Supplementary data Supplementary data 1: Yeast strains used in this study.

Strain	Genotype	Source
W303	MATa ura3-1 trp1-1 leu2-3,112 his3-11,15 ade2-1 can1-100 ybp1-1 rad5-535	R. Rothstein
KW20	W303a Pif1-Myc13::TRP1	(1)
MBY49	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1 Δ 63 his3 Δ 200 leu2 Δ 1 hxt13::URA3	(2)
SG64	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1∆63 his3∆200 leu2∆1 hxt13::URA3 prb1::G4(Chrl)- LEU2	This study
KW95	W303a Mre11-Myc13::TRP1	This study
KW109	W303a Mms1-Myc13::TRP1	This study
KW110	MATa ura3-52 lys2-801 amber ade2-101 ochre trp1 Δ 63 his3 Δ 200 leu2 Δ 1 hxt13::URA3 mms1::TRP1	This study
KW111	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1Δ63 his3Δ200 leu2Δ1 hxt13::URA3 prb1::G4(Chrl)- LEU2 mms1::TRP1	This study
KW136	W303a Mms1-Myc13::TRP1 pif1-m2-HIS3	This study
KW155	W303a mms1::TRP1	This study
KW166	W303a Mms1-Myc13::TRP1 rtt101::KANMX4	This study
KW168	W303a Mms1-Myc13::TRP1 mms22::KANMX4	This study
KW178	W303a Pol2-Myc13::TRP1	This study
KW190	W303a Pol2-Myc13::TRP1 mms1::HIS3	This study
KW200	MATα ura3-52 lys2-801_amber ade2-101_ochre trp1Δ63 his3Δ200 leu2Δ1 hxt13::URA3 prb1::NG(ChrVIII)- LEU2	This study
KW203	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1Δ63 his3Δ200 leu2Δ1 hxt13::URA3 prb1::GR(Chrl)- LEU2	This study
KW208	MATα ura3-52 lys2-801_amber ade2-101_ochre trp1Δ63 his3Δ200 leu2Δ1 hxt13::URA3 prb1::NG(ChrVIII)- LEU2 mms1::TRP1	This study
KW220	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1 Δ 63 his3 Δ 200 leu2 Δ 1 hxt13::URA3 prb1::GR(ChrI)-LEU2 mms1::TRP1	This study
KW231	W303a Mms1-Myc13::TRP1 Pol2-HA::HIS3 bar1::KANMX6	This study
KW232	W303a Pif1-Myc13::TRP1 mms1::HIS3	This study
KW240	W303a Mre11-Myc13::TRP1 mms1::HIS3	This study
KW256	MATα ura3-52 lys2-801_amber ade2-101_ochre trp1∆63 his3∆200 leu2∆1 hxt13::URA3 prb1::LEU2	This study
KW261	MATa ura3-52 lys2-801_amber ade2-101_ochre trp1 Δ 63 his3 Δ 200 leu2 Δ 1 hxt13::URA3 prb1::LEU2 mms1::HIS3	This study
KP808	W303a Pol2-Myc13::TRP1 rtt1o1::URA3	This study
KP809	W303a Mms1-Myc13::TRP1 rtt101::KANMX4 mms22 HIS3	This study
KP810	W303a Pol2-Myc13::TRP1 rtt101:URA mms22::HIS3	This study
KP811	W303a Mms1-Myc13::TRP1, G4 Chr IV mut-LoxP	This study
KP812	W303a Pol2-Myc13::TRP1, G4 Chr IV mut-LoxP	This study
KP813	W303a Pol2-Myc13::TRP1 mms1::HIS3, G4 Chr IV mut-LoxP	This study

Supplementary data 2: DNA fragment sizes before ChIPseq and conventional ChIP. (A,B) DNA fragment sizes after sonication of the Myc-tagged Mms1 (A, lane 2) and untagged (B, lane 1) strain used for ChIPseq analysis and DNA ladder (lane 1 and lane 2 respectively). (C) DNA fragment sizes after sonication of the Myc-tagged Mms1 (lane 2) and untagged (lane 3) strain used for conventional ChIP analysis and DNA ladder (lane 1). Each DNA was separated on a 2% agarose gel.

Supplementary data 3: Primers used in this study for qPCR.

Region	(G4 _{tract3}) motif (3)	(G4 _{tract2}) motif on leading strand	(G4 _{tract2}) motif on lagging strand	Peak-call	Sequence (5'-3')	Source
Chrl _{NC} fw	+	+	-	-	TCGTATACATGCGGAGTAG	This study
Chrl _{NC} rev	+	+	-	-	GTTACCACAGAATTGAACTG	This study
ChrIV _{ARO1} fw					TCGTTACAAGGTGATG	(4)
ChrIV _{ARO1} rev					AATAGCGGCAACAAC	(4)
ChrVI _{BR} fw	+	+	+	-	TGCATAGTTCTTAGGTCTTC	This study
ChrVI _{BR} rev	+	+	+	-	GTATAGCAGTGACGCGTG	This study
ChrVI _{Tel-VI-R} fw					ATCATTGAGGATCTATAATC	(1)
ChrVI _{Tel-VI-R} rev					CTTCACTCCATTGCG	(1)
BM VII _{BR} fw	-	+	+	+	AGTCTAATCTAACTGGTCTG	This study
BM VII _{BR} rev	-	+	+	+	GCCAAGAAGGCTCTAGAC	This study
ChrIX _{BR} fw	+	+	+	-	AGAGTCTTTGGCACTGTTG	This study
ChrIX _{BR} rev	+	+	+	-	ATTATCCCTTAATGGCCTAC	This study
ChrlX _{tRNA} fw					GGAAAGATTGTACGGGAAATGG	(5)
ChrIX _{tRNA} rev					GCTAATGAAACTACTAATGTCTTG C	(5)
ChrX _{BR} fw	+	+	+	+	САСАААСАСАТАААСАСАТАС	This study
ChrX _{BR} rev	+	+	+	+	CGGATTTCGCATAGTTGTC	This study
ChrXIa _{BR} fw	-	+	+	-	GGCAACGATAGAACCAATTC	(1)
ChrXla _{BR} rev	-	+	+	-	GCAACCATTATACCATCTCC	(1)
ChrXlb _{BR} fw	-	-	+	-	ACTAGGTCTCTTAGCTCTC	This study
ChrXlb _{BR} rev	-	-	+	-	TTTTGAACACGTTCTACGAG	This study
ChrXIc _{BR} fw	+	+	+	+	CAGTATGAAATTATCCGCTC	This study
ChrXIc _{BR} rev	+	+	+	+	CACTATGGTGGACAGCTG	This study
$ChrXII_{rDNA_{RFB}}$ fw					AAGATGGGTTGAAAGAGAAGGG	(1)
ChrXII _{rDNA_RFB} rev					TCATATCAAAGGCATGTCCTGT	(1)
ChrXIII _{BR} fw	-	+	+	-	CCAAACCAGACCAACCATTG	(1)
ChrXIII _{BR} rev	-	+	+	-	TGCTGACCACAACGAACC	(1)
ChrXIII _{NC} fw	+	+	-	-	GCTTCAGCCTGGGGTAAC	This study
ChrXIII _{NC} rev	+	+	-	-	GGCACCATTAGATTCACCAC	This study
ChrXIV _{NC} fw	-	-	-	-	AGTGATTGTGCCGTTATAAC	This study
ChrXIV _{NC} rev	-	-	-	-	CGGTTCGCACTACGATAC	This study
ChrXV _{BR} fw	+	+	+	-	ATACGCAGTATGGTGATATC	This study
ChrXV _{BR} rev	+	+	+	-	GTTTATTGCCGATATACCTC	This study

