
Supplementary Data

DSSR-Enhanced Visualization of Nucleic Acid Structures in Jmol

by

Robert M. Hanson and Xiang-Jun Lu

DSSR v1.6.8, released on 2017-03-28

Jmol v14.15.1, released on 2017-04-27

1 DSSR commands for integration to Jmol/JSmol 1

1.1 Overview of DSSR with --json=ebi . 1

1.2 The paths object (accessible features) . 2

1.3 The counts object (actually available features) 2

1.4 Queryable properties . 3

2 DSSR web-API used by Jmol/JSmol 9

2.1 DSSR analysis and annotation using PDB IDs 9

2.2 DSSR analysis from PDB-formatted data 10

2.3 Reading DSSR JSON analysis data directly 10

3 Jmol/JSmol support for DSSR 11

3.1 DSSR in Jmol/JSmol . 11

3.2 Jmol SQL for DSSR . 13

3.3 Summary . 16

1

DSSR-Enhanced Visualization of Nucleic Acid Structures in Jmol Supplementary Data

1 DSSR commands for integration to Jmol/JSmol

DSSR is stand-alone, command-line program written in ANSI C. The binary executa-

bles are only ∼1MB in size, and self-contained. With zero dependencies, no setup or

configuration, it is trivial to get DSSR up and running. DSSR uncovers a wide range of

RNA/DNA structural features in a consistent, easily accessible framework. It possesses a

much richer set of functionalities for nucleic acid structural analysis (see the DSSR User

Manual) than any other existing tools. Moreover, the program is efficient and robust,

making it an ideal component to be integrated into other pipelines.

The DSSR-Jmol integration covers the most fundamental features of what DSSR has

to offer, as outlined in the main text. This work fills a gap in RNA/DNA structural

bioinformatics, since no such functionality is currently available in other popular molecular

viewers (to the best of our knowledge). It brings the molecular graphics of 3D RNA

structures to a similar level as that for proteins, and enables a much deeper analysis of

structural characteristics.

Technically, the DSSR-Jmol integration benefits from the simple structured JSON for-

mat, and the clearly delineated unit identifier proposed by the Leontis-Zirbel group to

unambiguously identify nucleotides/atoms. From the DSSR side, the interface is specified

via the --json=ebi command-line option.

The DSSR-generated JSON output is in a compact, one-line form. For the following

illustrations, we employ the command-line JSON processor jq (v1.5) to parse the DSSR

output, using yeast tRNAPhe (PDB id: 1ehz) as an example. The commands and results

presented here should give users a better understanding of the mechanics that connect

DSSR and Jmol/JSmol.

1.1 Overview of DSSR with --json=ebi

Let the coordinate file of 1ehz in mmCIF format be 1ehz.cif (the PDB-formatted

1ehz.pdb file is also fine), the DSSR commands for the Jmol/JSmol integration are as

follows:

1 x3dna-dssr --json=ebi -i=1ehz.cif # default to stdout, which can be chained to jq

2 x3dna-dssr --json=ebi -i=1ehz.cif | jq keys # top-level keys, e.g., 'paths', 'pairs' etc.

3 x3dna-dssr --json=ebi -i=1ehz.cif -o=1ehz.json # save to a file

The contents of the right column in Table 1 of the main text were generated using

2017 Web-Server Issue of NAR Hanson & Lu 1

http://x3dna.bio.columbia.edu/docs/dssr-manual.pdf
http://x3dna.bio.columbia.edu/docs/dssr-manual.pdf
http://www.json.org
http://www.json.org
http://www.bgsu.edu/research/rna/help/rna-3d-hub-help/unit-ids.html
https://stedolan.github.io/jq/

DSSR-Enhanced Visualization of Nucleic Acid Structures in Jmol Supplementary Data

the commands listed below. Note the jq -c option which produces a compact instead of

pretty-printed output, to save space.

