
SUPPLEMENTARY FIGURES 

 

Figure S1: Upper Panel: Schematic diagram showing representative examples from different 
classes of RiPPs.  Complete chemical structures of different types of cross-links are shown, 
while residues which are not crosslinked are shown as ovals in pink (unmodified residues) or 
blue (posttranslationally modified residues). Residue names are indicated inside the ovals. Lower 
Panel: Chemical structures and names of the some of the commonly occurring modified residues 
in RiPPs.      

 

 



 

Figure S2:  Figure depicting extraction of all putative lanthionine cross-link forming substrings 
of the type  Ser/Thr-(X)n-Cys or Cys-(X)n-Ser/Thr from the core peptide sequence of the 
lanthipeptide nisin A.  Arrows in blue color indicate Ser/Thr and Cys residues on the unmodified 
core peptide which form lanthionine cross-links in the structure of nisin A, while arrows in red 
color indicate sites which are not crosslinked in nisin A. All sub-sequences of the type    Ser/Thr-
(X)n-Cys or Cys-(X)n-Ser/Thr  have been  listed. The sub-sequences listed in blue correspond to 
correct cross-links, while those listed in red are incorrect cross-links (not found in nisin A).     



 

Figure S3:  Screenshots depicting cross-link predictions results from RiPPMiner for two 
thiopeptides.  The core peptide sequences of Siomycin A and A10255B have been used as input.    

 



 

 

Figure S4: Results from RiPPMiner webserver for RiPP class, cleavage and cross-link 
prediction for lasso peptide.  The precursor peptide sequences of  Astexin has been used as input.    



 

 

Figure S5: Results from RiPPMiner webserver for RiPP class, cleavage and cross-link 
prediction for cyanobactin.  The precursor peptide sequences of Aesturamide has been used as 
input. 



 

 

Figure S6: Screenshots depicting results for lanthipeptide cleavage and cross-link predictions by 
RiPP-PRISM, antiSMASH and RiPPMiner.  The precursor peptide sequence of nisin has been 
used as input.    

 

 

 

 

 

 

 



SUPPLEMENTARY METHODS 

RiPP Identification 

To distinguish RiPP from other proteins and peptides SVM model was trained using amino acid 
composition and dipeptide frequencies as feature vectors. The model was trained on 147 
precursor proteins of RiPPs (positive set) and 4070 non-RiPP peptides and proteins (negative 
set). The proteins in negative set were chosen so that they are similar to RiPP in length (10 to 
100 amino acids), are manually curated (Swiss-Prot entries) and belong to families other than 
RiPP like 30s ribosomal proteins, matrix proteins, cytochrome B, ATP synthase subunit and acyl 
carrier protein. SVM Model was trained by including the ‘cost factor’ to minimize the effect of 
differences in numbers in positive and negative set. Supplementary Table S1 shows the 
benchmarking results for RiPP identification using two fold cross validation approach on a test 
set containing 146 RiPPs and 4070 non-RiPP polypeptides. As can be seen below, even though 
sensitivity and specificity values were high, precision and MCC were low because the negative 
dataset was much larger than the positive dataset.  

Supplementary Table S1: Results of two fold cross validation for identification of RiPPs   

  SVM model trained on Set 1 

     

 Total In test set (Set2) True positive False negative 

Positive dataset 293 146 137 9 

          

     

Negative dataset  In test set (Set2) False positive True negative 

30s_ribosomal_protein 2763 1346 8 1338 

40s_ribosomal_protein 87 40 3 37 

50s_ribosomal_protein 4122 2116 27 2089 

acyl_carrier_protein 282 139 69 70 

Amylin 12 4 1 3 

ATP_synthase_subunit 374 192 148 44 

Calcitonin 24 17 17 0 

cytochrome_b_protein 458 208 131 77 

matrix_protein 18 8 2 6 

Total 8140 4070 406 3664 

Sensitivity     0.938356164   

Specificity     0.9002457   

Precision     0.252302026   

MCC     0.464453191   

AUC   0.967  



In order to deal with the imbalanced positive and negative datasets, the predictions were carried 
out by randomly dividing the negative dataset into 27 different sets such that each time negative 
dataset was comparable in size to the positive set. For each set two-fold cross validation was 
performed. Supplementary Table S2 shows results for each of the 27 predictions.  This gave the 
average AUC of 0.96 and average precision and MCC values were also above 0.8.  