Supplementary data 4: Binding regions of Mms1 identified by MACS2 'peakcall' command.

Peaks fro	Peaks from MACS 2.0										
	_					LOG10	fold_enrich	LOG10			
Chr	Start	End	Length	Summit	pileup	(p value)	ment	(p value)	name		
									default exteize1		
Chrl	112580	112785	205	112690	33.00	625.095	247.853	327,508	80 peak 1		
									peakcall_mms1_		
									default_extsize1		
Chrl	130081	130284	203	130242	40.00	527.558	208.622	249.880	80_peak_2		
									peakcall_mms1_		
Chrl	101065	100177	010	100021	40.00	900 461	266.000	491 261	default_extsize1		
CIII	191905	192177	212	192031	40.00	809.401	200.000	401.301	neakcall mms1		
									default extsize1		
Chrll	193642	193822	180	193769	31.00	645.572	260.302	344.464	80_peak_4		
									peakcall_mms1_		
<u>.</u>									default_extsize1		
Chrll	215788	215983	195	215843	34.00	685.749	258.984	377.494	80_peak_5		
									default_exteize1		
Chrll	463749	464101	352	464057	28.00	749.299	303.780	429.304	80 peak 6		
									peakcall_mms1_		
									default_extsize1		
Chrlll	123534	123722	188	123612	47.00	997.933	280.550	642.703	80_peak_7		
									peakcall_mms1_		
ChrlV	427403	427648	245	427568	41.00	1 303 002	305 670	084 600	default_extsize1		
CHITV	427400	427040	243	427300	41.00	1.535.032	393.079	304.033	peakcall mms1		
									default extsize1		
ChrIV	461797	462449	652	462293	77.00	1.555.914	285.887	1.121.153	80_peak_9		
									peakcall_mms1_		
	1010000	10,1000,1	0.40	1010101	07.00	100,105	000.004	040.000	default_extsize1		
Chriv	1049062	1049304	242	1049164	27.00	488.485	232.904	219.689	80_peak_10		
									default extsize1		
ChrIV	1239630	1239824	194	1239696	44.00	927.112	276.729	582.947	80_peak_11		
									peakcall_mms1_		
									default_extsize1		
ChrlV	1251076	1251389	313	1251202	45.00	1.238.366	336.579	853.083	80_peak_12		
									peakcall_mms1_		
ChrV	40469	41119	650	40735	38.00	1.001.155	317.243	645.062	80 peak 13		
									peakcall_mms1_		
									default_extsize1		
ChrV	42006	42474	468	42233	42.00	1.040.526	307.755	680.290	80_peak_14		
									peakcall_mms1_		
ChrV	43222	43945	723	43695	72.00	1 981 364	356.086	1 493 835	0etault_extsize i		
	40222	40040	720	40000	72.00	1.501.504	000.000	1.400.000	peakcall mms1		
									default_extsize1		
ChrV	312024	312220	196	312084	44.00	625.972	219.505	328.202	80_peak_16		
									peakcall_mms1_		
Chrl	005544	005704	100	005617	40.00	405 700	104 715	160 196	default_extsize1		
	333344	333734	190	333017	40.00	405.728	104./15	100.180	neakcall mme1		
									default extsize1		
ChrV	396417	396611	194	396505	34.00	816.523	291.130	487.064	80_peak_18		
									peakcall_mms1_		
0 , 11			105				054.000	070.010	default_extsize1		
ChrV	442043	442465	422	442270	75.00	1.264.826	254.802	876.649	80_peak_19		
									default exteize1		
ChrV	574897	575199	302	575071	60.00	1.073.506	258.619	708.690	80_peak_20		