1 x3dna-dssr --json=ebi -i=1ehz.cif | jq -c '.paths | keys_unsorted'
2 x3dna-dssr --json=ebi -i=1ehz.cif | jq -c .counts

3 x3dna-dssr --json=ebi -i=1ehz.cif | jq -c .pairs[0]

4 x3dna-dssr --json=ebi -i=1ehz.cif | jq -c '.nts[9] | {nt_name, nt_id, is_modified, chi, puckering}'

1.2 The paths object (accessible features)

1 x3dna-dssr --json=ebi -i=1ehz.cif | jq .paths

Running the above command gives the following output, which lists the 16 DSSR-

derived features accessible to Jmol/JSmol (e.g., pairs) and their corresponding keys for

unit ids (e.g., nt1,nt2 for pairs, see below). This list is fixed (per the current version),

and does not change with each analyzed structure.

1 {

2 "pairs": "nt1,nt2",

3 "multiplets": "nts_long",

4 "helices": "pairs.nt1,nt2",

5 "stems": "pairs.nt1,nt2",

6 "isoCanonPairs": "nt1,nt2",

7 "coaxStacks": "stem_indices.pairs.nt1,nt2",

8 "hairpins": "nts_long",

9 "bulges": "nts_long",

10 "iloops": "nts_long",

11 "junctions": "nts_long",

12 "kissingLoops": "hairpin_indices.nts_long",

13 "ssSegments": "nts_long",

14 "stacks": "nts_long",

15 "nonStack": "nts_long",

16 "hbonds": "res_long;atom1_id,atom2_id",

17 "nts": "nt_id"

18 }

Within Jmol/JSmol, these 16 keys can serve as selection keywords. For example, the

script select hairpins will pick up all nucleotides involved in hairpin loops (if any, see

counts below).

1.3 The counts object (actually available features)

1 x3dna-dssr --json=ebi -i=1ehz.cif | jq .counts

2017 Web-Server Issue of NAR Hanson & Lu 2

DSSR-Enhanced Visualization of Nucleic Acid Structures in Jmol Supplementary Data

Running the above command gives the following output, which contains the actual

DSSR-derived features in the analyzed structure (1ehz.cif). The keys of the counts list

are a subset of the 16 keywords in paths, and change with each analyzed structure. For

example, 1ehz has 14 features among the 16 shown above for paths.

1 {

2 "pairs": 34,

3 "multiplets": 4,

4 "helices": 2,

5 "stems": 4,

6 "isoCanonPairs": 1,

7 "coaxStacks": 2,

8 "hairpins": 3,

9 "junctions": 1,

10 "kissingLoops": 1,

11 "ssSegments": 1,

12 "stacks": 11,

13 "nonStack": 4,

14 "hbonds": 118,

15 "nts": 76

16 }

1.4 Queryable properties

1.4.1 In pairs

1 x3dna-dssr --json=ebi -i=1ehz.cif | jq .pairs[0,3,7,8,11]

Running the above command extracts five base pairs with indices 1,4,8,9,12 as shown

in the following output. Note that arrays in JavaScript (jq) are 0-indexed. The keys nt1

and nt2 designate the unit ids of the two nucleotides forming a pair, and they match the

value of the pairs key in the paths object ("pairs": "nt1,nt2", see above). The other

keys (bp, name, Saenger, LW, and DSSR) correspond to the abbreviated pair type (M±N),

common name (if any), classifications by Saenger, Leontis-Westhof (LW), or DSSR, respec-

tively. See the DSSR User Manual for details.

1 {

2 "index": 1,

3 "nt1": "|1|A|G|1||||",

4 "nt2": "|1|A|C|72||||",

5 "bp": "G-C",

6 "name": "WC",

7 "Saenger": "19-XIX",

8 "LW": "cWW",

9 "DSSR": "cW-W"

10 }

2017 Web-Server Issue of NAR Hanson & Lu 3

http://x3dna.bio.columbia.edu/docs/dssr-manual.pdf

DSSR-Enhanced Visualization of Nucleic Acid Structures in Jmol Supplementary Data

11 {

12 "index": 4,

13 "nt1": "|1|A|G|4||||",

14 "nt2": "|1|A|U|69||||",

15 "bp": "G-U",

16 "name": "Wobble",

17 "Saenger": "28-XXVIII",

18 "LW": "cWW",

19 "DSSR": "cW-W"