Supplementary Table S2: Results of two fold cross validation for RiPP identification when 
negative dataset was randomly divided into 27 equal sets.  

 Negative 
Total 

Positive 
Total 

True 
positive 

False 
negative 

True 
Negative 

False 
Positive 

Sensitivty Specificity Precision MCC AUC 

set1 151 146 137 9 134 17 0.94 0.89 0.89 0.84 0.97 

set2 151 146 137 9 136 15 0.94 0.90 0.90 0.85 0.97 

set3 151 146 137 9 139 12 0.94 0.92 0.92 0.87 0.97 

set4 151 146 137 9 144 7 0.94 0.95 0.95 0.90 0.98 

set5 151 146 137 9 140 11 0.94 0.93 0.93 0.87 0.98 

set6 151 146 137 9 135 16 0.94 0.89 0.90 0.85 0.96 

set7 151 146 137 9 138 13 0.94 0.91 0.91 0.86 0.97 

set8 151 146 137 9 138 13 0.94 0.91 0.91 0.86 0.97 

set9 151 146 137 9 136 15 0.94 0.90 0.90 0.85 0.97 

set10 151 146 137 9 142 9 0.94 0.94 0.94 0.89 0.98 

set11 151 146 137 9 139 12 0.94 0.92 0.92 0.87 0.97 

set12 151 146 137 9 138 13 0.94 0.91 0.91 0.86 0.97 

set13 151 146 137 9 136 15 0.94 0.90 0.90 0.85 0.96 

set14 151 146 137 9 131 20 0.94 0.87 0.87 0.82 0.96 

set15 151 146 137 9 134 17 0.94 0.89 0.89 0.84 0.96 

set16 151 146 137 9 133 18 0.94 0.88 0.88 0.83 0.96 

set17 151 146 137 9 121 30 0.94 0.80 0.82 0.77 0.95 

set18 151 146 137 9 139 12 0.94 0.92 0.92 0.87 0.97 

set19 151 146 137 9 131 20 0.94 0.87 0.87 0.82 0.95 

set20 151 146 137 9 138 13 0.94 0.91 0.91 0.86 0.98 

set21 150 146 137 9 139 11 0.94 0.93 0.93 0.87 0.97 

set22 150 146 137 9 138 12 0.94 0.92 0.92 0.87 0.98 

set23 150 146 137 9 130 20 0.94 0.87 0.87 0.82 0.95 

set24 150 146 137 9 135 15 0.94 0.90 0.90 0.85 0.97 

set25 150 146 137 9 134 16 0.94 0.89 0.90 0.85 0.97 

set26 150 146 137 9 131 19 0.94 0.87 0.88 0.83 0.96 

set27 150 146 137 9 135 15 0.94 0.90 0.90 0.85 0.97 

Averag
e 

      0.94 0.90 0.90 0.85 0.97 

 



RiPP Class Prediction 

Multiclass SVM Classifier model was generated using SVMmulticlass. Supplementary Table S3 
shows the results of benchmarking for RiPP class prediction.  

Supplementary Table S3: Benchmarking for RiPP class prediction using Leave-One-Out 

Class TP FP TN FN 

1 Lanthipeptide B 56 5 170 7 

2 Lanthipeptide A 30 0 208 0 

3 Lanthipeptide C 8 1 225 4 

4 Linardin 10 3 220 5 

5 Cyanobactin 42 24 172 0 

6 Sactipeptide 0 0 233 5 

7 Microcin 6 1 231 0 

8 Lasso peptide 16 0 207 15 

9 Bacterial_head_to_tail_cyclized 12 1 225 0 

10 Auto_inducing_peptide 3 0 234 1 

11 ComX 4 1 233 0 

12 Thiopeptide 13 1 224 0 
 

 

 

 

 

 

 

 

 

 

 



 

Lanthipeptide Cleavage Prediction 

Leader cleavage site is defined by 12mer motifs with 6 residues upstream and downstream to the 
actual cleavage site. To train the SVM total 115 lanthipeptide precursor peptides were used to 
generate all possible 12mers. This resulted in 103 true unique 12mer cleavage sites (positive set) 
and 4524 data in negative set. SVM Model was trained by including the ‘cost factor’ to minimize 
the effect of differences in numbers in positive and negative set. To test the model, almost equal 
number of positive and negative cleavage motifs (12mers) was divided into 43 sets and for each 
set two-fold cross validation was performed. This gave the average AUC of 0.93. 