									peakcall_mms1_
ChrVI	224946	225231	285	225020	44.00	816.422	255.176	487.064	80_peak_21
									peakcall_mms1_
ChrVII	567184	567405	221	567287	38.00	718.636	253.025	403.215	default_extsize1 80 peak 22
									peakcall_mms1_
ChrVII	700602	700920	220	700704	50.00	1 771 011	424 210	1 200 422	default_extsize1
CIIIVII	700002	700830	220	700704	50.00	1.771.911	424.219	1.300.422	peakcall mms1
									default_extsize1
ChrVII	794325	794519	194	794426	38.00	1.242.680	377.673	856.834	80_peak_24
									default_extsize1
ChrVII	806449	806663	214	806581	36.00	1.082.030	348.574	716.266	80_peak_25
									peakcall_mms1_
ChrVII	1049534	1049759	225	1049724	41.00	787.711	258.281	461.973	80_peak_26
									peakcall_mms1_
ChrVII	1088958	1089156	198	1089058	56.00	883 253	238 573	545 299	default_extsize1 80 peak 27
	1000000	1000100	100	1000000	00.00	000.200	200.070	040.200	peakcall_mms1_
	100107	400050	0.15	100501		500 445			default_extsize1
ChrVIII	189407	189652	245	189581	38.00	502.145	207.392	229.984	80_peak_28
									default_extsize1
ChrVIII	215840	216046	206	215971	47.00	799.402	244.240	471.951	80_peak_29
									peakcall_mms1_
ChrIX	54150	54474	324	54323	38.00	657.242	239.832	353.795	80_peak_30
									peakcall_mms1_
ChrlX	334127	334307	180	334294	31.00	484 923	219 695	217 488	default_extsize1
OIIIIX	004127	00+007	100	004204	01.00	404.020	210.000	217.400	peakcall_mms1_
<u>a.</u>									default_extsize1
Chrix	392157	392481	324	392309	26.00	537.260	250.760	257.480	80_peak_32
									default_extsize1
ChrX	121000	121236	236	121088	43.00	613.254	219.159	318.162	80_peak_33
									peakcall_mms1_ default_extsize1
ChrX	391940	392163	223	392038	45.00	663.878	224.383	359.497	80_peak_34
									peakcall_mms1_
ChrX	400013	400260	247	400116	35.00	798.738	282.325	471.355	80 peak 35
-									peakcall_mms1_
OhrWi	00000	00005	100	00005	47.00	1 1 50 000	011 415	700 455	default_extsize1
UnrXI	99803	99985	182	99895	47.00	1.158.282	311.415	782.455	peak_36
									default_extsize1
ChrXI	380958	381322	364	381207	31.00	711.099	277.528	397.450	80_peak_37
									default extsize1
ChrXI	519605	519853	248	519720	50.00	1.436.254	353.430	1.020.517	80_peak_38
									peakcall_mms1_
ChrXII	84188	84385	197	84328	35.00	787.982	279.721	461.973	80 peak 39
									peakcall_mms1_
ChrVII	260706	260016	210	260924	55.00	1 022 171	262 212	664 307	default_extsize1
	003100	003310	210	009004	55.00	1.022.1/1	202.010	004.327	peakcall_mms1
									default_extsize1
ChrXII	451470	451833	363	451826	350.00	425.587	123.512	173.564	80_peak_41
									default_extsize1
ChrXII	452031	452232	201	452047	354.00	365.961	120.950	132.597	80_peak_42
ChrXII	455225	455521	296	455258	357.00	393.367	121.972	151.503	peakcall_mms1_

									default_extsize1
-									80_peak_43
									peakcall_mms1_
ChrVII	455701	456041	200	455004	250.00	500 007	107.005	051.040	default_extsize1
GIIIXII	455721	430041	320	400624	356.00	526.697	127.005	251.040	ou_peak_44
									default extsize1
ChrXII	458652	459006	354	458788	352.00	427.775	123.523	175.395	80 peak 45
									peakcall_mms1_
									default_extsize1
ChrXII	459110	459290	180	459285	355.00	374.987	121.291	138.398	80_peak_46
									peakcall_mms1_
ChrVII	464950	465115	060	464075	255.00	E1E 700	106 700	040 564	default_extsize1
CIIMI	404803	405115	202	404975	355.00	515.768	120.738	240.564	80_peak_47
									default extsize1
ChrXII	467534	468132	598	467560	354.00	373.050	121.244	137.317	80 peak 48
									peakcall_mms1_
									default_extsize1
ChrXII	704511	704746	235	704580	40.00	682.404	239.637	374.708	80_peak_49
									peakcall_mms1_
ChrVII	004025	004000	045	004110	20.00	470 551	014 000	000 000	default_extsize1
CIIMI	904035	904280	245	904110	32.00	472.001	214.098	208.308	80_peak_50
									default extsize1
ChrXII	921240	921442	202	921330	39.00	959,489	302.822	609.679	80 peak 51
									peakcall_mms1_
									default_extsize1
ChrXII	1074796	1075077	281	1074850	52.00	591.819	200.487	300.473	80_peak_52
									peakcall_mms1_
	1701	1017	100	1004	47.00	000 040	014.010	004 005	default_extsize1
ChrXIII	1731	1917	186	1804	47.00	630.240	214.612	331.825	80_peak_53
									default extsize1
ChrXIII	16258	16578	320	16428	55.00	1.609.468	363.317	1.165.234	80 peak 54
									peakcall_mms1_
									default_extsize1
ChrXIV	494007	494211	204	494082	30.00	498.671	225.984	227.759	80_peak_55
									peakcall_mms1_
ChrXIV	547086	547207	211	547204	12.00	767 811	251 326	111 551	default_extsize1
CHIAIV	547080	547297	211	547204	42.00	707.011	201.020	444.554	neakcall mms1
									default extsize1
ChrXIV	619048	619366	318	619157	37.00	561.935	222.102	276.947	80_peak_57
									peakcall_mms1_
									default_extsize1
ChrXIV	631800	631983	183	631871	42.00	600.525	218.798	307.301	80_peak_58
									peakcall_mms1_
ChrXIV	652075	652255	180	652157	34.00	669 706	255 143	363 903	80 neak 59
Onixiv	002070	002200	100	002107	04.00	000.700	200.140	000.000	peakcall mms1
									default extsize1
ChrXV	31003	31286	283	31151	41.00	400.039	182.258	155.643	80_peak_60
									peakcall_mms1_
<u>.</u>									default_extsize1
ChrXV	159994	160358	364	160118	63.00	943.633	234.574	596.621	80_peak_61
									peakcall_mms1_
ChrXV	480108	480435	327	480246	39.00	597 875	224 877	305 507	80 neak 62
	100100	100 100	02,	100240	00.00	307.070		000.007	peakcall mms1
									default_extsize1
ChrXV	588162	588351	189	588225	31.00	600.297	248.641	307.168	80_peak_63
									peakcall_mms1_
									default_extsize1
ChrXV	710139	710326	187	710244	45.00	1.570.881	411.661	1.133.412	80_peak_64
ChrVV	055600	055050	201	055717	20.00	419.000	220.000	160.050	peakcall_mms1_
	000009	000900	201	000/1/	20.00	410.900	209.090	109.052	ueiauii_exisizel