20 }

21 {

22 "index": 8,

23 "nt1": "|1|A|U|8||||",

24 "nt2": "|1|A|A|14||||",

25 "bp": "U-A",

26 "name": "rHoogsteen",

27 "Saenger": "24-XXIV",

28 "LW": "tWH",

29 "DSSR": "tW-M"

30 }

31 {

32 "index": 9,

33 "nt1": "|1|A|U|8||||",

34 "nt2": "|1|A|A|21||||",

35 "bp": "U+A",

36 "name": "--",

37 "Saenger": "n/a",

38 "LW": "tSW",

39 "DSSR": "tm+W"

40 }

41 {

42 "index": 12,

43 "nt1": "|1|A|2MG|10||||",

44 "nt2": "|1|A|G|45||||",

45 "bp": "g+G",

46 "name": "--",

47 "Saenger": "n/a",

48 "LW": "cHS",

49 "DSSR": "cM+m"

50 }

Among the five pairs, note the following characteristics:

"index":1 – a Watson-Crick pair (G1–C72)

"index":4 – a Wobble pair (G4–U69)

"index":8 – a reverse Hoogsteen pair (U8–A14)

"index":9 – an unnamed pair (U8+A21)

"index":12 – another unnamed pair with a modified base (2MG10+G45)

1.4.2 In nts

1 x3dna-dssr --json=ebi -i=1ehz.cif | jq .nts[9]

2017 Web-Server Issue of NAR Hanson & Lu 4

DSSR-Enhanced Visualization of Nucleic Acid Structures in Jmol Supplementary Data

Running the command above extracts numerous structural parameters for 2MG10

(with index 10) as shown in the following output. As with pairs, the keys in nts can be

employed by the Jmol SQL for DSSR, leading to numerous possibilities to query DSSR-

derived parameters that characterize nucleotides.

1 {

2 "index": 10,

3 "index_chain": 10,

4 "chain_name": "A",

5 "nt_resnum": 10,

6 "nt_name": "2MG",

7 "nt_code": "g",

8 "is_modified": true,

9 "nt_id": "|1|A|2MG|10||||",

10 "dbn": "(",

11 "alpha": 177.814,

12 "beta": 147.203,

13 "gamma": 60.066,

14 "delta": 89.323,

15 "epsilon": -126.196,

16 "zeta": -88.738,

17 "epsilon_zeta": -37.459,

18 "bb_type": "..",

19 "chi": 169.599,

20 "baseSugar_conf": "anti",

21 "form": "A",

22 "ssZp": 4.682,

23 "Dp": 4.635,

24 "splay_angle": 23.874,

25 "splay_distance": 3.63,

26 "splay_ratio": 0.208,

27 "eta": 27.783,

28 "theta": -130.257,

29 "eta_prime": 97.236,

30 "theta_prime": -130.105,

31 "eta_base": 134.838,

32 "theta_base": -110.259,

33 "v0": 7.818,

34 "v1": -28.008,

35 "v2": 36.712,

36 "v3": -32.963,

37 "v4": 15.862,

38 "amplitude": 36.954,

39 "phase_angle": 6.563,

40 "puckering": "C3'-endo",
41 "sugar_class": "~C3'-endo",
42 "bin": "23p",

43 "cluster": "2g",

44 "suiteness": 0.64,

45 "filter_rmsd": 0.018,

46 "frame": {

47 "rsmd": 0.018,

48 "origin": [

49 65.696,

50 45.135,

51 18.125

52],

53 "x_axis": [

54 0.69,

2017 Web-Server Issue of NAR Hanson & Lu 5

DSSR-Enhanced Visualization of Nucleic Acid Structures in Jmol Supplementary Data

55 0.714,

56 -0.117

57],

58 "y_axis": [

59 -0.707,

60 0.7,

61 0.101

62],

63 "z_axis": [

64 0.154,

65 0.013,

66 0.988

67]

68 }

69 }

1.4.3 In stems

1 x3dna-dssr --json=ebi -i=1ehz.cif | jq .stems[0]

Running the above command extracts the acceptor stem (with index 1) in 1ehz. Note

that the pairs key and its sub-keys nt1,nt2 match the "stems":"pairs.nt1,nt2" entry

in paths for selecting unit ids. As with pairs, the keys in stems (as well as helices) can

be employed by the Jmol SQL for DSSR, opening numerous possibilities to query desired

features.

