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Supplementary Methods 

Normalization Methods Provided in NOREVA 

In total, 24 methods were provided including Auto Scaling
1
, CCMN

2
, Contrast

3
, Cubic Splines

4
, Cyclic 

Loess
5
, EigenMS

6
, Level Scaling

7
, Linear Baseline Scaling

8
, Log-transform

9
, Mean Normalization

10
, 

Median Normalization
11

, MSTUS
12

, NOMIS
13

, Pareto Scaling
14

, Power Scaling
15

, PQN
16

, Quantile
8
, 

Range Scaling
17

, RUV-2
18

, RUV-random
19

, SIS
20

, Total Sum
11

, Vast Scaling
21

 and VSN
22, 23

. 

Auto Scaling (Unit Variance Scaling, UV) is one of the simplest methods adjusting metabolic 

variances, which scales metabolic signals based on the standard deviation of metabolomics data
24

. This 

method scales all metabolites to unit variance, and all metabolites are equally important and 

comparably scaled
25

. The data is analyzed on the basis of correlations and standard deviation of all 

metabolites is one after auto scaling
24

. But the disadvantage of auto scaling is that analytical errors 

may be amplified due to dilution effects
24

. Auto scaling has been used to improve the diagnosis of 

bladder cancer using gas sensor arrays
26

 and to identify urinary nucleoside markers from urogenital 

cancer patients by mass spectrometry (MS)-based metabolomics
27

. 

CCMN (Cross-Contribution Compensating Multiple Standard Normalization, CRMN) is applicable to 

monitor systematic error from randomized and designed experiments using multiple internal standards
2
. 

CCMN compensates for systematic cross-contribution effects that can be traced back to a linear 

association with experimental design
2
, and is superior at purifying the signal of interest using multiple 

internal standards
2
. But care needs to be taken when normalizing the data using the factors of interest 

prior to carrying out unsupervised analysis
19

. CCMN is mainly aimed at MS-based metabolomics data 

and its inclusion will improve the precision of current metabolite profiling protocols
28

. 

Contrast (Contrast Normalization) comes from the integration of MA-plots and logged Bland-Altman 

plots, which assumes the presence of non-linear biases
24

. The input data is logged and transformed into 

a contrast space by means of an orthonormal transformation matrix
24

. But the use of a log function in 

this method may impede the processing of zeros and negative numbers, which requires the conversion 

of non-positive numbers to an extremely small value
24

. The contrast method has been applied in 

oligonucleotide arrays to normalizing feature intensities
3
 and also employed to reveal the role of 

polychlorinated biphenyls in non-alcoholic fatty liver disease of MS-based metabolic profiling
29

. 

Cubic Splines is one of the non-linear baseline methods assuming the existence of non-linear 

relationships between baseline and individual spectra
24

. Like quantile normalization, cubic splines 

aims to make the distribution of the metabolite concentrations similar across all samples
30

. The 

geometric or arithmetic mean of the concentrations of each metabolite across all samples is regarded as 

the baseline sample
30

. A set of evenly distributed quantiles from both the baseline and target samples is 

used to fit a smooth cubic spline
30

. Finally, a spline function generator uses the generated set of 
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interpolated splines to fit the parameters of a natural cubic spline
30

. Cubic splines has been adopted to 

reduce variability in DNA microarray experiments by normalizing all signal channels to a target array
4
. 

Moreover, it has been applied in MS-based metabolomics profiling enabling to improve the 

comprehensiveness of global metabolic profiling of body fluids
31

. 

Similar to the Contrast, Cyclic Loess (Cyclic Locally Weighted Regression) originates also from the 

combination of MA-plot and logged Bland-Altman plot by assuming the existence of non-linear bias
24

, 

and can estimate a regression surface using multivariate smoothing procedure
32

. However, cyclic loess 

is one of the most time-consuming one among the normalization methods, and the amount of time 

grows exponentially as the number of sample increases
33

. Cyclic loess has been applied in MS-based 

metabolomics profiling, revealing that this method was able to remove the systematic effect
34

. 

EigenMS removes bias of unknown complexity from the Liquid Chromatography coupled with Mass 

Spectrometry (LC/MS)-based metabolomics data, allowing for increased sensitivity in differential 

analysis. EigenMS normalization aims at preserving the original differences while removing the bias 

from the data
35

. It works by 3 steps
6
: (1) EigenMS preserves the true differences in the metabolomics 

data by estimating treatment effects with an ANOVA model; (2) singular value decomposition of the 

residuals matrix is used to determine bias trends in the data; (3) the number of bias trends is estimated 

via a permutation test and the effects of the bias trends are eliminated. EigenMS has applied in 

MS-based quantitative label-free proteomics profiling
35

 and MS-based metabolomics analysis
6
. 

