LimTox: a web tool for applied text mining of adverse event and toxicity associations of compounds, drugs and genes

ADDITIONAL FILE

Additional material 1

Recognition of chemical entities and drugs.

A key step for associating chemical compound mentions to toxicity endpoints is the recognition,

tagging or indexing of documents with chemicals and drugs. For LimTox, we examined several

available resources with the purpose of chemical entity tagging. The examined resources included
OSCAR (OSCAR3, OSCAR4)", ChemicalTagger?, the Jochem lexicon (using dictionary name lookup)?, as
well as ChemSpot. We decided to use the ChemSpot tagger (Rocktaschel et al.)* for detecting

chemical entities because it is able (1) to provide entity grounding to various chemical database

identifiers, (2) it can detect systematic, semi-systematic and trivial chemical names, (3) it is able to

process effectively large collections of documents and (4) it is freely available/accessible.

Our aim with respect to the chemical tagging process was to primarily focus on compound mentions

that are relevant for toxicology studies, rather than using a general-purpose labeling of chemical

substance mentions. Additional figure 1 below illustrates the chemical tagging protocols used by

LimTox.
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Additional figurel. Chemical entity recognition and indexing strategies used by LimTox. Two different approaches were used to associate

text to chemical compounds. (A) One approach relied on the ChemSpot chemical tagger in order to generate a compound lexicon, which

! http://www-pmr.ch.cam.ac.uk/wiki/Oscar3

? http://chemicaltagger.ch.cam.ac.uk/

® http://biosemantics.org/index.php/resources/jochem

* https://www.informatik.hu-berlin.de/forschung/gebiete/wbi/resources/chemspot



was then used for text indexing using dictionary-lookup methods (B) The other approach was based on selecting, filtering and look-up of
compounds annotated as meta-data (MeSH substance terms) by PubMed.

We carried out dictionary pruning to remove false positive chemical entity mentions. This was done
through a two-step dictionary filtering process. LimTox used only the subset of chemical entities
detected by the ChemSpot tagger (a hybrid method based on CRFs and chemical dictionaries) that
had at least a single occurrence in sentences that were previously recognized as hepatotoxicity-
related (see ‘Scoring text for Hepatotoxicity’ section). We generated from the collection of chemical
entity mentions a chemical name gazetteer. The resulting list of chemical names was filtered using a
stop word list and filtering rules. The used filtering rules included a list of stop suffixes, stop tokens
that should not be present in the last word/token of potential chemical names and removal of
guantities, temporal expressions, cell types, DNA codons, and certain common abbreviations
corresponding to general English expressions. The top 1,000 names ranked by absolute frequency
were manually revised to remove potentially false positive or highly ambiguous names.

Some of the detected chemical names were directly linked to database identifiers or structural
information (SMILES and InChl keys) by the ChemSpot tagger. Complementary to this output,
association to structural information was also done using name to structure conversion software
(name-to-struct version 13.0). We used the ChEBI webservice to retrieve structural information for
mentions that were assigned to ChEBI identifiers by ChemSpot.

In addition to the automatic mention tagging of chemical entities, also metadata from PubMed
abstracts with chemical MeSH terms were exploited by Limtox (Additional figure 1, subfigure B).
Therefore we selected from MeSH metadata the ‘Chemical’ field corresponding to
‘NameOfSubstance’ records. We included all cases that had a ‘Registry Number’ and excluded those
that corresponded to EC numbers. We applied also a MeSH term filtering step using a stop word and
a stop token list to filter terms containing words indicating that the term corresponded to proteins,
agents or systems.

In order to determine if the used chemical entity recognition pipeline was able to detect mentions of
chemicals that are relevant for hepatotoxicity, we compiled the list of chemical substances
annotated in the ADE-SCAI corpus (Gurulingappa et al. 2012) to be associated to adverse liver events.
In this corpus a total of 162 unique compound names were annotated as causing an adverse hepatic
reaction. These chemical names were not normalized/linked to any chemical database by the
original authors. We performed a manual entity grounding of these compounds to the several
databases. All chemical entity mentions could be normalized to at least one database except for ‘Lp-
TAE’, which turned out to be a mixture of various substances and thus was not present in any
database. This name was excluded from the dataset. All the other mentions could be linked to a CAS-
RN (111 unique compounds). In case of other databases, 91 were present in DrugBank, 102 in MeSH
and 88 PubChem compound. It seems that at least for this purpose CAS was the most
comprehensive resource. These chemical compounds had associations to a total of 122 PubMed
records (354 compound mention-adverse liver event sentences relations in ADE-SCAI). We assessed
the recall of LimTox at the level of indexing abstracts either with (a) the unique compound names or
(b) with their corresponding database identifiers. A total of 154 out of the 198 chemical name-PMID
associations (77.78%) could be detected by the LimTox chemical entity mention recognition
approach. The recall when looking at the corresponding chemical database identifiers was slightly
better. The recall using CAS-RN was of 79.33% (119 from 150), using DrugBank 81.89% (104



from 127), MeSH 82.14% (115 from 140) and PubChem compounds 83.06% (103 from 124). Most of
the missed mentions could have been recovered using additional typographical variants of names
already present in the original lexicon.

Additional material 2.
Scoring text for Hepatotoxicity.

Scoring text for hepatotoxicity is not only important in order to detect articles that might be relevant
for manual curation of toxicology data, but it is also useful as part of topic-specific retrieval engines
and to allow ranking hits when doing keyword or semantic searches. Text data was scored at the
level of abstracts and individual sentences. Four different complementary strategies were
implemented to allow detection of hepatotoxicity relevant text:

(1) Term strategy (indexing of sentences and abstracts with terms related to adverse hepatobiliary
events).