1 {

2 "index": 1,

3 "helix_index": 1,

4 "strand1": "GCGGAUU",

5 "strand2": "CGCUUAA",

6 "bp_type": "|||||||",

7 "helix_form": "AA....",

8 "num_pairs": 7,

9 "pairs": [

10 {

11 "index": 1,

12 "nt1": "|1|A|G|1||||",

13 "nt2": "|1|A|C|72||||",

14 "bp": "G-C",

15 "name": "WC",

16 "Saenger": "19-XIX",

17 "LW": "cWW",

18 "DSSR": "cW-W"

19 },

20 {

21 "index": 2,

22 "nt1": "|1|A|C|2||||",

23 "nt2": "|1|A|G|71||||",

24 "bp": "C-G",

25 "name": "WC",

26 "Saenger": "19-XIX",

27 "LW": "cWW",

2017 Web-Server Issue of NAR Hanson & Lu 6

DSSR-Enhanced Visualization of Nucleic Acid Structures in Jmol Supplementary Data

28 "DSSR": "cW-W"

29 },

30 {

31 "index": 3,

32 "nt1": "|1|A|G|3||||",

33 "nt2": "|1|A|C|70||||",

34 "bp": "G-C",

35 "name": "WC",

36 "Saenger": "19-XIX",

37 "LW": "cWW",

38 "DSSR": "cW-W"

39 },

40 {

41 "index": 4,

42 "nt1": "|1|A|G|4||||",

43 "nt2": "|1|A|U|69||||",

44 "bp": "G-U",

45 "name": "Wobble",

46 "Saenger": "28-XXVIII",

47 "LW": "cWW",

48 "DSSR": "cW-W"

49 },

50 {

51 "index": 5,

52 "nt1": "|1|A|A|5||||",

53 "nt2": "|1|A|U|68||||",

54 "bp": "A-U",

55 "name": "WC",

56 "Saenger": "20-XX",

57 "LW": "cWW",

58 "DSSR": "cW-W"

59 },

60 {

61 "index": 6,

62 "nt1": "|1|A|U|6||||",

63 "nt2": "|1|A|A|67||||",

64 "bp": "U-A",

65 "name": "WC",

66 "Saenger": "20-XX",

67 "LW": "cWW",

68 "DSSR": "cW-W"

69 },

70 {

71 "index": 7,

72 "nt1": "|1|A|U|7||||",

73 "nt2": "|1|A|A|66||||",

74 "bp": "U-A",

75 "name": "WC",

76 "Saenger": "20-XX",

77 "LW": "cWW",

78 "DSSR": "cW-W"

79 }

80]

81 }

1.4.4 In coaxStacks

1 x3dna-dssr --json=ebi -i=1ehz.cif | jq .coaxStacks[0]

2017 Web-Server Issue of NAR Hanson & Lu 7

DSSR-Enhanced Visualization of Nucleic Acid Structures in Jmol Supplementary Data

Running the above command extracts the coaxial-stacking interactions within the first

helix that incorporates the acceptor stem (with index 1) and the T stem (with index 4)

in 1ehz. The stem_indices key provides an array of pointers to the corresponding stems,

linking to pairs detailed above. The "coaxStacks":"stem_indices.pairs.nt1,nt2" en-

try in paths shows the hierarchy of the chain “coaxStacks → stems → pairs → nt1,nt2”

to the unit ids.

1 {

2 "index": 1,

3 "helix_index": 1,

4 "num_stems": 2,

5 "stem_indices": [

6 1,

7 4

8]

9 }

1.4.5 In junctions

1 x3dna-dssr --json=ebi -i=1ehz.cif | jq .junctions[0]

Running the above command extracts the four-way junction in 1ehz, corresponding to

the central roundabout in the classic tRNA cloverleaf secondary structure diagram. Note

the nts_long key whose value lists the unit ids of all the nucleotides in the ‘closed’ junction

loop.