Level Scaling transforms metabolic signal variation into variation relative to the average metabolic 

signal by scaling according to the mean signal, so the resulting values are changes in percentages 

compared to the mean concentration
7
. This method is especially suitable for the circumstances when 

huge relative variations are of great interest (e.g., studying the stress responses)
7
. Level scaling is used 

for identification of biomarkers focusing on relative response, but the disadvantage of it is the inflation 

of the measurement errors
7
. Level scaling has been used to identify urinary nucleoside markers from 

urogenital cancer patients in MS-based metabolomics analysis
27

. 

Linear Baseline (Linear Baseline Scaling) maps each spectrum to the baseline based on the assumption 

of a constant linear relationship between each feature of a given spectrum and the baseline
24

. The 

baseline is the median of each feature across all spectra and the scaling factor is computed as the ratio 

of the mean intensity of the baseline to the mean intensity of each spectrum
24

. The intensities of all 

spectra are multiplied by their particular scaling factors
24

. However, this assumption of a linear 

correlation among sample spectra may be oversimplified
24

. This method has been conducted to 

identify differential metabolomics profiles among the banana’s 5 different senescence stages
36

. 

Moreover, linear baseline scaling has been applied to normalize nuclear magnetic resonance 

(NMR)-based metabolomics data
37

 and MS-based metabolomics data
34

. 
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Log-transform converts skewed metabolomics data to symmetric by non-linear transformation
7
. This 

method transforms the relationship of metabolites from multiplication to addition
7
. Log-transform is 

used to perfectly removes heteroscedasticity when the relative standard deviation is constant
7
. But the 

disadvantage of log-transform is that it is unable to deal with the value zero
7
. Furthermore, its effect on 

values with a large relative analytical standard deviation is problematic
7
. Log-transform was used to 

compare plasma amino acid patterns in LC/MS-based metabolomics analysis
38

. And it was applied to 

normalize the data in metabolomics analysis based on gas chromatography coupled with mass 

spectrometry (GC/MS)
39

. 

Mean Normalization normalizes the data by mean value of all signals to eliminate background effect
10

. 

Intensity of each metabolite in a given sample is used by the mean of intensity of all variables in the 

sample
18

. In order to make the samples comparable, the means of the intensities for each experimental 

run are forced to be equal to one another using this method
34

. For example, each sample is scaled such 

that the mean of all abundances in a sample equals one
18

. This method has been applied to normalize 

the MS-based metabolomics data
34

. 

Median Normalization is based on the assumption that the samples of a dataset are separated by a 

constant. It scales the samples so that they have the same median. For example, the median of the 

metabolite abundances in the sample equals one
11

. The median normalization, the commonly used 

method without the need for internal standards, is more practical than the sum normalization especially 

in situations where several saturated abundances may be associated with some of the factors of 

interest
11

. Median normalization has previously been used in MS-based proteomics analysis
40

 and 

metabolomics analysis
34

. 

MSTUS (MS Total Useful Signal) utilizes the total signals of metabolites that are shared by all samples 

by assuming that the number of increased and decreased metabolic signals is relatively equivalent
12, 41

. 

Using MSTUS, the concentration of each metabolite is divided by the sum of the concentrations for all 

the measured metabolites in a given sample
30

. However, the validity of this hypothesis is questionable 

since an increase in the concentration of one metabolite may not necessarily be accompanied by a 

decrease in that of another metabolite
41, 42

. MSTUS is a more recent technique, typical used to 

normalize NMR-based metabolomics data
43

 and LC/MS-based metabolomics data
11

. 

NOMIS (Normalization using Optimal Selection of Multiple Internal Standards) finds optimal 

normalization factor to remove unwanted systematic variation using variability information from 

multiple internal standard compounds
13

. NOMIS method can select best combinations of standard 

compounds for normalization using multiple linear regression
13

 and remove all correlations with the 

standards
2
. This method has a superior ability to reduce variability across the full spectrum of 

metabolites
13

. Moreover, the NOMIS method can be used in both supervised and unsupervised 

analysis
19

. Now NOMIS method has been used to normalize LC/MS-based metabolomics data
13

. 
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Pareto Scaling uses the square root of the standard deviation of the data as scaling factor
14

. Pareto 

scaling is able to reduce the weight of large fold changes in metabolite signals, which is more 

significantly than auto scaling
24

. But the dominant weight of extremely large fold changes may still be 

unchanged
24

. So the disadvantage of pareto scaling is the sensitivity to large fold changes
7
. Pareto 

scaling was used to reduce the mask effect from the abundant metabolites for LC/MS-based 

metabolomics dataset
44

. 

