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Figure S1: Upper Panel: Schematic diagram showing represeataxamples from different
classes of RiPPs. Complete chemical structuregiftdrent types of cross-links are shown,
while residues which are not crosslinked are shawrovals in pink (unmodified residues) or
blue (posttranslationally modified residues). Rasidames are indicated inside the ovals. Lower
Panel: Chemical structures and names of the sortieeafommonly occurring modified residues
in RiPPs.
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Figure S2: Figure depicting extraction of all putative laianine cross-link forming substrings
of the type Ser/Thr-(f)Cys or Cys-(X)-Ser/Thr from the core peptide sequence of the
lanthipeptide nisin A. Arrows in blue color indieaSer/Thr and Cys residues on the unmodified
core peptide which form lanthionine cross-linkghe structure of nisin A, while arrows in red
color indicate sites which are not crosslinkedigimA. All sub-sequences of the type Ser/Thr-
(X)n-Cys or Cys-(X)-Ser/Thr have been listed. The sub-sequencesl listblue correspond to
correct cross-links, while those listed in rediae®drrect cross-links (not found in nisin A).



Predicted Class: Thiopeptide

Input Sequenca: VSSASCTTCICTCSCSS
Predicted Crosslink: 5-14
Predicted Modified Residues: 6, Thiazole[Cys); 9, Thiazole(Cys); 11, Thiazole{Cys); 13, T ys): 13, Thiazole(Cys):
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Predicted Class: Thiopeptide

Input Sequence SCTTSGCACSSSSSSSS

Predicted Crosslink 1-13

Predicted Modified Residues: 2, Thiazole(Cys); 7, Thiazole{Cys); 9, Thiazole(Cys):
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Figure S3: Screenshots depicting cross-link predictionsultesfrom RiPPMiner for two
thiopeptides. The core peptide sequences of Siomdyand A10255B have been used as input.



Predicted Class: Lassopeptide

SEQUENCE: MHTPISETVOPKTAGLIVLGKASAETRGLSQGVEPDIGATYFEESRINGD
[Find Siméar Ssquences|

MODEL 1

Cleavage Site 28

Leader Peplide. MHTPISETVOPKTAGLIVLGKASAETR
Core Peptide: GLSQGVEPDIGATYFEESRINGQD

Predicted Crosslinks: | SMILES |
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MODEL 2

Cleavage Site: 28

Leader Peptide MHTPISETVAPKTAGLIVLGKASAETR
Core Peplide GLSQGVEPDIGATYFEESRINGD
Pradicted Crosslinks: | SMILES| |
| Find RiPPs with Simier Chemcal Structure | ;}?

GLSQGVEPDI GATYFEESRI NQD

Figure $4: Results from RiPPMiner webserver for RiPP clasleavage and cross-link
prediction for lasso peptide. The precursor pepsequences of Astexin has been used as input.
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Sequency  MDEKNILPHOGKPVLRT TNGKLPSHLAEL SEEALGGNGVDASACMPCYPSYDGVDASVCMPCYPSYDGVDASVCMPCYPSYDDAE

Core Peptide: veMPCYR
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Figure Sb: Results from RiPPMiner webserver for RiPP clasgawvhge and cross-link
prediction for cyanobactin. The precursor pepsdgquences of Aesturamide has been used as
input.
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Figure S6: Screenshots depicting results for lanthipeptidavdge and cross-link predictions by
RiPP-PRISM, antiSMASH and RiPPMiner. The precunseptide sequence of nisin has been

used as input.




SUPPLEMENTARY METHODS
RiPP Identification

To distinguish RiPP from other proteins and peti8®M model was trained using amino acid
composition and dipeptide frequencies as featurgtov® The model was trained on 147
precursor proteins of RiPPs (positive set) and 4030-RiPP peptides and proteins (negative
set). The proteins in negative set were chosemaithey are similar to RiPP in length (10 to
100 amino acids), are manually curated (Swiss-Bntties) and belong to families other than
RiPP like 30s ribosomal proteins, matrix proteimgpchrome B, ATP synthase subunit and acyl
carrier protein. SVM Model was trained by includithg ‘cost factor’ to minimize the effect of
differences in numbers in positive and negative Sapplementary Table S1 shows the
benchmarking results for RiPP identification ustag fold cross validation approach on a test
set containing 146 RiPPs and 4070 non-RiPP polygeptAs can be seen below, even though
sensitivity and specificity values were high, psemn and MCC were low because the negative
dataset was much larger than the positive dataset.