As with other DSSR-derived features outlined above, the keys in junctions can be

employed by the Jmol SQL for DSSR, leading to many queries of practical significance. As

a simple example, one can use the num_stems key to find all three-way (or four-way, etc.)

junctions in a given structure.

1 {

2 "index": 1,

3 "type": "4-way junction",

4 "bridging_nts": [

5 2,

6 1,

7 5,

8 0

9],

10 "stem_indices": [

11 1,

12 2,

13 3,

14 4

2017 Web-Server Issue of NAR Hanson & Lu 8

DSSR-Enhanced Visualization of Nucleic Acid Structures in Jmol Supplementary Data

15],

16 "summary": "[4] 2 1 5 0 [A.7 A.66 A.10 A.25 A.27 A.43 A.49 A.65] 7 4 4 5",

17 "num_nts": 16,

18 "nts_short": "UUAgCgCGAGgUCcGA",

19 "nts_long": "|1|A|U|7||||,|1|A|U|8||||,|1|A|A|9||||,|1|A|2MG|10||||,|1|A|C|25||||,|1|A|M2G|26||||,|1|A|C

↪→ |27||||,|1|A|G|43||||,|1|A|A|44||||,|1|A|G|45||||,|1|A|7MG|46||||,|1|A|U|47||||,|1|A|C|48||||,|1|A

↪→ |5MC|49||||,|1|A|G|65||||,|1|A|A|66||||",

20 "num_stems": 4,

21 "bridges": [

22 {

23 "index": 1,

24 "num_nts": 2,

25 "nts_short": "UA",

26 "nts_long": "|1|A|U|8||||,|1|A|A|9||||"

27 },

28 {

29 "index": 2,

30 "num_nts": 1,

31 "nts_short": "g",

32 "nts_long": "|1|A|M2G|26||||"

33 },

34 {

35 "index": 3,

36 "num_nts": 5,

37 "nts_short": "AGgUC",

38 "nts_long": "|1|A|A|44||||,|1|A|G|45||||,|1|A|7MG|46||||,|1|A|U|47||||,|1|A|C|48||||"

39 },

40 {

41 "index": 4,

42 "num_nts": 0,

43 "nts_short": "",

44 "nts_long": ""

45 }

46]

47 }

1.4.6 In other features

Structural properties in helices, kissingLoops etc. can be similarly queried.

2 DSSR web-API used by Jmol/JSmol

2.1 DSSR analysis and annotation using PDB IDs

The Jmol LOAD command can be combined with a request for DSSR annotation, as

shown below:

1 LOAD =1ehz/dssr # https://files.rcsb.org/download/1ehz.pdb

The command carries out two web calls. First, it retrieves atomic coordinates in PDB

format from RCSB. Jmol then retrieves a JSON output file from the DSSR server via a call

2017 Web-Server Issue of NAR Hanson & Lu 9

http://www.rcsb.org/

DSSR-Enhanced Visualization of Nucleic Acid Structures in Jmol Supplementary Data

to http://dssr-jmol.x3dna.org/report.php?id=1ehz&opts=--json=ebi. This creates

for the specified model a Jmol variable _M.dssr, which contains all of the data discussed

in Section 1 and is used for analysis and visualization of the structural features discussed

in Section 3.

2.2 DSSR analysis from PDB-formatted data

Jmol can also send a full set or subset of structural data in PDB format to the DSSR

server in order to retrieve a “custom” DSSR analysis. This is accomplished using the

SELECT and CALCULATE commands. For example, DSSR analysis for a single model of the

NMR ensemble 2krl can be created as follows:

1 LOAD =2krl

2 SELECT model=6

3 CALCULATE structure dssr

The SELECT command specifies that the PDB data should be created only for the sixth

model in the ensemble. The CALCULATE command then creates a PDB-formatted string con-

sisting solely of MODEL, ATOM, and HETATM records for those selected atoms and then sends a

request to the DSSR server using the API call http://dssr-jmol.x3dna.org/report.php

with POST data opts=--json=ebi and model=%MODEL where %MODEL is the PDB-formatted

string. In this way, Jmol can retrieve a DSSR analysis for any subset of a model, whether it

be one particular model in an ensemble or one particular configuration of atoms involving

alternative location indicators.