									80_peak_65
ChrXV	1060686	1061023	337	1060915	40.00	1.470.885	423.391	1.049.152	peakcall_mms1_ default_extsize1 80_peak_66
ChrXV	1091099	1091289	190	1091222	47.00	742.374	234.139	423.706	peakcall_mms1_ default_extsize1 80_peak_67
ChrXVI	338813	339003	190	338904	54.00	752.677	222.313	432.364	peakcall_mms1_ default_extsize1 80_peak_68
ChrXVI	536586	536770	184	536716	34.00	1.409.377	460.031	999.169	default_extsize1 80_peak_69
ChrXVI	922313	922518	205	922398	30.00	675.542	272.462	368.757	default_extsize1 80_peak_70
ChrXVI	945943	946241	298	945944	68.00	373.205	155.965	137.412	peakcall_mms1_ default_extsize1 80_peak_71
ChrM	2467	2658	191	2619	40.00	1.144.746	341.038	769.971	peakcall_mms1_ default_extsize1 80_peak_72
ChrM	6033	6275	242	6176	55.00	1.609.468	363.317	1.165.234	default_extsize1 80_peak_73
ChrM	15085	15328	243	15173	20.00	590.802	302.739	299.602	default_extsize1 80_peak_74
ChrM	18607	18863	256	18768	28.00	910.884	354.172	568.783	default_extsize1 80_peak_75
ChrM	19247	19506	259	19354	20.00	577.220	297.502	288.352	default_extsize1 80_peak_76
ChrM	24794	24974	180	24909	24.00	480.983	242.098	214.714	default_extsize1 80_peak_77
ChrM	28759	29077	318	28904	17.00	982.868	522.979	630.414	default_extsize1 80_peak_78
ChrM	36683	36965	282	36858	13.00	988.256	609.433	634.195	default_extsize1 80_peak_79
ChrM	37939	38414	475	38264	19.00	1.601.831	831.931	1.158.768	default_extsize1 80_peak_80
ChrM	40344	40537	193	40405	35.00	1.058.635	348.621	695.164	default_extsize1 80_peak_81
ChrM	40814	41221	407	40936	21.00	1.318.506	620.844	921.853	default_extsize1 80_peak_82
ChrM	41557	42373	816	41825	19.00	1.382.073	702.586	975.087	default_extsize1 80_peak_83
ChrM	43257	43661	404	43513	26.00	841.561	346.917	508.972	default_extsize1 80_peak_84
ChrM	44087	44272	185	44225	18.00	690.562	362.646	381.355	default_extsize1 80_peak_85
ChrM	50659	50926	267	50781	50.00	2.070.018	493.880	1.566.621	default_extsize1 80_peak_86
ChrM	53591	53813	222	53693	66.00	610.028	187.350	315.245	default_extsize1 80_peak_87

									peakcall_mms1_
									default_extsize1
ChrM	68517	68770	253	68639	30.00	775.677	300.202	451.627	80_peak_88
									peakcall_mms1_
									default_extsize1
ChrM	83902	84362	460	84229	49.00	1.705.155	415.901	1.242.801	80_peak_89
									peakcall_mms1_
									default_extsize1
ChrM	84630	84909	279	84761	26.00	1.287.038	515.339	894.333	80_peak_90
									peakcall_mms1_
									default_extsize1
ChrM	85490	85769	279	85636	44.00	1.176.328	328.041	798.103	80_peak_91

Supplementary data 5: Yeast strains with Myc-tagged Mms1 grow slower than untagged tag wild type cells on MMS-containing media. Serial dilutions of no Myc tag wild type, Myc-tagged Mms1, and *mms1* cells were spotted on YPD (A) and 0.01% MMS (B) containing media. Cells were diluted at OD 0.8 six times 10-fold. n=1.

Supplementary data 6: Characteristics of G4 motifs within qPCR regions. Strand location and distance to next ARS were used to elucidate if the G4 motif is replicated on the leading or lagging strand.

Region	Location r	egion	Location G4		Strand	Sequence G4 (5´-3´)	Location next ARS		
(Chr)	Start	End	Start	End	location		Start	End	
I _{NC}	61257	61473	60974	61018	W	GGGCAGCATCTCCGTTGGATTGTTG TGCATGGCCAGTGTCTTGG	70300	70469	
			61437	61493	W	GGTGAACGAGTGGGGACAGTTCAAT TCTGTGGTAACAAGGCCACAATTGG TGGTGG	-		
			61618	61662	W	GGGTTCACGATGTCTAGGTTGAATA GCGAGGGTCGCCCCGTGGG			
			61683	61712	W	GGGTGGGAACGGCGACGGAACCGCG CCGG			
			61836	61864	W	GGAGGCAGGCTGGGCTTTTTTCGAC GGG			
			61703	61753	С	CCGCGCCGGTTAATAACGATCCTAA CTATTGTGGGCCATGTTACGGTGCC			
VI _{BR}	255397	255624	255328	255355	W	GGTCCTAAGGTACCAAAATCCGGGG GG	256277	256431	
			255498	255548	W	GGGGCACACGTGCGGGAGTTTCAAA GGGGCAGAATAGTGGGGTTCAGGGG			
			255819	255849	W	GGTAAGACCAGGTGCAAGGAGAATA CTGGG			
			254976	255047	С	CCATCAATTCCTTGGGCACATCAGC CATGGAACCCTTTCTAGCCTGTGGT TTCTTTGGACCTAAATGAACC			
			255319	255349	С	CCTCTCAACGGTCCTAAGGTACCAA AATCC			
			255710	255757	С	CCGGTTTATTTCCAACCGGGAAATA AATTATTCCTAATAAAATTTCC			
VII _{BR}	806633	806696	806736	806773	W	GGTTGTTCAGTTTCTGGATGTGTTG GGATACGGACGG	834491	834734	
			806484	806606	C	CCAGAACCAGATGGTCTGAAACCGC CACGGCCACCGCGAGCGCCACCACG			
						ACCACCGAATCCACGGTTACCGCCA CGACCACCGCCACGACCACAAAC CACGGCTACCGCCACGACCACC			
			807069	807109	С	CCAATGACACCACCGATGTGTTCGA ATTCCTTCTTCAACC			
IX _{BR}	356233	356408	356335	356403	W	GGAGACTGATTTGGAGGGTACGGTG GGTAATAAGGGAAGGTATCGGGATT GGGGTAGGCCATTAAGGG	357160	357396	
			356572	356600	С	CCGTAGCCTTTTGGTGTTCCCGTAT TCC			
			356762	356806	С	CCTGTGGAGTGCCCTCGATAGATAG TTTACCCACAAGTTCATCC			
X _{BR}	391792	391919	391294	391323	W	GGTTTCGGGCCAGATTCATGGCCCT GTGG	375706	376227	
			391333	391368	C	CCTACAGACAAAAAACCGTTACGTC CCGCCTCACC			
			391531	391557	C	CCGCGCAAGCCAGATCCAAGCACGC C			
			391854	391877	C	CCACTATTCAGCGCCGTCCGCCC			
			291910	291900		GAAAGACCACACCCACGCGCGATCG CC			
			391989	392008	С	CCCCACACCCAGACCTCCC]		
			392394	392448	С	CCAATTACCATGCCTAAAGAGACCC CTTCCAAAGCTGCTGCCGATGCATT GTCC			
Xla _{BR}	142007	142159	141891	141942	W	GGTAAAAAGTATCCTGGTCACCGAT GGCCAAGTTACCTTCTGGGGTGATG G	153020	153135	
			141974	142008	W	GGTGGAGGACCATCGAATTGGAATT GTCTGTTGG	1		

