 2726069 2731157 

25 2731158 2817783 2817784 2819783 

26 2819784 2991267 2991268 2993855 

27 2993856 3054865 3054866 3056988 

28 3056989 3319986 3319987 3322505 

29 3322506 3423423 3423424 3428762 

30 3428763 3440038 3440039 3448148 

31 3448149 3623398 3623399 3625515 

32 3625516 3719477 3719478 3722477 

33 3722478 3915553 3915554 3922051 

34 3922052 3941807 3941808 3948034 

35 3948035 4035530 4035531 4041637 

36 4041638 4115713 4115714 4118090 

37 4118091 4166658 4166659 4175026 

38 4175027 4178446 4178447 4181446 

39 4181447 4208146 4208147 4214433 

40 4214434 4604401 4604402 4606401 

Table S4. PFR and PAR locations in oriC@pole structures. Coordinates in basepairs are given 

for the forty PARs and forty PFRs in the oriC@pole model set. 