(2) Rule strategy (rule based detection of sentences with co-occurrences of phrases referring to
hepatobiliary location/anatomy/cells, i.e. the location trigger and adverse reactions or toxicity
events, i.e. the adverse reaction triggers).

(3) Pattern matching strategy (detection of particular language expressions used to describe
chemically induced adverse hepatobiliary reactions).

(4) Supervised machine learning text classifier strategy (machine learning based abstract/sentence
text classifiers relying on Support Vector Machines and bag of word text representation models).

Hepatobiliary adverse event term occurrences.

A widely used strategy to associate text to a topic of interest involves indexing documents with
terms or phrases that are representative of the topic. The advantage of this method is that it makes
human interpretation of results straightforward. An obvious requirement for term indexing is the
existence of a suitable lexical resources in the very first place. A specific ontology or thesaurus for
hepatotoxicity did not exist, but there were some relevant terms scattered across different
ontologies. The strategy used to build a hepatotoxicity lexicon for LimTox is summarized in the flow
chart that can be seen in the additional figure 2. First we selected a collection of manually specified
seed terms for hepatotoxicity through examination of sentences classified as hepatotoxicity relevant
that additionally also mentioned chemical compounds. These sentences corresponded to sentences
that were scored as hepatotoxicity relevant by the SVM classifier approach described later in the
additional materials section 2. The set of seed terms were then tokenized into words and the
corresponding unique words were manually categorized into one of the following semantic classes:
(1) hepatotoxicity triggers (e.g. transaminitis, steatosis, hepatotoxic), (2) hepatobiliary related words
(e.g. hepatocyte, liver), (3) toxicity/adverse event related words (e.g. toxic, injury, degeneration) and
(4) others (not related to any of the previous classes).
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Additional figure 2. Flowchart of the LimTox hepatotoxicity terminology construction process. There are three main
approaches for the LimTox term selection, labelled in the flow chart as (A), (B) and (C). In case of the first strategy (A), a set
of manually derived terms were selected based on visual inspection of a sample of sentences scored as hepatotoxicity
relevant by the SVM sentence classifier. The second approach (B) is based on automatic extraction of candidate terms
directly from the literature by ranking noun phrases and n-grams present in hepatotoxicity sentences. The third approach

we used was based on selecting relevant terms from existing ontologies and terminologies.

To perform a more systematic detection of hepatotoxicity relevant terms a semi-automatic
extraction, ranking and triage of hepatotoxicity candidate terms was carried out. First noun phrases
were automatically extracted from hepatotoxicity sentences using the NLTK toolkit together with
MedPost generated POS tags (Smith et al, 2004). The initial set of noun phrases and also n-grams
(word bigrams and trigrams) was then filtered using a stop list. This stop list included mainly
chemicals, markers and CYPs as well as a set of manually defined filtering rules. Those rules filtered
mentions of codons, time and quantity expressions (e.g. mM, min, pH) and numbers. The
subsequent list of phrases was ordered based on absolute frequencies within hepatotoxicity
sentences. A total of 5,618 phrases were mentioned more than 12 times. These were manually
categorized into the previously introduced four semantic classes: 18.69% corresponded to
hepatobiliary related phrases, 9.75% to adverse event phrases and 2.47% to hepatotoxicity related
phrases. Additionally from those high frequency phrases, word tokens with a particular POS tag
(nouns and adjectives) were also classified into these categories.

These manually validated phrases and words were in turn also used to automatically retrieve
additional term candidates. Therefore, we applied two selection criteria. The term candidates were
added to the LimTox lexicon either if (1) they contained a hepatotoxicity trigger or (2) they contained
both a hepatobiliary trigger together with a toxicity/adverse event trigger within the same noun
phrase. An illustrative example of the first selection criterion is the phrase ‘subacute hepatotoxicity’,
while an example of the second criterion is the phrase ‘submassive liver necrosis’. The second term
has both a trigger referring to the hepatobiliary system (liver) and a trigger that expresses an
adverse event (necrosis).



We used the same term selection criteria to detect hepatotoxicity candidate terms contained in
existing ontologies/terminologies. All ontology-derived candidate term were manually validated
before adding them to the LimTox lexicon. The following number of adverse hepatobiliary terms
were found in existing ontologies/terminologies: Mammalian Phenotype (426), Adverse Events (8),
Disease Ontology (576) Gemina symptom (16), Human Phenotype (184), Mouse Pathology (63),
COSTART (87), MeDRA (15), CTD database MEDIC lexicon (937), Polysearch lexicon (974), eTOX
project toxicology ontology (290). Although we also processed other terminologies, we could only
retrieve within them terms related to the hepatobiliar system and not adverse hepatobiliary event
terms (e.g. Brenda Tissue (90), Event Ontology (7), vertebrate Homologous Organs Groups ontology
(34), Mouse Anatomy (72), Foundational Model of Anatomy ontology (1,262) and Uber anatomy
ontology (548)). We needed to apply an extra stop-word post-processing step to exclude particular
diseases or adverse liver events that were caused by viral, bacterial or parasitic infections (not due
to chemical agents).

The resulting LimTox hepatotoxicity lexicon comprised a total of 29,371 terms (4,141 were manually
validated). We enriched this lexicon with automatically generated term variations taking into
account rules for plural endings, case variants and hyphenation. The resulting number of term
variants was of 200,016.