			142127	142155	W	GGAGCTGGAGCTGGAGATGGTATAA		
			142174	142238	W	GGCTTGGATTTGGCCATCAGTGATT	-	
						TGGGAGACTGGAGCAACAGTAGTAT		
			142428	142487	W	TGGTGGTGGCTTGG GGGAGACGGCTGCAGCGGTAGTCTT		
			142420	142407	~~	AGCTGAGGTAGTCTTGGTGGTGGCT		
			142576	142505	\M/	TGGATTTGG CCTTTTCCTACTCCCTTCC		
			142370	142090	VV			
			142627	142666	vv	GGUTUTUTTAGUUTTGGAGGAAGUA GTAGTGGCAATTGG		
			141903	141949	С	CCTGGTCACCGATGGCCAAGTTACC TTCTGGGGTGATGGACCAACC		
			142019	142055	С	CCAATTCTACCTTTACCGTCAGTCA GGATACCACCC		
XIb _{BR}	503681	503933	503309	503359	W	GGAGAATCGAATCCTGGCATTAGTG GGATAAGAATAAAGGCTTTCCAAGG	517017	517265
			503654	503686	W	GGCGGGGTTAGTAATGGAGTTAACC TACTAGG		
			503529	503560	С	CCGTTTCCTTTAGCCCAAGAGACCA GTTCCC		
			504100	504138	С			
			504279	504335	С	CCTTTGCCATTAAGAGGGCCTCGCT		
						TAACGACCAAAAATAATCACGCCCA TCTACC		
XICBR	519523	519599	519028	519058	W	GGTGCCTGGATCTCGAGGCCGCGGC ACTGG	517017	517265
			519142	519185	W	GGGCAAGTAGGTCTTTCTGCACGGC		
			519699	519719	W	GGCGGCTGCTGATGGAAAGG		
			519889	519957	W	GGACAAGGTGCTGTCTCCTTGGACT		
						GGTTAGGTCTAGGCGGCTGGGCTTC		
			519018	519099	С	CCTAGTTCCTGGTGCCTGGATCTCG	-	
						AGGCCGCGGCACTGGAAAAGCCCTT TCTTTTCCAGATCGGGAAACCTAAT		
						GAGTCC		
			519264	519304	С	CCATCTAATGTGTTTCCTTCTCGAG ACCTCGGCGTCTCCC		
			519557	519637	С	CCTCCACCGCCGTCTTGGCCGCTCC		
						CACCACAACGACAAGCGTGCCGTTG		
			510676	510607	C	TCACC		
			519070	519097			-	
			519737	519832	C	CGCCGCCGCTACTTTGTCCTCGACTGC		
						GCCTCTTCTTCCTCCTCTTCCTCTT		
			519863	519889	С	CCATTTCCTGTTCTGATTTCCCATC	1	
			500000	500000			4	
			520009	520063		CTTCTGAACAACCTTCCGATGGTAG		
XIIING	250596	250670	250258	250297	W	GGTTAATAGACGTGGTAGAGTTCCA	263063	263296
2 11110		200010		200201		CAGGCCAGAATGGG		100100
			250327	250417	W	GGCCACTGGCGGTATTGCAGCAGGT GCTGCGGCTACCTCTTCTGGTCTTA		
						GCGGTGGTATGACACCAGGATGGAG		
			250440	250720	\M/	CTCCTTCGATGGTGG	4	
			200442	200732	vv	CCTCATGGGGTGGTGCTTCCACTTG		
						GGGTGGCCAAGGTAATGGAGGTGCA		
						GTGCCTCAGCTTGGGGGGGCGGCCAAGG		
						TACTGGTGCTACTTCTACTTGGGGT		
						GGTGCTTCAGCCTGGGGTAACAAAT CAAGTTGGGGGCGGTGCATCCACTTG		
						GGCGTCGGGTGGTGGATCTAATGGT		
						GCCATGTCTACTTGGGGTGGTACCG		