 

Figure. Generation of positive and negative 12mers from input data and training the SVM. 

Further Lanthipeptide wise Leave-one-out was performed where 1 lanthipeptide was used for 
testing and remaining were used in model training. Hence training set will have all possible 
12mers from 114 Lanthipeptides whereas test set will contain 12mers from 1 lanthipeptide. 
Actual cleavage site was scored maximum in around 75.7% cases (total 87) while 85.2%  (total 
98)  cleavage sites were present in top 2 maximum scoring 12mers. 

Lanthipeptide Cross-link Prediction 

All possible Ser/Thr-(X)n-Cys and Ser/Thr-(X)n-Cys fragments were generated for 93 
lanthipeptides which resulted in a total of 1576 unique fragments,  of which 218 were positive 
and 1358  were negative fragments. A ‘cost factor’ was used to minimize the effect of 
differences in size of positive and negative dataset. The feature vectors were created using 
fragment-length-normalized frequencies of di-amino and mono-amino acid compositions within 
the fragments. These feature vectors were used to construct Random forest and SVM models.  
For Random Forest Model, the AUC score in leave-one-out analysis was 0.90   and the average 



AUC for 2-fold cross validation was 0.78. Similarly for SVM Model respective AUC values 
were 0.82 and 0.72. 

In the next analysis, 93 lanthipeptides were divided into two sets; training set containing 48 
Lanthipeptides (125 positive and 751 negative fragments) and test set containing 45 (118 
positive and 724 negative fragments) lanthipeptides.   ROC curves and AUC scores are shown 
below. 

 

 

 

 

 

 

 

 

Cyanobactins, due to their biologically relevant activities, are considered to be one of the most 
promising sources of new prospective drugs. Therefore, identification and structure prediction of 
cyanobactins is an area of growing interest. Precursor peptide of cyanobactin might contain up to 
four hypervariable core sequences. Each core sequence is flanked by an N-terminal recognition 
sequence (RSII) and a C-terminal recognition sequence (RSIII) (Sardar et al (2015) ACS Synth 
Biol 4:167-76). Serine, threonine and cysteine amino acids in the core peptide are heterocyclized 
by heterocyclases based on the presence of recognition sequence I (RSI). To predict 
heterocyclized residues 28 characterized cyanobactins were used. Of the 28 peptides 21 
contained heterocycles whereas 7 had no heterocycles present in them. SVM model using amino 
acid composition and dipeptide composition as feature was used to predict presence of 
heterocycles. To predict the location of RSII each sequence was fragmented into 5 mer peptides. 
5 mer peptides containing RSII motif were designated as positive and the rest as negatives. From 
the 28 cyanobactins 52 positive and 716 negative peptides were found. 5 mer positional matrix 
(5*20) was used as feature vector to train the SVM model. A very similar approach was followed 
to predict the location of RSIII, the only difference being 4 mer positional matrix was used as 
feature vector to train the SVM. The models were cross validated using leave-one out method 



and the AUC for detection of heterocyclization, RSII and RSIII were 1, 0.9591 and 0.9466 
respectively. Once the locations of RSII and RSIII motif were determined, the sequence between 
these two RS was predicted as core peptide. Cyanobactin undergoes head-to-tail cyclization 
hence the predicted core sequence was used to predict the C-N macrocyclization. The combined 
predictor was then cross validated using LOO method. Of 52 core peptides from 28 characterized 
cyanobactin precursor genes, structure of 45 core peptides (86.54%) were predicted correctly 
 