To match the LimTox lexicon terms to text, we used two dictionary look-up settings. The first one
was based on matching the automatically generated term variants (Term-v) to text. The second one
considered matching of up lower case stemmed terms (normalized) to sentences processed in the
same way (Term-n). The retrieval results using these two strategies in Gold Standard sets can be
seen in additional figure 3. Documents and sentences were subsequent ranked by the number of
detected hepatotoxicty terms. The recall of the term-lookup based method (using term variants)
ranged between 87.10 and 97.12.



0 Evaluation of the limtox abstract classification

Method Ptop 100 R-CTD R-MeSH R-SCAl R-Manual R-all PubMed
Pattern 68.42 56.36 41.61 52.03 66.19 41.67 28,932 (0.21%)
Classifier 45.00 95.86 92.86 89.43 98.08 92.85 | 767,322 (5.67%)
Rule 37.00 97.69 92.58 100.00 99.28 9280 | 541,699 (4.00%)
Term-n 33.00 91.05 85.92 91.06 95.20 85.95 | 382,627 (2.83%)
Term-v 32.00 93.12 87.10 95.93 g7.12 8716 | 407,715 (3.01%)
Any . 98.03 97.25 100.00 99.76 97.31 | 1082382 (8.00%)
Total . 1643 12217 123 a7 13065
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Additional figure 3. This figure shows the results of the evaluation of the automated detection of hepatobiliary toxicity
relevant abstract. The following evaluation datasets were used: (a) the R-CTD set containing articles annotated with the
term ‘Drug-Induced Liver Diseases’ in the CTD database, (b) the R-MeSH set containing records that were indexed by
PubMed with the MeSH term ‘Drug-induced liver injury’, (C) the R-SCAI set, consisting of the subset of DILI relevant
abstracts from the ADE corpus (8) and (D) the R-Manual consisting of a small sample set of abstracts that were examined
by a last year medicine student and classified as DILI relevant. (A) Evaluation scores for each of the detection strategies,
namely the pattern based method, the rule-based system, and the term mention methods (Term-n: mentions of stemmed
terms, Term-v: mentions of inflected term variants) or any of the methods, i.e. the abstract was detected by at least one
methods. The precision (P) was calculated for the top 100 hits for each method from a random sample of 8000 abstracts
based on manual inspection. The recall (R) was estimated using several external datasets as a validation standard (as well
as a set of manually labeled abstracts prepared by a last year medicine student, the R-Manual set). The total number of
PubMed abstracts retrieved by each method and the corresponding percentages are shown in the last column of this table.
(B) Detailed examination of the top 100 abstract evaluations. Each of the top 100 abstracts returned by every method was
classified manually into Liver-I (induced adverse hepatobiliary effect), Liver-Path (hepatobiliary disease), Hepato
(Hepatobiliary system related), Tox (Toxic effect relevant) and other (not relevant). Note that in case of the hits returned
by the pattern-based method for the 8000 sample set only 19 of them contained pattern hits, so in this case the evaluation

was based only on these 19 hits.

Rule-based approach.

A general shortcoming of the term based indexing approach is that adverse hepatobiliary events
(and also other events) can often be described in the literature a way that does not rely on the use



of a specific term or phrase. To illustrate such descriptive expressions referring to hepatotoxicity
consider the following example sentence:

‘Toxic effect of an antitumor drug paclitaxel on morphofunctional characteristics of the liver in rats’
[PMID:19023985]

Even though this sentence associates a particular chemical to a drug-induced liver injury effect, the
authors do not use a specific term built up by consecutive words. Nonetheless, the two elements
that are key for hepatotoxicty events (the adverse effect and the actual site or target organ) are co-
mentioned in the same sentence.

To recover this kind of expressions, we have constructed a simple rule-based or knowledge-based
text processing approach. This strategy explores how information relevant to hepatotoxicity is
generally stated in single sentences beyond the use of specific keywords. Through analysis of sample
cases we observed that a general property of hepatotoxicity sentences was the existence of
expressions referring to the target site (organ, tissue, cell type, molecular entities) affected by the
toxic effect together with the description of some adverse, pathologic or toxicity expression.

The rule-based extraction module relied the same principle as previously described for selecting
automatically candidate hepatotoxicity terms. This implies that it required that both a location
trigger term and an adverse event trigger term had to co-occur together in a particular context
(sentence). The rule-based method used a total of 852 manually defined hepatotoxicity, 960
hepatobiliary and 552 toxicity trigger terms. These were part of the trigger lists compiled for the
term selection method (although some triggers that were too ambiguous were finally excluded). The
main difference between the rule-based system and the term-selection process was that the
contextual window used by the rule-based approach consisted of entire sentence instead of noun
phrase or word n-grams. We used a heuristic sentence scoring scheme to weight the output of the
rule-based system. In short, this scoring mechanism took into account the total number of co-
occurrences between hepatobiliary terms and adverse effect terms in a sentence, the respective
relative sequential order within the sentence and the relative distance measured by the number of
word tokens between them. The relative position and distance features were considered only for the
closest co-occurrences between adverse and hepatobiliar triggers (measured in word tokens). The
rule-based scoring of entire abstracts consisted of taking the sum of the corresponding sentence
scores. This method had a high recall, as shown in the results of additional figure 3. The recall of this
method ranged between 92.58 and 100%.