						GTGATAGGTCAGCCTACGGCGGGGC		
						TTCCACCTGGGGAGG	_	
			250760	250822	W	GGCGGAGCTTCTGCATGGGGGTAACC		
						AAGACGATGGAAATAGGTCTGCTTG		
						GAACAACCAAGG		
			250838	250861	W	GGTGGTAACAGTACATGGGGAGG		
			250280	250331	С	CCACAGGCCAGAATGGGCCCAAGTT		
						ACGTCAGTGCCCCAAGAAACATGGC		
						С		
			250689	250724	C	CCGGTGATAGGTCAGCCTACGGCGG		
			200000	200724	U	GGCTTCCACC		
VIII	672970	672049	672216	672250	\ M /	GGTGATGGGGGTGTCTGGAGTGGATT	640200	640552
AIIIBR	072079	073040	073210	073239	vv	CCAAAACGCCATTAACGG	049309	049552
			670500	670500	14/		-	
			673509	073530	vv	GGAAGIGGCIGGCIICICIGG		
			672461	672483	С	CCAAATAGCCTGAGTTACCACC		
			672802	672848	С	CCGATTTCAGAACCACCACGGGATT		
					-	GCCAACCCAACATATCCTTCC		
			672878	672894	С	CCAAACCAGACCAACC		
XIVNC	88913	89103	88727	88775	W	GGGTTTTAATGTGGTAAACAAGATG	89531	89804
NO NO	00010	00100	00727	00110	••	GCCCTTACGGGGCTCTTAGTGGG	00001	00001
			88907	88950	C	CCCTAAGTGATTGTGCCGTTATAAC		
			00007	00000	U	TTCCATTCGGGTGATACC		
V\/	210017	219075	219426	210/71	\A/	GCCACAAGCTCAGCTCAGCCACAG	200250	200025
∧ v _{BR}	510017	510375	510450	510471	vv	GCACAGGTGG	009009	303323
			010001	010010	14/		-	
			319281	319318	vv	GGGIIGGACAICCIGIAIGGGCIIC		
			0.10500	010505	0		-	
			318523	318565	C	CCATCCTTCTAACCGAGGTATTCCA		
						CAGCAAAACTTGCCTCC		
			318581	318614	С	CCTCCAACAAACGGTTCGACCGTAC		
						ATGAAGCC	1	
			318638	318661	С	CCACCCCACTTCATGCCCTTACC		
			318863	318902	С	CCTAGCATTGTGCCTGTGGTCCCTG		
						AACCCACTGAGCCC	1	

Name	Feature	Region	Sequence (5'-3')
KW336	MEME motif lagging strand	ChrVII _{BR}	GGTCGTGGCGGTAGCCGTGG
KW341	G4 motif lagging strand	ChrXI _{BR}	GGTGGTATCCTGACTGACGGTAAAGG
KW342	no G4 motif lagging strand	ChrXIII _{NC}	GGTGGAAGCCCCGCCGTAGGCTGACCTATCACCGG
KW399	no G4 motif lagging strand	Chrl _{NC}	GGCACCGTAACATGGCCCACAATAGTTAGGATCGTTATTAACCGGCGCGG
KW400	G4 motif lagging strand	ChrXV _{BR}	GGCACAAGCTCAGGCTCAGGCACAGGCACAGGTGG

Supplementary data 8: Mms1 binds independent of Rtt101 or Mms22 to G-rich regions. (A) Western blot analysis of Myc-tagged Mms1 protein levels in G1, S and G2 phase. Hsp60 serves as a loading control. N=3 biological replicates. Mms1 protein is present in all cell cycle phases but peaks in G1 phase (quantifications see Figure 2B). (B) FACS analysis of yeast cells arrested in G1, S and G2 phase used for conventional ChIP analysis. (C) ChIP and qPCR analysis of Mms1-Myc in *rtt101, mms22*, and *rtt101 mms22* cells. Plotted are the IP/input values as means \pm SD. N≥3 biological replicates. (D) Western blot analysis of Myc-tagged Mms1 protein levels in wild type (wt), *rtt101* and *mms22* cells. Hsp60 serves as a loading control. N=3 biological replicates. (E) Quantified Myc-tagged Mms1 protein levels in wild type (wt), *rtt101* and *mms22* cells. Hsp60 was used as a reference protein. Shown are mean Myc-tagged Mms1 levels normalized to Hsp60 \pm SD. N=3 biological replicates.

Supplementary data 9: DNA Pol2 levels and occupancy. (A) Western blot analysis of Myctagged DNA Pol2 protein levels in wild type (wt) and *mms1* cells. Hsp60 serves as a loading control. N=3 biological replicates. (B) Quantified Myc-tagged DNA Pol2 protein levels in wild type (wt) and *mms1* cells after western blot analysis. Hsp60 was used as a reference protein. Shown are mean Myc-tagged DNA Pol2 levels normalized to Hsp60 \pm SD. N=3 biological replicates. (C) ChIP analysis of DNA Pol2-Myc in wild type, *rtt101*, *mms22* and *rtt101 mms22* cells. qPCR analysis of DNA Pol2-Myc association at four Mms1 BR and two NC regions. Plotted are the IP/input values as mean value \pm SD. N≥3 biological replicates.

Supplementary data 10: Mms1 does not recruit Mre11. Conventional ChIP was performed with Myc-tagged Mre11 in wild type and *mms1* cells. The association of Myc-tagged Mre11 was analyzed by qPCR using primer pairs for the shown regions. Plotted are the IP/input values \pm SD. N≥3 biological replicates.

mms1_peak_Chr	mms1_peak_start	mms1_end	pif1_peak_Chr	pif1_peak_start_coord	pif1_peak_end_coord
Chrl	112580	112785	Chrl	111548	114298
Chrl	130081	130284	Chrl	129548	131298
Chrl	191965	192177	Chrl	189298	193548
Chrll	463749	464101	Chrll	463082	464332
ChrIV	461797	462449	ChrlV	461450	461700
ChrIV	1239630	1239824	ChrlV	1239450	1240200
ChrIV	1251076	1251389	ChrlV	1250700	1251700
ChrV	40469	41119	ChrV	40562	41562
ChrV	42006	42474	ChrV	40562	41562
ChrV	42006	42474	ChrV	42812	43562
ChrV	43222	43945	ChrV	42812	43562
ChrV	335544	335734	ChrV	333062	336812
ChrVI	224946	225231	ChrVI	224415	225415
ChrVII	567184	567405	ChrVII	567541	569041
ChrVII	700602	700830	ChrVII	700916	701166
ChrVII	806449	806663	ChrVII	806666	806916
ChrVIII	189407	189652	ChrVIII	188763	190263
ChrIX	54150	54474	ChrlX	51865	55115
ChrIX	334127	334307	ChrlX	333615	334365
ChrIX	392157	392481	ChrlX	389365	391365
ChrIX	392157	392481	ChrlX	392365	393115
ChrX	121000	121236	ChrX	120811	121311
ChrX	400013	400260	ChrX	399561	401061
ChrXI	380958	381322	ChrXI	380319	382069
ChrXI	519605	519853	ChrXI	519444	519694
ChrXI	519605	519853	ChrXI	520319	521319
ChrXII	84188	84385	ChrXII	84818	86318
ChrXII	458652	459006	ChrXII	459318	460818
ChrXII	459110	459290	ChrXII	459318	460818
ChrXII	904035	904280	ChrXII	902568	903068
ChrXII	904035	904280	ChrXII	903568	903818
ChrXII	921240	921442	ChrXII	920943	921193
ChrXIV	494007	494211	ChrXIV	493616	494366
ChrXIV	547086	547297	ChrXIV	547241	547491
ChrXIV	652075	652255	ChrXIV	650366	651366
ChrXV	31003	31286	ChrXV	28945	31445
ChrXV	159994	160358	ChrXV	159945	160695
ChrXV	480108	480435	ChrXV	479695	480445

Supplementary data 11: Mms1 binding regions that overlap Pif1 (1) binding regions.