Lasso peptides constitute a class of RiPP whose knot like fold confers them with exceptional 
structural stability and interesting bioactivities. The core peptide consists of 7-9 membered 
macrolactam ring through which the C-terminal tail is threaded. The macrolactam ring is formed 
between N-terminal amino acid of the core peptide and side chain of aspartate or glutamate 
residues. SVM based model using 13-mer positional matrix (13*20) as feature vector was built 
to predict the peptide cleavage. Cross validation using leave-one out method gave an AUC value 
of 0.998. Examination of 31 characterized lasso peptide structures helped us in devising a rule to 
predict macrolactam ring formation. We used the first residue of the core peptide and side chain 
of aspartate or glutamate residue at 7th, 8th or 9th position to predict the ring formation. First 
occurrence of acidic amino acid was used in cross-link formation when more than two were 
present at 7th, 8th or 9th position. The combined predictor was used in cross validation using 
LOO method and was shown to predict the structure of 30 out of 31 (96.77%) lasso peptides 
correctly. Hegemann et al., (Hegemann JD et al., Biopolymers. 2013, doi: 10.1002/bip.22326) 
had identified and predicted the structure of 87 putative lasso peptides from proteobacterial 
strains. Of the identified lasso peptides 60 putative lasso peptides were not present in our 
database of characterized lasso peptides. For 50 (83.33%) lasso peptides our predictions matched 
with the predictions of Hegemann et al. 
 

Thiopeptide Cross-links Prediction 

In case of thiopeptides the cross-links have been predicted based on occurrence of SC-(X)n-CSC 
or SC-(X)n-[C/S]SSSS, where Ser residues marked in bold are post-translationally modified to 
Dha and are then crosslinked via formation of nitrogen containing six membered rings. This 
motif based method for thiopeptides’ cross-links prediction was tested on 35 distinct 
thiopeptides. Out of 35, True cross-links were predicted in 28 cases thus giving the accuracy of 
80%.   

 

 

 

 



Supplementary Table S4: Summary of results for prediction of cross-links in 
lanthipeptides**.   
Sl. No. Name TP FP TN FN 
1. Ancovenin 0 2 7 3 
2. Avermipeptin 2 0 9 0 
3. Bovicin HJ50 1 2 20 1 
4. Catenulipeptin 2 0 8 0 
5. Cinnamycin 1 2 5 2 
6. Curvopeptin 2 0 10 0 
7. Duramycin B 0 2 5 3 
8. Duramycin C 0 2 7 3 
9. Duramycin 1 2 5 2 
10. Epilancin 15X 3 0 20 0 
11. Epilancin K7 2 1 19 1 
12. Gardimycin(actagardine) 4 0 15 0 
13. Haloduracin alpha 2 0 14 1 
14. Haloduracin beta 4 0 27 0 
15. Lacticin 3147 A1 2 1 21 2 
16. Lacticin 3147 A2 2 1 27 1 
17. Lacticin 481 1 1 12 2 
18. Lactocin S 0 1 13 2 
19. Lichenicidin A1 3 0 25 1 
20. Lichenicidin A2 4 0 54 0 
21. LichenicidinVK21A1 3 0 25 1 
22. LichenicidinVK21A2 4 0 54 0 
23. Mersacidin 1 1 13 3 
24. Michiganin A 2 2 18 1 
25. Mutacin 2 1 1 7 2 
26. Mutacin B Ny266 4 0 19 0 
27. Mutacin I 4 0 22 0 
28. NAI 107 3 0 32 2 
29. NAI 112 2 0 16 0 
30. Nisin Q 5 0 37 0 
31. Nisin U 5 0 32 0 
32. Nisin Z 5 0 37 0 
33. Nukacin A 2 1 12 1 
34. Paenibacillin 5 0 36 0 
35. paenicidin B 6 0 45 0 
36. planosporicin 4 0 32 1 
37. Plantaricin W beta 2 2 17 1 
38. Ruminococcin A 2 0 8 1 
39. Salivaricin A 1 1 8 2 
40. Sap B 2 0 13 0 
41. SAP T 4 0 10 0 
42. Stackepeptin C 2 1 27 1 
43. Stackepeptin D 2 1 27 1 
44. Streptococcin A FF22 1 2 8 2 
45. Streptococcin A M49 1 2 8 2 
 TOTAL 109 31 886 45 



**Comparison of the predicted cross links with the cross-links in the actual structures can be 
viewed at http://www.nii.ac.in/~priyesh/lantipepDB/xlink_train_testRF/traintest_list_new.php  
 