Pattern-based approach

Under certain circumstances users favor high recall results. For instance in case of literature curation,
high recall triage of articles that will be later manually curated can be of importance. Under settings
where only limited human workload is possible, or when text mining results are intended to be
directly used to populate a knowledgebase, high precision results are often desirable. Pattern-based
methods constitute one approach that is still widely used in information extraction to achieve high
precision results. Two kinds of alternatives when looking at pattern-based techniques are purely
statistical pattern learning on the one side and hand-crafted patterns on the other.



We have explored the use of hand-crafted patterns for detecting drug-induced liver injuries (DILIs).
These patterns were constructed through manual examination of sample instances as well as by
using statistical, grammatical and gazetteer-matching selection criteria of candidate templates. The
later was done in order to improve selection of frequent expressions suggesting DILIs.

As an initial constraint, the pattern-based approach required co-occurrences of two semantic types,
namely the agent (chemical compound or drug) and the target site (hepatobiliary system) within
sentences.

A preliminary set of manual text patterns were constructed from sample sentences with agent-site
co-occurrences, which also had a high hepatotoxicity sentence classifier score. Text patterns
corresponded to the minimal text spans that referred to a causal relation between a chemical and an
adverse hepatobiliary event.

Chemical mentions as well as the adverse event terms were masked with a semantic class label. This
allowed generalizing text pattern by transforming them into a sort of template. Consider the
following illustrative example pattern/text template:

Pattern: <agent:chemical> in inducing <target:adverse> = [troglitazone in inducing hepatotoxicity]

Here ‘in inducing’ is the core of the text pattern, describing a causal adverse effect relation pattern
and containing a causal relation trigger verb (induce). The collection of used extraction pattern can
be downloaded from the LimTox resources webpage®. Additionally we examined another source of
sentences describing chemically induced adverse reactions, namely the ADE-SCAI corpus. First, all
sentences of this corpus were divided into (a) those that described adverse hepatobiliary effects and
(b) other types of adverse reactions. This second collection of 6,466 sentences was inspected
manually to construct handcrafted text patterns. The collection of DILI related sentences from the
ADE-SCAI corpus was held back as a validation set for the relation extraction task. Adverse events
and the chemical entities were masked to generate templates. We kept only textual patterns that
were not biased towards a particular subtype of adverse effect. This was done to make sure that
they would be able to recover any causal adverse event relation. SCAI corpus derived example
pattern:

Pattern: <target:adverse>: caused by <agent:.chemical> =
[ADVERSE caused by CHEMICAL in patients with inflammatory bowel disease [PMID:10203437]

One obvious drawback of the previous two selection criteria has to do with the fact that a large
number of surface grammatical structures can in practice refer to adverse events in the literature.

In order to prioritize those that are more commonly used in the literature, we considered statistical
(raw frequency), grammatical (POS labels of words) and gazetteer (a list of 21 trigger terms)
information. From sentences that contained co-occurrences of chemicals and adverse hepatobiliary
terms, the text fragments joining the co-occurrences within the sentence were selected (stripping
off the left and right flanking words. In case of the previous example this would be ‘caused by’.
These inner connection text fragments were tokenized and only those fragments retained that had

s https://github.com/inab/etox/tree/master/lexicon



between 1 and 9 words. The top 3,000 patterns, ranked based on absolute frequency, were
manually revised. The remaining list of patterns were processed based on whether: (a) they were
less than 5 tokens long, (b) they contained at least one verb or noun (excluding auxiliary verbs and
verbs with less then 4 characters in length) and (c) they had a maximum length of 6 words together
with mentions of at least one of 21 predefined relation trigger terms.

To cover scenarios not strictly limited to the inner connection text fragments, one complementary
selection criteria of candidate patterns was considered. This case entailed the selection of up to 3
words on the left of the first semantic class label mention together with corresponding inner
connection fragments of length 1-3 words. Within the left flanking segment a nominalized form of
the trigger term had to be mentioned. Moreover, only those segments were chosen that did not
start with certain POS tags ('IN','CC','TO','DT',":",'CD",'RB','PRPS",'PRP",",",'-NONE-

LU 'WRB'L'WP''WDT!,'RBS','RBRY,'POS','MD'). Nominalizations are quite common and important in
the biomedical literature and they are also associated with some alterations in terms of syntactic
constructs and consequently word order (Cohen et al, 2008).

The top 6,000 patterns ranked by frequency that fulfilled the previously describe selection criteria
were then manually validated.

Joining all the manually validated patterns, a total of 2,926 pattern templates were obtained,
corresponding to 2,896 case insensitive patterns with masked hyphens. These patterns were used as
templates to recognize matching phrases within sentences. For abstracts ranking purposed we used
the total number of corresponding sentences that contained pattern matches. The resulting pattern-
based approach was rather competitive in terms of precision was can be seen when looking at the
additional figure 3. This approach was more reliable in detecting chemically induced adverse
hepatobiliary effects. Nonetheless, there was also a considerable drop in recall when compared to
the other approaches.