Supplementary Table S1: Results of two fold cross validation for identifica of RiPPs

SVM model trained on Set 1
Total In test set (Set2) | True positive | False negative
Positive dataset 293 146 137 9
Negative dataset In test set (Set2) | False positive | True negative
30s_ribosomal_protein 2763 1346 8 1338
40s_ribosomal_protein 87 40 3 37
50s_ribosomal_protein 4122 2116 27 2089
acyl_carrier_protein 282 139 69 70
Amylin 12 4 1 3
ATP_synthase_subunit 374 192 148 44
Calcitonin 24 17 17 0
cytochrome_b_protein 458 208 131 77
matrix_protein 18 8 2 6
Total 8140 4070 406 3664
Sensitivity 0.938356164
Specificity 0.9002457
Precision 0.252302026
MCC 0.464453191
AUC 0.967




In order to deal with the imbalanced positive aedative datasets, the predictions were carried
out by randomly dividing the negative dataset @fodifferent sets such that each time negative
dataset was comparable in size to the positiveFs®teach set two-fold cross validation was
performed.Supplementary Table S2 shows results for each of the 27 predictions.s Daive the
average AUC of 0.96 and average precision and M&@eg were also above 0.8.

Supplementary Table S2: Results of two fold cross validation for RiPP itdfoation when
negative dataset was randomly divided into 27 egefl.

Negative | Positive | True False True False Sensitivty | Specificity | Precision | MCC AUC
Total Total positive | negative | Negative | Positive
setl 151 146 137 9 134 17 0.94 0.89 0.89 | 084 | 0.97
set2 151 146 137 9 136 15 0.94 0.90 090 | 085 | 0.97
set3 151 146 137 9 139 12 0.94 0.92 092 | 087 | 0.97
setd 151 146 137 9 144 7 0.94 0.95 095 | 090 | 0.98
setS 151 146 137 9 140 11 0.94 0.93 093 | 087 | 0.98
set6 151 146 137 9 135 16 0.94 0.89 090 | 0.85| 0.96
set7 151 146 137 9 138 13 0.94 0.91 091 | 086 | 0.97
set8 151 146 137 9 138 13 0.94 0.91 091 | 086 | 0.97
set9 151 146 137 9 136 15 0.94 0.90 090 | 085 | 0.97
setl0 151 146 137 9 142 9 0.94 0.94 094 | 089 | 0.98
setll 151 146 137 9 139 12 0.94 0.92 092 | 087 | 0.97
setl2 151 146 137 9 138 13 0.94 0.91 091 | 086 | 0.97
setl3 151 146 137 9 136 15 0.94 0.90 090 | 085 | 0.96
setl4 151 146 137 9 131 20 0.94 0.87 0.87 | 082 | 0.96
setls 151 146 137 9 134 17 0.94 0.89 0.89 | 0.84 | 0.96
setl6 151 146 137 9 133 18 0.94 0.88 0.88 | 0.83 | 0.96
setl? 151 146 137 9 121 30 0.94 0.80 0.82 | 0.77 | 0.95
setl8 151 146 137 9 139 12 0.94 0.92 092 | 087 | 0.97
setl9 151 146 137 9 131 20 0.94 0.87 0.87 | 082 | 0.95
set20 151 146 137 9 138 13 0.94 0.91 091 | 086 | 0.98
set21 150 146 137 9 139 11 0.94 0.93 093 | 087 | 0.97
set22 150 146 137 9 138 12 0.94 0.92 092 | 087 | 0.98
set23 150 146 137 9 130 20 0.94 0.87 0.87 | 082 | 0.95
set24 150 146 137 9 135 15 0.94 0.90 090 | 085 | 0.97
set25 150 146 137 9 134 16 0.94 0.89 090 | 085 | 0.97
set26 150 146 137 9 131 19 0.94 0.87 0.88 | 0.83 | 0.96
set27 150 146 137 9 135 15 0.94 0.90 090 | 085 | 0.97
Averag 0.94 0.90 090 | 085 | 0.97
e




RiPP Class Prediction

Multiclass SVM Classifier model was generated usygv™"“®S sypplementary Table S3

shows the results of benchmarking for RiPP clasdiption.