2.3 Reading DSSR JSON analysis data directly

DSSR data in JSON format can be read by Jmol directly by setting _M.dssr to a value

found in a file or in a variable:

1 # x3dna-dssr -i=1d66.pdb --json=ebi -o=1d66.dssr

2

3 load 1d66.pdb

4 model 1 property dssr "1d66.dssr" # read directly from file '1d66.dssr'
5

6 zap

7 load 1d66.pdb

8 x = load("1d66.dssr") # or by first loading data to a variable

9 model 1 property dssr @x

2017 Web-Server Issue of NAR Hanson & Lu 10

DSSR-Enhanced Visualization of Nucleic Acid Structures in Jmol Supplementary Data

Such data can be obtained directly from running x3dna-dssr on a local machine (line

no.1) as described in Section 1, or that saved from some previous Jmol session using the

WRITE command:

1 load =1ehz/dssr

2 x = _M.dssr

3 WRITE var x "1ehz.dssr"

3 Jmol/JSmol support for DSSR

The following section documents how Jmol/JSmol parses DSSR-derived structural fea-

tures in JSON.

3.1 DSSR in Jmol/JSmol

After loading a file from the RCSB PDB with the /dssr attribute, LOAD =1ehz/dssr,

Jmol/JSmol automatically accesses the DSSR information to provide the following search-

able terms:

1 bulges

2 coaxStacks

3 hairpins

4 hbonds

5 helices

6 iloops

7 isoCanonPairs

8 junctions

9 kissingLoops

10 multiplets

11 nonStack

12 nts

13 pairs

14 ssSegments

15 stacks

16 stems

For example:

1 SELECT hairpins

2 SELECT ADD helices

3 DISPLAY REMOVE nonStack

4 COLOR {kissingLoops} red

5

6 COLOR PROPERTY DSSR stems # color each stem differently

7 COLOR NUCLEIC # color atoms based on single-letter DSSR nts.nt_code

8 SET cartoonBlocks # render each base as a DSSR-standard block

2017 Web-Server Issue of NAR Hanson & Lu 11

http://www.rcsb.org/

DSSR-Enhanced Visualization of Nucleic Acid Structures in Jmol Supplementary Data

Other settings are also available:

1 SET cartoonSteps # render each base pair as a single rod

2 SET cartoonBlockHeight 1.0 # set the height (in Angstroms) of base blocks

3 SET cartoonLadders # render each base as a single rod

4 SET cartoonRibose # render each ribose ring

5 SET cartoonBaseEdges # render each base as a triangle, following Leontis-Westhof

Capitalization is irrelevant in Jmol command tokens or atom selections. So select

HAIRPINS is the same as SELECT hairPins. Note the added braces {} in the COLOR com-

mand (line no.4). This is standard for most commands. Only the dedicated atom selection

commands SELECT, DELETE, DISPLAY, FIX, HIDE, and ZAP work without these braces.

Furthermore, one can add --xxx[=yyy] flags to the Jmol LOAD command to be passed

onto DSSR, allowing for future expansion. For example,

1 LOAD =1ehz/dssr--non-pair=true # detect non-pairing interactions

2 LOAD =1ehz/dssr--non-pair # same as above

3 # http://dssr-jmol.x3dna.org/report.php?id=1ehz&opts=--json=ebi%20--non-pair

4

5 LOAD =1ehz/dssr--non-pair%20--u-turn # also detect U-turn motifs

6 # http://dssr-jmol.x3dna.org/report.php?id=1ehz&opts=--json=ebi%20--non-pair%20--u-turn

3.1.1 Atom selection using within(dssr, ...)

In addition, atom selection from DSSR can be done using the within() method. In

fact, the command SELECT hairpins is really just a shorthand for SELECT within(dssr,

"hairpins"). The within(dssr, ...) syntax allows more flexibility, though. For exam-

ple, using within(dssr, ...) one can select just one of the array elements returned by

the selection. This is accomplished by appending ..n, where n is an integer starting with