Text classifier strategy

The hepatotoxicity abstract classifier was trained on a balanced set of 10,984 abstracts. The positive
training data contained records relevant for drug-induced liver damage selected by either the
keyword or rule based approaches previously introduced. The negative training set was a random
sample of PubMed abstracts of the same size. To determine the quality of the used training data a
sample of 100 abstracts was manually inspected, 83% corresponded to DILI relevant documents and
another 12% to adverse liver events caused by alterations in genes and gene products (mainly at the
level of gene expression). The abstract classifier consisted of a linear kernel SVM classifier that used
a bag-of-words (BOW) representation model of the text and unigram term frequency as feature
weights. The aim of this strategy was to implement a high recall system that enables classification
and ranking of hepatotoxicity relevant articles. The resulting classifier model was applied to score
the entire set of abstracts contained in the PubMed database. 5.67% of all abstracts were scored as
relevant for adverse hepatobiliary events. For evaluation purposes, and in order to estimate whether
the classifier was able to detect records annotated as being relevant for hepatotoxicity, we used
several independent evaluation data sets. The obtained recall results can be seen in additional figure
3. The resulting classifier model was able to recover between 89.43% and 98.08% of the records
annotated as DILI relevant from various datasets. The following evaluation datasets were used: (a)
the R-CTD set contained articles annotated with the term ‘Drug-Induced Liver Diseases’ in the CTD



database, (b) the R-MeSH set contain records that were indexed by PubMed with the MeSH term
‘Drug-induced liver injury’, (C) the R-SCAI set, consisting of the subset of DILI relevant abstracts from
the ADE (adverse drug effect) corpus® from the Fraunhofer Institute for Algorithms and Scientific
Computing (SCA/) (Gurulingappa et al. 2012) and (D) the R-Manual consisted of a small sample set of
abstracts that were examined by a last year medicine student and classified as DILI relevant.

Additionally to the abstract classifier also two distinct hepatotoxicity sentence classifiers were
constructed. The balanced training set for both consisted of 28,203 sentences. The positive training
set was selected through a term and rule based selection process while the negative training
sentences were randomly chosen from PubMed. To determine the quality of the positive training
sentences a sample of 100 was manually inspected, 85 % corresponded to DILI relevant sentences
and 15 % to adverse liver events (only 1% was neither of both). The classifier relied on word n-gram
features with a range of 1-4 lowercase tokens and term frequency-inverse document frequency term
weighting. For this purpose we exploited classipy, a command-line tool originally developed in our
lab that can be used to develop advanced text classifiers using SciKit-Learn. The same pipeline was
used to generate sentence classifier models for additional toxicity endpoints, namely nephrotoxicity,
cardiotoxicity, thyrotoxicity and phospholipidosis.

To estimate the precision of the sentence classifier scores, we have evaluated randomly selected
sentences for the same score intervals as highlighted by the LimTox sentence scoring color schema.
Randomly selected sentences were chosen for each of the toxicity endpoints restricted to score
intervals. Those sentences were manually examined whether they described adverse events for each
of the organ systems examined. The obtained precision results for each of the endpoints and score
intervals are shown in the additional figure 4, together with the color schema used for the LimTox
application.
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Additional figure 4. This figure shows manual evaluation of precision of the sentence classifier using randomly selected
sample sentences for each of the score intervals, ranking from SVM classifier scores above 6 (interval 1, I11) to O (interval 7,
scores between 0 and 1). The bars of the figure correspond to the percentage of sentences that were classified as related

to adverse events for each of the corresponding organs (liver, kidney, heart and thyroid).
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Additional material 3

Extraction of CYPs relations to chemicals

Due to the fundamental function of cytochromes P-450 (CYPs) in the xenobiotic metabolism of drugs,
they are key for understanding toxic effects related to the metabolism of compounds. CYPs play an
important role in chemical biotransformation reactions that can result in activation of chemical
compounds into toxic species, or detoxification/enhanced elimination of drugs from the organism.
Moreover, they have been associated to the metabolic activation of pre-carcinogens and are
therefore an interesting target for characterizing predisposition to certain cancer types (Rodriguez-
Antona and Ingelman-Sundberg, 2006). Over 57 active human P450 genes have been described so
far. They correspond mostly to polymorphic genes that result in different isozymes, with
characteristic substrate specificities. We implemented a pipeline for extracting automatically
relevant CYPs mentions and interactions from PubMed abstracts, not only for human CYPs but also
for CYPS from animal species that are relevant for toxicology studies. Additionally also relations from

full text articles and agency reports were extracted.

The initial detection of CYP mentions from the literature is a crucial step for subsequent relation
extraction approaches. We addressed the recognition of CYPs in text using a combined strategy
relying on a multi-species gene lexicon, semi-automatic lexicon enrichment/pruning and a rule-
based approach. Additional figure 5 shows a schematic flowchart describing the used CYPs mention
detection approach.
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Additional figure 5. Flowchart illustrating the process of CYPs mention recognition, covering from the CYPs lexicon
construction and also the rule based CYPs recognition.

An initial CYPs gene/protein name and symbol dictionary was derived from the UniProt database.
Therefore we carried out a search in UniProt using as a query: family:"cytochrome P450 family" to
retrieve all members of this protein family, resulting in a set of 20,462 entries. These hits covered
CYPs contained in the UniProt database, including a total of 287 human hits (60 reviewed and 227
un-reviewed cases). To focus on those species that are interesting for toxicological studies, we
selected a taxonomic subset corresponding to Eutheria (60 species), which was then manually
filtered, resulting in 37 species (with a total of 1,125 associated UniProt CYPs entries). This seed
lexicon was manually examined to remove cases of highly ambiguous names/symbols and non-
informative terms (e.g. ‘Uncharacterized protein’ or ‘Putative uncharacterized protein’). For each
record, a name following the systematic nomenclature for the various isozymes was added wherever
possible. The CYP nomenclature takes into account protein/gene sequences to group them into
families and subfamilies. According to the current hierarchical nomenclature conventions, individual
CYP names are supposed to follow certain rules, namely: They should start with the common root or
prefix (CYP), which are then followed by a number corresponding to the gene family (e.g. CYP1).
Thereafter a letter standing for the CYPs subfamily is added (e.g. CYP1A), followed by a number that
characterizes the gene (polypeptide) (e.g. CYP1A1) (Cupp and Tracy, 1998).