Supplementary Table S3: Benchmarking for RiPP class prediction using lee@ne-Out

Class

1 Lanthipeptide B

2 Lanthipeptide A

3 Lanthipeptide C

4 Linardin

5 Cyanobactin

6 Sactipeptide

7 Microcin

8 Lasso peptide

9 Bacterial_head_to_tail_cyclized
10 Auto_inducing_peptide
11 ComX
12 Thiopeptide
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L anthipeptide Cleavage Prediction

Leader cleavage site is defined by 12mer motifs witesidues upstream and downstream to the
actual cleavage site. To train the SVM total 11&Hgpeptide precursor peptides were used to
generate all possible 12mers. This resulted intd@3unique 12mer cleavage sites (positive set)
and 4524 data in negative set. SVM Model was tchlmeincluding the ‘cost factor’ to minimize
the effect of differences in numbers in positivel @egative set. To test the model, almost equal
number of positive and negative cleavage motifsnd@) was divided into 43 sets and for each
set two-fold cross validation was performed. Thasgthe average AUC 6f93.

Totallanthipeptidesinthe datase:: 115

MNKELNALTN P|DEKELEQlLGGEENGVIKTlSHECHM NTWQFIFTCCS

EQILGGGNGVIK -1

NKELNALTNPID -1

NALTNPIDE

Alpossible 12-mer peptides
Figure. Generation of positive and negative 12mers fronutimfata and training the SVM.

Further Lanthipeptide wise Leave-one-out was peréat where 1 lanthipeptide was used for
testing and remaining were used in model trainiHgnce training set will have all possible
12mers from 114 Lanthipeptides whereas test sdtaoeititain 12mers from 1 lanthipeptide.
Actual cleavage site was scored maximum in around% cases (total 87) while 85.2% (total
98) cleavage sites were present in top 2 maxinmaornrgy 12mers.

L anthipeptide Cross-link Prediction

All possible Ser/Thr-(X}Cys and Ser/Thr-(Og)Cys fragments were generated for 93
lanthipeptides which resulted in a total of 1576que fragments, of which 218 were positive
and 1358 were negative fragments. A ‘cost facteds used to minimize the effect of
differences in size of positive and negative ddtafhe feature vectors were created using
fragment-length-normalized frequencies of di-amamal mono-amino acid compositions within
the fragments. These feature vectors were usedmstreict Random forest and SVM models.
For Random Forest Model, the AUC score in leave-auteanalysis waf.90 and the average



AUC for 2-fold cross validation waB.78. Similarly for SVM Model respective AUC values
were0.82 and0.72.

In the next analysis, 93 lanthipeptides were dididl®o two sets; training set containing 48
Lanthipeptides (125 positive and 751 negative fraigis) and test set containing 45 (118
positive and 724 negative fragments) lanthipeptidd2OC curves and AUC scores are shown
below.

1 = = - Set Positive Negative Total
.,1.'.. -.W. Fragments Fragments
: . _ o Train 125 751 876
Test 118 724 842
Experiment ROC
ot i RF — train test 0.922
# $yMlight_train_test .
SyNlight_test_train RF — test tramn O ()2 ?
; SVM light train test 0.873
0.2

’ SVM light test train 0.879

Cyanobactins, due to their biologically relevant activitiesgatonsidered to be one of the most
promising sources of new prospective drugs. Theeefdentification and structure prediction of
cyanobactins is an area of growing interest. Pesgyseptide of cyanobactin might contain up to
four hypervariable core sequences. Each core segusrilanked by an N-terminal recognition
sequence (RSIl) and a C-terminal recognition secpi€éRSIII) (Sardar et al (2015) ACS Synth
Biol 4:167-76). Serine, threonine and cysteine anaicids in the core peptide are heterocyclized
by heterocyclases based on the presence of remognsequence | (RSI). To predict
heterocyclized residues 28 characterized cyanotsactiere used. Of the 28 peptides 21
contained heterocycles whereas 7 had no heteracgodsent in them. SVM model using amino
acid composition and dipeptide composition as featwas used to predict presence of
heterocycles. To predict the location of RSIl eaefuence was fragmented into 5 mer peptides.
5 mer peptides containing RSII motif were desigtas positive and the rest as negatives. From
the 28 cyanobactins 52 positive and 716 negatiytiges were found. 5 mer positional matrix
(5*20) was used as feature vector to train the Sxudiel. A very similar approach was followed
to predict the location of RSIII, the only diffel@ being 4 mer positional matrix was used as
feature vector to train the SVM. The models wemssrvalidated using leave-one out method



and the AUC for detection of heterocyclization, R&hd RSIIl were 1, 0.9591 and 0.9466
respectively. Once the locations of RSII and R8iditif were determined, the sequence between
these two RS was predicted as core peptide. Cyatiobandergoes head-to-tail cyclization
hence the predicted core sequence was used teiptieeliC-N macrocyclization. The combined
predictor was then cross validated using LOO metlddb2 core peptides from 28 characterized
cyanobactin precursor genes, structure of 45 cepéges (86.54%) were predicted correctly