ChrXV	480108	480435	ChrXV	481070	481320
ChrXV	710139	710326	ChrXV	709570	709820
ChrXV	1060686	1061023	ChrXV	1060570	1060820
ChrXVI	536586	536770	ChrXVI	536543	536793
ChrXVI	922313	922518	ChrXVI	921918	922918

Supplementary data 12: Mms1 is independent of Pif1. (A) Conventional ChIP was performed with Myc-tagged Mms1 in wild type and *pif1-m2* cells. The association of Myc-tagged Mms1 was analyzed by qPCR using primer pairs for the shown regions. Plotted are the IP/input values \pm SD. N≥3 biological replicates. (B) Western blot analysis of Myc-tagged Pif1 protein levels in wild type (wt) and *mms1* cells. Hsp60 serves as a loading control. N=3 biological replicates. (C) Quantified Myc-tagged Pif1 protein levels in wild type (wt) and *mms1* cells after western blot analysis. Hsp60 was used as a reference protein. Shown are mean Myc-tagged Pif1 levels normalized to Hsp60 \pm SD. N=3 biological replicates.

Supplementary data 13: Affinity purification of MMS1. Yeast proteins were isolated from the Myc-tagged Mms1 pif1-m2 strain using the following lysis buffer (0.1 M HEPES pH7.5, 0.01 M potassium acetate, 10% glycerin, 0.5% Nonidet P-40, 1 mM EDTA pH 8.0, 1 mM dithiothreitol, 1 μ g/ml leupeptin, 1 μ g/ml aprotinin and 0.5 mM 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride). To identify Mms1-Myc interacting to G4 we modified a previous published affinity purification protocol (6). Briefly, dynabeads M-270 streptavidin (Invitrogen) were washed with BS/THES buffer (22 mM Tris-HCl pH 7.5, 10 mM HEPES pH 7.5, 8,9% saccharose, 62 mM NaCl, 5 mM CaCl₂, 50 mM KCl, 1 mM EDTA pH 8.0, 12% glycerin, 1 mM DTT, 1 µg/ml leupeptin (LP), 1 µg/ml aprotinin (AP) and 0.5 mM AEBSF). The lysate was cleared by pre-incubation first with avidin and then with the washed beads for 60 min at 4°C. Oligodeoxynucleotides (G4 and mutated G4) were biotinylated (SIGMA) and G4 folding protocols were performed. Dynabeads M-280 streptavidin (Invitrogen) were washed with BW buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA pH 8.0, 2 M NaCl, 1% 0.1 M phenylmethylsulfonyl fluoride (PMSF)). Beads were mixed with biotinylated DNA (7000 pmol) and incubated for 60 min at room temperature (RT). The immobilized DNA was washed three times with TE. The beads were then blocked with 0.1% (w/v) BSA in 2xBW buffer for 15 min at 4°C. Beads were washed twice with BS/THES buffer and once with 3750 μ I BS/THES buffer containing 5 μ g DNA (random oligodeoxynucleotides). Beads were resuspended in BS/THES buffer and incubated with cleared protein lysate, 50 mM potassium acetate and 100 fold excess DNA (compared to bound bait DNA, random oligodeoxynucleotides) for 12 h at 4°C. Beads were washed twice with BS/THES buffer with 5 μ g PCR product containing G4 motifs followed by five washing steps with BS/THES buffer. The samples were mixed with 6x SDS loading buffer, boiled and loaded onto a 10% SDS PAGE gel. Western blot analysis was performed against Myc-tagged Mms1.

Mms1 co-purifies with G4 structures. Biotinylated control DNA (lane 1-3) as well as biotinylated G4 structures (lane 4-7) were incubated with total yeast cell lysate in which Mms1 was endogenous Myc-tagged and Pif1 was mutated (*pif1-m2*). Western blot analysis, directed against Mms1-Myc, showed that Mms1 co-purifies with G4 structures (lane 4: Chr VI-G4_{tract3}, lane 5: Chr IX-G4_{tract3}, lane 6: Chr XV-G4_{tract2}, lane 7: Chr XIII-G4_{tract2}) and not with control DNA (lane 1: G-rich DNA, lane 2: Chr VI-G4_{tract3mut}, lane 3: Chr XV-G4_{tract2mut}). Arrow indicates Mms1.

Supplementary data 14: GCR assay. (A) Inserts used in the GCR assay. (B) The GCR rate was determined for wild type (wt) and *mms1* cells with an inserted sequence. Shown are mean values \pm SD as fold enrichment over strain with inserted Leu marker. n=7 biological replicates, N≥3. Statistical significance is noted in the figure. This was determined by student's T-test. **:p<0.01.

G4 motif (Chrl) (G4-LEU2)	lagging strand	CCCAACAATTATCTCAAAATTCCCCCAATTCTCATCAGTAACACCCCACCCC
Non-G-rich (ChrVII) (NG-LEU2)	lagging strand	CTAATCTTTCAGCGTTGTAAATGTTGGTACCCAAACCCAATTGTCTACAAGTTTCCTTAGC
G-rich (Chrl) (GR-LEU2)	lagging strand	ATGGTGGTCATCTCAGTAGATGTAGAGGTGAAAGTACCGGTCCATGGCTCGGT