From the 1,878 unique names contained in this ‘baseline’ CYPs lexicon, only 269 followed the
nomenclature conventions. Less than a third of the unique baseline names (i.e. 537) could be
identified in PubMed sentences, although the total number of mention was of 87,364. To increase
recall, we applied semi-automatic expansion of the CYP names using manual rules to account for
typographical variations (alternative use of hyphenation and spaces, Roman and Arabic numeric
expressions, upper case, lower case and capitalized versions of names). Through manual inspection
of a collection of randomly selected abstracts known to be relevant for CYPs (cited in UniProt
records), we defined a set of rules for generating variants from the official nomenclature names.
These rules took into account combinations based on various root forms commonly used for CYPs’,
alternative upper and lower case forms of the CYP subfamily letters and both Arabic and Roman
numbers for CYP families. Also species specific prefixes for some of the organisms were added (e.g.
‘m ‘for mouse and ‘Rn’ for rat). This resulted in an expanded lexicon of 243,657 unique CYPs names.
Some highly ambiguous names were deleted®. The CYP nomenclature guidelines were encoded into
a pattern matching script that identified potential mentions of cytochrome P450 enzymes. The rule
based mention detection approach was able to detect non-continuous text strings referring to a
particular CYP, by exploiting the hierarchical nomenclature properties. In brief, it required the
mention (within a sentences) of a number followed by a capital letter and again a number (with and
without spaces and hyphens) together with one of the following trigger tokens: CYP, Cytochrome or
P450. The rule based method was able to cope with enumerations or lists of CYP mentions, where
the actual CYP name consists of a non-continuous string of text, as is the case in the following
example sentence: ‘The effect of obesity on the cytochrome P450 1 A2, 2C9, 2C19, and 2D6 isozymes is

” Root form: CYP, Cyp, P450, P-450, P450 (CYP), Cytochrome-P450, etc.

8 Filtered names: P52, P24, LDM, TXS.
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inconclusive’. In this example sentence four different CYPs are mentioned but only the first one,
namely ‘P450 1A2’ would have been detected by the dictionary-based approach.

A total of 250,740 CYPs sentence mentions were detected in PubMed abstracts, 218,803 were
recognized by the dictionary look-up method and 31,936 by the rule-based system. For these
mentions, the co-occurrences with automatically tagged chemical compounds were generated. A
total of 242,870 chemical compound-CYP co-occurrences were detected in PubMed, corresponding
to 23,209 unique compound names and 1,940 unique CYP names extracted from 92,327 sentences
(39,779 abstracts). Although co-occurrences can be useful to provide general statistical associations
between entities, they are not sufficient to label the actual type of relation existing between entities
(given the context of mention). Three types of drug-CYPs relation are of particular practical
importance for pharmacology and toxicology, namely induction, inhibition and metabolism relations.
The induction relation type covers relationships, where a chemical causes an increase in expression
or activity of a particular CYP. The inhibition relation type refers to the relation between chemicals
that cause a decrease in the expression of a particular CYP gene product or bind to a CYP and
inactivate it. Finally, metabolic relations in this context refer to relations between a CYP and a
chemical that is biotransformed by it (substrate) or that is the result of such a metabolic reaction
(product), including also intermediate compounds generated during the transformation process. The
relation extraction strategy used here was similar to the chemical-term relation extraction approach;
in the sense that both a pattern/rule based method together with a machine learning sentence-
based relation classifier were used.

The rule based approach relied on a list of relation trigger terms that were compiled for each of the
three relation classes. The relation triggers were generated by manual revision of POS-tagged verbs
associating CYPs and chemicals from the co-occurrence sentences. Verbs were ranked based on their
absolute frequency. The top ranking verbs were inspected and classified according to their relevance
for these three relation classes. Additionally also synonyms and triggers defined ad hoc were
included. This resulted in a set of 119 induction triggers terms, 128 inhibition trigger terms and 407
metabolism trigger terms. In order to generate pattern-matching rules for filling template slots of
relevance for each relation type the connecting text fragments between the mentions of the CYPs
and chemicals were extracted. Only those fragments formed by less than 6 words and also
mentioning at least one trigger were retained. The frequency ranked list was then manually
inspected to derive relation extraction patterns. Those patterns were classified into the three
relation type categories. This resulted in 973 induction patterns, 1,092 inhibition patterns and 1,851
metabolism extraction patterns.

Example CYPS relation patterns are:
(1) induction: ‘[CHEMICAL] induced the expression of [CYPs]’
(2) inhibition: ‘[CHEMICAL] is a strong inhibitor of [CYPs]
(3) metabolism: ‘[CYPs] the enzyme that converts [CHEMICAL[’

Those patterns were then used to mine the entire set of CYPs-chemical co-occurrence sentences,
detecting 3,192 CYPs-chemical-sentence triplets for induction, 5,159 for inhibition and 4,833 for
metabolism. When looking only at the actual interactors, that is the CYPs and chemical mentions
regardless redundancy in terms of multiple sentences providing the same relation evidence, a total
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of 1,712 unique induction, 1,933 inhibition and 2,679 metabolism chemical-CYPs relations could be
extracted by this technique.