L asso peptides constitute a class of RiPP whose knot like foldfemthem with exceptional
structural stability and interesting bioactivitieBhe core peptide consists of 7-9 membered
macrolactam ring through which the C-terminal tsithreaded. The macrolactam ring is formed
between N-terminal amino acid of the core peptidd side chain of aspartate or glutamate
residues. SVM based model using 13-mer positioradtim(13*20) as feature vector was built
to predict the peptide cleavage. Cross validatgingileave-one out method gave an AUC value
of 0.998. Examination of 31 characterized lassdigestructures helped us in devising a rule to
predict macrolactam ring formation. We used thst fiesidue of the core peptide and side chain
of aspartate or glutamate residue at 7th, 8th lorp@tition to predict the ring formation. First
occurrence of acidic amino acid was used in criogsfbrmation when more than two were
present at 7th, 8th or 9th position. The combinestiigtor was used in cross validation using
LOO method and was shown to predict the struct@ir@Ooout of 31 (96.77%) lasso peptides
correctly. Hegemann et al., (Hegemann JD et abp&ymers. 2013, doi: 10.1002/bip.22326)
had identified and predicted the structure of 8Tatve lasso peptides from proteobacterial
strains. Of the identified lasso peptides 60 putaiasso peptides were not present in our
database of characterized lasso peptides. Ford83%) lasso peptides our predictions matched
with the predictions of Hegemarmehal.

Thiopeptide Cross-links Prediction

In case of thiopeptides the cross-links have beedigted based on occurrenceSai-(X),-CSC

or SC-(X)n-[C/S]SSS, where Ser residues marked in bold are post-ttiashlly modified to
Dha and are then crosslinked via formation of gém containing six membered ringghis
motif based method for thiopeptides’ cross-linksediction was tested on 35 distinct
thiopeptides. Out of 35, True cross-links were mted in 28 cases thus giving the accuracy of
80%.



Supplementary Table $4: Summary of resultsfor prediction of cross-linksin
lanthipeptides**.

Sl. No. Name TP FP TN FN
1. Ancovenir 0 2 7 3
2. Avermipeptir 2 0 9 0
3. Bovicin HJ5( 1 2 2C 1
4, Catenulipepti 2 0 8 0
5. Cinnamycir 1 2 5 2
6. Curvopeptil 2 0 1C 0
7. Duramycin E 0 2 5 3
8. Duramycin ¢ 0 2 7 3
9. Duramycir 1 2 5 2
10. Epilancin 15> 3 0 20 0
11, Epilancin K’ 2 1 19 1
12, Gardimycin(actagardin 4 0 15 0
13, Haloduracin alph 2 0 14 1
14, Haloduracin bel 4 0 27 0
15. Lacticin 3147 A 2 1 21 2
16, Lacticin 3147 A 2 1 27 1
17. Lacticin 48: 1 1 12 2
18. Lactocin ¢ 0 1 13 2
19, Lichenicidin Al 3 0 25 1
20. Lichenicidin Az 4 0 54 0
21, LichenicidinVK21A1 3 0 25 1
22, LichenicidinVK21AZ 4 0 54 0
23. Mersacidir 1 1 13 3
24, Michiganin A 2 2 18 1
25. Mutacin Z 1 1 7 2
26. Mutacin B Ny26t 4 0 19 0
27, Mutacin | 4 0 22 0
28. NAI 107 3 0 32 2
29. NAI 112 2 0 16 0
30. Nisin G 5 0 37 0
31 Nisin U 5 0 32 0
32, Nisin Z 5 0 37 0
33. Nukacin A 2 1 12 1
34, Paenilacillin 5 0 36 0
35. paenicidin E 6 0 45 0
36. planosporicil 4 0 32 1
37. Plantaricin W bet 2 2 17 1
38. Ruminococcin / 2 0 8 1
39. Salivaricin A 1 1 8 2
40 Sap E 2 0 13 0
41, SAP 1 4 0 10 0
42, Stackepeptin 2 1 27 1
43, Stackepeptin 2 1 27 1
44, Streptococcin A FFZ 1 2 8 2
45, Streptococcin A M4 1 2 8 2

TOTAL 109 31 886 45




**Comparison of the predicted cross links with ttress-links in the actual structures can be
viewed athttp://www.nii.ac.in/~priyesh/lantipepDB/xlink_trai testRF/traintest_list new.php