Α

Supplementary data 15: Immunoprecipitation and mass spectrometry (MS) to identify binding partners of Mms1. Protein lysate was prepared from Mms1-Myc and untagged cells according to ChIP analysis (see main script), except another lysis buffer was used (0.1 M HEPES pH7.5, 0.01 M potassium acetate, 10% glycerin, 0.5% Nonidet P-40, 1 mM EDTA pH 8.0, 1 mM dithiothreitol, 1 μ g/ml leupeptin, 1 μ g/ml aprotinin and 0.5 mM 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride). The samples were treated with DNase and RNase. Incubation with antibody and beads was performed as described for ChIP. After four times wash with PBS, proteins were denatured and submitted to MS analysis. For MS analysis, proteins were reduced in 50 mM DTT for 10 min at 90 °C, and alkylated with 120 mM iodoactamide for 20 min at RT in the dark. Protein precipitation was performed according to Wessel and Fluegge with chloroform/methanol (7). Precipitated proteins were dissolved in 0.5 % sodium deoxycholate in 100mM ammonium bicarbonate. Digests were performed with trypsin (trypsin-to-protein ratio: 1:100) overnight at 37 °C. SDC was removed by extraction with ethylacetate (8). Peptides were dried in a vacuum concentrator to remove remaining ethylaceate. Peptides were desalted using C18 stage tips (9). Each Stage Tip was prepared with three disks of C18 Empore SPE Disks (3M) in a 200 μ l pipet tip. Peptides were eluted with 60 % acetonitrile in 0.1 % formic acid, dried in a vacuum concentrator, and stored at -20 °C. Peptides were dissolved in 2 % acetonitrile/0.1 % formic acid prior to nanoLC-MS/MS analysis. NanoLC-MS/MS analyses were performed on an Orbitrap Fusion (Thermo Scientific) equipped with an EASY-Spray Ion Source and coupled to an EASY-nLC 1000 (Thermo Scientific). Peptides were loaded on a trapping column (2 cm x 75 μ m ID, PepMap C18, 3 μ m particles, 100 Å pore size) and separated on an EASY-Spray column (50 cm x 75 μ m ID, PepMap C18, 2 μ m particles, 100 Å pore size) with a 180-minute linear gradient from 3 % to 40 % acetonitrile and 0.1 % formic acid. Both MS and MS/MS scans were acquired in the Orbitrap analyzer with a resolution of 60,000 for MS scans and 15,000 for MS/MS scans. HCD fragmentation with 35 % normalized collision energy was applied. A Top Speed data-dependent MS/MS method with a fixed cycle time of three seconds was used. Dynamic exclusion was applied with a repeat count of 1 and exclusion duration of 120 seconds; singly charged precursors were excluded from selection. Minimum signal threshold for precursor selection was set to 50,000. Predictive AGC was used with an AGC target value of 5e5 for MS scans and 5e4 for MS/MS scans. EASY-IC was used for internal calibration. Raw MS data files were analyzed with MaxQuant version 1.5.3.12 (10). Database search was performed with Andromeda, which is integrated in the utilized version of MaxQuant. The search was performed against the UniProt Saccharomyces cerevisiae (strain S288c) reference proteome database. Additionally, a database containing common contaminants was used. The search was performed with tryptic cleavage specificity with 2 allowed miscleavages. Protein identification was under control of the false-discovery rate (<1% FDR on protein and peptide level). In addition to MaxQuant default settings (e.g. at least 1 razor/unique peptide for identification, 2 allowed miscleavages), the search was performed against following variable modifications: Protein Nterminal acetylation, Gln to pyro-Glu formation (N-term. Q) and oxidation (on Met). For protein quantitation, the LFQ intensities were used (11). Proteins with less than two identified razor/unique peptides were dismissed. Missing LFQ intensities in the control samples were imputed with values close to the baseline if intensities in the corresponding IP samples were present. Data imputation was performed with values from a standard normal distribution with a mean of the 5% guantile of the combined LFQ intensities and a standard deviation of 0.1. Shown are the results of a Mms1 co-immunoprecipitation. Log2-ratios of protein intensities (label-free quantitation, LFQ, MaxQuant) from two replicates are plotted against each other. N=2 biological replicates. Missing values in one or both control experiments have been imputed with baseline intensities to allow ratio calculations (open circles). Significance calculations are based on boxplot statistics (grey: not significant (n.s.); blue: one replicate >1.5x interguartile range (IQR),

the other n.s.; orange: >1.5xIQR, only data available from one replicate; red: at least >1.5xIQR in two or >3xIQR in one replicate.

References

- 1. Paeschke, K., Capra, J.A. and Zakian, V.A. (2011) DNA Replication through G-Quadruplex Motifs Is Promoted by the Saccharomyces cerevisiae Pif1 DNA Helicase. *Cell*, **145**, 678-691.
- Paeschke, K., Bochman, M.L., Garcia, P.D., Cejka, P., Friedman, K.L., Kowalczykowski, S.C. and Zakian, V.A. (2013) Pif1 family helicases suppress genome instability at Gquadruplex motifs. *Nature*, **497**, 458-462.
- 3. Capra, J.A., Paeschke, K., Singh, M. and Zakian, V.A. (2010) G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae. *PLoS Comput Biol*, **6**, e1000861.
- 4. Phillips, J.A., Chan, A., Paeschke, K. and Zakian, V.A. (2015) The pif1 helicase, a negative regulator of telomerase, acts preferentially at long telomeres. *PLoS genetics*, **11**, e1005186.
- 5. Azvolinsky, A., Giresi, P., Lieb, J. and Zakian, V. (2009) Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. *Molecular cell*, **34**, 722-734.
- 6. Jutras, B.L., Verma, A. and Stevenson, B. (2012) Identification of novel DNA-binding proteins using DNA-affinity chromatography/pull down. *Current protocols in microbiology*, **Chapter 1**, Unit1F 1.
- 7. Wessel, D. and Flugge, U.I. (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. *Analytical biochemistry*, **138**, 141-143.
- 8. Masuda, T., Tomita, M. and Ishihama, Y. (2008) Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. *Journal of proteome research*, **7**, 731-740.
- 9. Rappsilber, J., Ishihama, Y. and Mann, M. (2003) Stop and go extraction tips for matrixassisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. *Analytical chemistry*, **75**, 663-670.
- 10. Cox, J. and Mann, M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. *Nature biotechnology*, **26**, 1367-1372.
- 11. Cox, J., Hein, M.Y., Luber, C.A., Paron, I., Nagaraj, N. and Mann, M. (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. *Molecular & cellular proteomics : MCP*, **13**, 2513-2526.