To overcome potential recall limitations of pattern-based methods, know to have difficulties in
handling long-range associations between entities (mentioned far apart within the same sentence),
also three SVM relation sentence classifiers were implemented, one for each relation type. As
balanced training set for the classifiers, sentences detected by the pattern-based technique were
used as positive training data and randomly selected chemical-CYPs co-occurrence sentences were
chosen as negative training data. As features, n-grams (n=1,4) were used, previously masking
mentions of chemicals and CYPs. The results using 5-fold cross validation of the classifiers were:
precision 92.8%, recall 89.8% and fl-score 91.3% for the induction relations; precision 91.3%, recall
91.5% and fl-score 91.4% for the inhibition relations and precision 88.1%, recall 88.5% and fl-score
88.3% for the metabolism relations.

Each of the classifiers was used to score the entire set of CYPs-chemical co-occurrence sentences.
The induction classifier returned a total of 23,412 chemical-CYP-sentence triplets, while the
inhibition classifier retrieved 22,354 and the metabolism classifier 26,359 triplets.

When comparing the results of the pattern-based methods to the SVM classifiers, 2,897 of the
triplets were detected by both methods in case of induction, 4,833 in case of inhibition and 4,024 for
metabolism. This means that 90.76% of the pattern results were also confirmed by the induction
relation classifier, 88.64% by the inhibition classifier and 83.26% by the metabolism classifier.

In order to have a better picture of the precision of these relation extraction methods, random
samples of 100 relations detected by each method were selected and then manually examined. The
resulting precision of the pattern-based induction extraction was of 96%. When looking at the false
positive relations, two of them corresponded to NER errors (e.g. PCOS was detected wrongly as a
compound in case of: ‘PCOS theca cells’). The other two FPs corresponded to other relationships not
being induction. The precision of the pattern-based inhibition relation extraction was slightly better
(98%). One of the FPs could be attributed to a NER error. In case of the metabolism relation, the
pattern technique obtained a slightly worse precision of 95%.

When looking at the predictions of the SVM relation classifier, the precision was considerable lower,
in case of the induction relation it was of 46%. The number of errors for this relation type was mainly
due to incorrect NER results, which were also considerably higher (11% of the total induction
relations examined). Most of the NER errors corresponded to acronyms of cell lines and some also to
gene symbols instead of chemicals. Many of the wrongly extracted relations were due to the
presence of multiple, complex relations described in the same sentence.

The obtained precision of the inhibition relation classifier was of 54%. In case of the FP relations,
many of them were between the compound tamoxifen and the CYP aromatase. Aromatase
inhibitors are often described as an alternative treatment to tamoxifen in the literature. Most of the
other errors were due to mentions of multiple CYP-chemical relations in the same sentence resulting
in an additional level of ambiguity. The system in those cases often returned the incorrect
association pairs.
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The metabolism relation classifier had a precision of 69%. The metabolic relations were
unexpectedly easier for the machine learning method. Also in this case, most of the FPs were due to
multiple CYP-chemical relations described in a sentence, corresponding only a fraction of them to
metabolism relations. One strategy to account for this issue would be to propose a weighting
scheme based on the number of relation pairs mentioned in a sentence (to down-weight cases were
many chemicals and CYPs appear).

Another important aspect when evaluating the performance of the LimTox CYPs relation extraction
system was recall. The recall was estimated by comparing the extracted relations to the annotations
from two databases: SuperTarget (Glnther et al., 2008) and SuperCYP (Preissner et al., 2010). Both
of these databases contain relations between CYPs and chemicals covering inhibitor, inducer and
substrate interactions. Annotations from both collections were harmonized to CAS-RN (chemicals)
and canonical CYP names and UniProt accession numbers (CYPs). The evaluation was done for the
subset of human CYPs. The joined Gold Standard set contained 457 induction, 1,396 inhibition and
1,836 substrate relations. Additional table 1 provides not only an overview of the previously
described CYPs results but also the recall evaluation of the CYPs relation extraction methods
compared to a baseline defined by sentence co-occurrence. This baseline recall ranged between 60
and 66 percent for the various relation types, showing that a considerable number of relations were
not detected at the level of co-mention in single sentences. Examining the actual results revealed
that many of the Gold Standard compounds were not detected at all in any CYPs sentences. When
comparing the recall results of the pattern or SVM extraction methods to the baseline co-
occurrences showed that these two methods were relatively competitive for cases were entities
indeed are co-mentioned in text. Overall, a slightly better recall was obtained for the substrate
relations, while induction and inhibition relations had very similar recall numbers.

Data Induction | Inhibition | Metabolism*
Relation trigger term 119 128 407
Relation patterns 973 1,092 1,851
Triplets (pattern) 3,192 5,159 4,833
Pairs (pattern) 1,712 1,933 2,679
SVM cross-validation (F-score) | 91.3% 91.4% 88.3%
Triplets (SVM) 23,412 22.354 26,359
Precision sample (pattern) 96% 98% 95%
Precision sample (SVM) 46% 54% 69%
Recall co-occurrence (all) 60.61 % 66.26 % 64.77 %
Recall pattern (PubMed) 39.39% 39.26% 43.25%
Recall pattern (all) 42.23% 41.55% 46.02%
Recall SVM (PubMed) 42.89% 41.47% 47.00%
Total Gold Standard 457 1,396 1.836

Additional table 1. Overview of the CYPs text mining results in LimTox. Triplets: chemical-CYPs-sentence; Pair: chemical-
CYPs. *In case of the recall evaluation metabolic relations examined consisted only of substrate relationships.