1. Note that 0 requests the last array element in Jmol, not the first.

1 SELECT within(dssr, "nts") # all nucleotides

2 SELECT within(dssr, "nts..2") # just the second nucleotide

3.1.2 Unit IDs and direct atom selection

Atom selection in Jmol is based on unit ids proposed by the Leontis-Zirbel group. Here

is an example unit id:

1 SELECT "|1|A|A|44||||"

2017 Web-Server Issue of NAR Hanson & Lu 12

http://www.bgsu.edu/research/rna/help/rna-3d-hub-help/unit-ids.html

DSSR-Enhanced Visualization of Nucleic Acid Structures in Jmol Supplementary Data

In the SELECT command, Jmol parses all strings for unit ids. This means that the

strings can have unrelated content without issue. This is important for indirect atom

selection and for more general selections using the Jmol SQL for DSSR (see below), and it

is what is being utilized behind the scenes with within(dssr, ...).

3.2 Jmol SQL for DSSR

Jmol supports a rich query language for exploring DSSR structural annotations (with

shorthands), as well as for selecting nucleotides/atoms associated with specific DSSR char-

acteristics. It is referred to here as the “Jmol SQL for DSSR” and is described more fully

in the Jmol Interactive Documentation.

3.2.1 The M.dssr associative array

After loading a file from RCSB PDB with the /dssr attribute, LOAD =1ehz/dssr, the

associative array _M.dssr holds all DSSR information. This array has the same main keys

as can be used for atom selection (see above), along with some sub-keys:

1 bulges

2 coaxStacks

3 coaxStacks.stems

4 hairpins

5 hbonds

6 helicies

7 helicies.pairs

8 iloops

9 isoCanonPairs

10 junctions

11 kissingLoops

12 kissingLoops.hairpins

13 multiplets

14 nonStack

15 nts

16 pairs

17 ssSegments

18 stacks

19 stems

20 stems.pairs

Each key or sub-key is itself an array of associative arrays. For example,

1 LOAD =1ehz/dssr

2 PRINT _M.dssr.stems.length # 4

3 PRINT _M.dssr.stems[1].pairs.length # 7

4 PRINT _M.dssr.stems[1].pairs[1]

5 # {

6 # "DSSR" : "cW-W"

7 # "LW" : "cWW"

2017 Web-Server Issue of NAR Hanson & Lu 13

https://chemapps.stolaf.edu/jmol/docs/#jmolmathjmolsqlsyntax
http://www.rcsb.org/

DSSR-Enhanced Visualization of Nucleic Acid Structures in Jmol Supplementary Data

8 # "Saenger" : "19-XIX"

9 # "bp" : "G-C"

10 # "index" : 1

11 # "name" : "WC"

12 # "nt1" : "|1|A|G|1||||"

13 # "nt2" : "|1|A|C|72||||"

14 # }

3.2.2 Using .select()

The Jmol SQL for DSSR can target these values in order to extract specific array

elements using the .select() function with a where clause:

1 PRINT _M.dssr.pairs.select("where name = 'Imino'")
2 # {

3 # "DSSR" : "cW-W"

4 # "LW" : "cWW"

5 # "Saenger" : "08-VIII"

6 # "bp" : "g-A"

7 # "index" : 21

8 # "name" : "Imino"

9 # "nt1" : "|1|A|M2G|26||||"

10 # "nt2" : "|1|A|A|44||||"

11 # }

12 PRINT _M.dssr.pairs.select("where name != 'WC'").count # 14

13 PRINT _M.dssr.coaxStacks[1].stems.select("where strand1='GACAC' or strand2='GACAC'")[1].pairs.count # 5

Note that this .select() function has nothing to do with atom selection – it is strictly

an array function. All the keys (or any combination thereof) can be used in the Jmol SQL

for DSSR to query base pairs (or junctions etc.) with specific characteristics. Here are

some examples to illustrate the power and flexibility of the Jmol SQL for DSSR:

1 SELECT pairs # select all pairs, shorthand form

2 SELECT within(dssr, "pairs") # select all pairs

3 SELECT within(dssr, "pairs..1") # select the first pair; Jmol arrays are 1-indexed

4 SELECT within(dssr, "pairs WHERE index=9") # select pair with "index":9

5 SELECT within(dssr, "pairs WHERE name != 'WC'") # select non-WC pairs

6 SELECT within(dssr, "pairs WHERE name = 'WC'") # select WC pairs

7 SELECT within(dssr, "pairs WHERE name = 'Wobble'") # select G-U Wobble pairs

8

9 # select WC or Wobble pairs, i.e., canonical pairs

10 SELECT within(dssr, "pairs WHERE name = 'WC' OR name = 'Wobble'")
11

12 # select non-canonical pairs

13 SELECT within(dssr, "pairs WHERE name != 'WC' AND name != 'Wobble'")
14

15 # to select by "LW": "tSW", i.e. trans-Sugar-Watson pairs, per Leontis-Westhof

16 SELECT within(dssr, "pairs WHERE LW = 'tSW'") # e.g., U8+A21

17

18 # to select by "DSSR": "tm+W", i.e. trans-minor-Watson pairs, M+N type, per DSSR

19 SELECT within(dssr, "pairs WHERE DSSR = 'tm+W'") # e.g., U8+A21

20

21 SELECT within(dssr, "junctions WHERE num_stems = 3") # find all three-way junctions

2017 Web-Server Issue of NAR Hanson & Lu 14

DSSR-Enhanced Visualization of Nucleic Acid Structures in Jmol Supplementary Data

3.2.3 Involving Jmol variables

The expressions in these selections are simply Jmol math expressions, where the vari-

ables are the keys in the associative arrays being targeted. As such, they can contain

references to other Jmol variables:

1 x = "GACAC"; PRINT _M.dssr.coaxStacks[1].stems.select("where strand1=x or strand2=x")[1].pairs.count # 5

3.2.4 Indirect atom selection

Sub-elements of the _M.dssr array can be used for atom selection. This is done in-

directly, using the @... notation with a math expression. In this case, we can use the

_M.dssr array in the expression:

1 SELECT @{_M.dssr.pairs.select("where name != 'WC'")}

Note that unit ids are string values, while _M.dssr.pairs is not. This is not an issue;

Jmol will convert the array to its string value and find all unit ids present in that string.

3.2.5 Using within(dssr, ...) and the Jmol SQL for DSSR

Atom selection can be done using the within() atom selection method in conjunction

with the Jmol SQL for DSSR. In this case, the notation can be simplified:

1 SELECT within(dssr, "nts[WHERE is_modified]") # all modified nucleotides

or even just this, without the brackets:

1 SELECT within(dssr, "nts WHERE is_modified") # all modified nucleotides

Finally, if brackets are used, specific items in the returned subset can be selected using

the ..n notation:

1 SELECT within(dssr, "nts[WHERE is_modified]..3") # just the third modified nucleotide

2017 Web-Server Issue of NAR Hanson & Lu 15

DSSR-Enhanced Visualization of Nucleic Acid Structures in Jmol Supplementary Data

3.3 Summary

There are several ways in Jmol to select residues/atoms based on DSSR-derived struc-

tural features:

• Use simple keywords with SELECT:

1 SELECT hairpins

• Use the within(dssr, ...) syntax:

1 SELECT within(dssr, "hairpins..2")

• Use the _M.dssr array either directly or with the .select() function:

1 SELECT @{_M.dssr.pairs[9]}

2 SELECT @{_M.dssr.pairs.select("where name != 'WC'")}

• Combine within(dssr, ...) with the Jmol SQL for DSSR:

1 SELECT within(dssr, "nts[WHERE is_modified]")

2017 Web-Server Issue of NAR Hanson & Lu 16

	DSSR commands for integration to Jmol/JSmol
	Overview of DSSR with –json=ebi
	The paths object (accessible features)
	The counts object (actually available features)
	Queryable properties

	DSSR web-API used by Jmol/JSmol
	DSSR analysis and annotation using PDB IDs
	DSSR analysis from PDB-formatted data
	Reading DSSR JSON analysis data directly

	Jmol/JSmol support for DSSR
	DSSR in Jmol/JSmol
	Jmol SQL for DSSR
	Summary