Extraction of liver marker alterations

During the clinical examination of patients, a widespread strategy to detect hepatocellular injuries
and cholestasis (blockage of bile flow from the liver) relies on measurements of serum liver enzyme
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activities, sometimes called liver enzyme tests or liver function tests. In case of hepatocellular
injuries, increased activities of certain enzymes within hepatocytes are frequently detected.
Therefore we included in the LimTox system the automatic extraction of relationships between
chemicals and the most commonly studied entities measured in biochemical liver assays. A total of
17 liver markers (13 proteins, 3 chemicals and 1 generic term) were carefully selected by reading
toxicology review studies and relevant sections of an introductory toxicology book. Additional table
2 provides an overview of the used markers together with some additional overview information. In
the literature, and especially in short abstracts, authors often do not specify the particular liver
marker measured, but refer to it using a generic term. An entity type for such generic mentions was
also included (e.g. liver tests, liver function test, liver transaminases, aminotransferases). The marker
lexicon was derived from databases (UniProt and ChEBI) and enriched manually by examining the
results returned by the Acromine system for the marker acronyms’, resulting in a lexicon of 1,590
marker names. The recognition of liver markers was addressed using a dictionary look-up approach
together with an acronym disambiguation-filtering step.

Identifier Name Short[Aliases | Mentions | PubMed | Pattern Up [Pattern Down
CID 10964 malonyldialdehyde MDA | 127 | 58,159 | 56,336 1,124 425
CID 124886 glutathione GSH| 27 |223,342 196,603 3,476 28,629

CID 5280352 bilirubin - 4 46,604 | 42,615 1,113 109
P00367 glutamate dehydrogenase GDH 45 11,816 | 11,129 44 73
P00390 glutathion reductase GRx 52 11,667 | 10,796 97 151
P00441 superoxid dismutase SOD 79 117,409 | 109,205 1,150 745
P04040 catalase CAT | 20 83,906 | 72,242 1,047 972
P07195 lactate dehydrogenase LDH | 118 71,005 | 65,388 2,933 500
P07203 glutathion peroxidase GPx 58 35,242 | 32,743 367 366
P10696 alkaline phophatase ALP 49 94,967 | 88,122 2,889 589
P17174 |serum glutamate oxalate transaminase [SGOT| 252 45,263 | 40,351 1,448 119
P19440 gama-glutamyl transferase GGT | 217 | 30,210 | 28,545 522 231
P24298 serum glutamic pyruvic transaminase |SGPT| 346 61,809 | 54,281 2,783 134
P28838 leucine aminopeptidase LAP 90 6,118 5,353 21 12

Q00796 sorbitol dehydrogenase SDH| 52 4,088 3,379 37 40

Q9HOPO 5'-nucleotidase 5'-NT| 43 6,876 6,564 73 76

Unspeficic liver tests - 11 35,110 | 29,698 1,740 44

Additional table 2. Overview of the liver marker text mining results. Aliases: number of synonyms and variants in the
marker dictionary for that particular marker; Mentions: number of mentions in the entire document collection; PubMed:
number of PubMed abstract mentions; Pattern up: sentence triplets (marker-chemical-sentence) detected with the pattern
approach for marker increase; Pattern down: the same as the previous number but for marker decrease. SVM up and SVM
down correspond to the number of triplets detected by the SVM relation classifier for increase and decrease. Chem.:
number of unique chemical names extracted with the pattern relation approach (for both increase and decrease); CAS-RN:
total number of CAS-RNs that were detected with the pattern marker relation method. Chem. SVM and CAS-RN SVM
correspond to the same type of results but for the SVM relation classifier method.

A simple rule based system to determine if there is an increase or decrease of liver markers
following drug administration was also implemented. This system relied on a list of trigger terms for
the different relation types. The increase (up) relation patterns were based on 167 manually defined

9 .
www.nactem.ac.uk/software/acromine
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trigger terms and 1,925 patterns'®, while the decrease (down) relation patterns were based on 85
trigger terms and 336 patterns'’. Compared to the other pattern-based relation extraction
approaches introduced earlier, in case of the marker relations, there were some pattern templates
that contained both a slot for the marker entity and the chemical entity (e.g. ‘CHEMICAL increases
MARKER level’), while other patterns did not require the chemical entity as part of the pattern itself,
but rather the co-occurrence anywhere in the sentence (e.g. ‘MARKER is > uln’). The number of
extracted relation triplets for each marker and the associated chemicals detected through the
pattern-based approach are shown in additional table 2. For most of the markers it was more
frequent to find an increase relation triplet rather then a reduction. For instance in case of SGPT a
total of 2,783 increase triplets were extracted, while only 134 reduction triplets could be obtained.
One outlier was the marker glutathione with very high number of decrease relations.

Sentences detected by the pattern-based approach were afterwards used as positive training set to
construct SVM relation classifiers for each of the two relation types. As negative training data a
randomly selected set of marker-chemical co-occurrence sentences of the same size was used. In
case of the increase relations the balanced training set comprised 35,416 sentences and in case of
the decrease relations it consisted of 24,139 sentences. The 5-fold cross validation result for the
increase relation classifier was: 94.2% precision, 91.6% recall and 92.9% F-score. In case of the
decrease relation classifier the precision was of 95.5 with a recall of 92.9% and an F-score of 94.2%.

10
Example increase trigger terms: increase, increment, elevate, two-fold, upper limit of normal. Example increase patterns:
MARKER elevations, MARKER is $>$ uln.

11
Example decrease trigger terms: drop, reduction, sinking. Example decrease patterns: decrease MARKER level, low total
MARKER.

17