Power Scaling aims at correcting for the heteroscedasticity and pseudo scaling
7
. Power scaling shows 

a similar transformation pattern as the log-transform, but it is not able to make multiplicative effects 

additive
7
. Unlike log-transform, power scaling can handle zero values

7
. Power scaling reduces 

heteroscedasticity without problems with small values, but its disadvantage is that the choice for 

square root is arbitrary
7
. Power scaling has been used to study the serum amino acid profiles and their 

variations in colorectal cancer patients for MS-based metabolomics
45

. 

PQN (Probabilistic Quotient Normalization) transforms the metabolomics spectra according to an 

overall estimation on the most probable dilution
16

. This algorithm has been reported to be significantly 

robust and accurate comparing to the integral and the vector length normalizations
16

. There are three 

steps in the procedure of PQN
24

: (1) perform an integral normalization of each spectrum, then select a 

reference spectrum such as the median spectrum; (2) calculate the quotient between a given test 

spectrum and reference spectrum, then estimate the median of all quotients for each variable; (3) all 

variables of the test spectrum are divided by the median quotient. PQN is a robust method to account 

for dilution of complex biological mixtures for NMR metabolomics analysis
16

. Recently, PQN is also 

used to reduce unwanted variance for direct infusion MS metabolomics dataset
46

. 

Quantile (Quantile Normalization) aims at achieving the same distribution of metabolic feature 

intensities across all samples, and the quantile-quantile plot in this method is used to visualize the 

distribution similarity
24

. Quantile normalization is motivated by the idea that the distribution of two 

data vectors is the same if the quantile-quantile plot is a straight diagonal line
8
. While a common and 

non-data driven distribution is generated using quantile normalization, an agreed standard could not be 

reached
8
. Quantile normalization has been adopted for high density oligonucleotide array data based 

on variance
8
, improving NMR-based metabolomics analysis

24
 and reducing non-biological systematic 

variation for LC/MS-based metabolomics data
47

. 

Range Scaling is applied to put all measured intensities on an equal footing, which means that the 

measured intensity was divided by the range of those intensities over all samples
17

. The biological 

range (difference between the minimal and the maximal concentration of a certain metabolite) is used 

as the scaling factor for range scaling
7
. The advantage of range scaling is that relative concentration for 

each variable is generated after removing instrumental response factors
17

. Range scaling has a property 

that all levels of variation for the metabolites are treated equally
17

. But the disadvantage of range 
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scaling is the sensitivity to outliers because only two values are used to estimate the biological range
7
. 

Range scaling has been used to fuse MS-based metabolomics data
17

. 

RUV-2 (Remove Unwanted Variation-2) is based on a linear model designed for identifying 

differentially abundant metabolites, which requires factors of interest along with the factors of 

unwanted variation
19

. The advantages of the RUV-2 model include
18

: (1) the biological factors of 

interest are not removed along with the unwanted variation; (2) the method is applied to datasets 

without internal standards; (3) all unwanted biological variation can be accommodated; (4) it allows 

for the systematic integration of datasets from different sources; (5) it removes both observed and 

unobserved unwanted variations. However, RUV-2 method is not a global normalization method 

without a complete normalized dataset
28

, and it cannot be used prior to unsupervised analyses
19

. 

RUV-2 method has been used for normalizing and integrating MS-based metabolomics data
18

. 

RUV-random (Remove Unwanted Variation-Random) is based on a linear mixed effects model 

utilizing quality control metabolites to obtain normalized data in metabolomics experiments
19

. 

RUV-random method attempts to remove overall unwanted variation
19

. RUV-random accommodates 

unwanted biological variation and retains the essential biological variation of interest
19

. Moreover, the 

unwanted variation component from any undetected experimental or biological variability can be 

removed
19

. This method is applicable in both supervised and unsupervised analysis
19

. RUV-random is 

used for removing unwanted variation for MS-based metabolomics data
19

. 

SIS (Single Internal Standard) provides a normalized data matrix by subtracting the log metabolite 

abundance of a single internal standard from the log abundances of the metabolites in each sample
18, 20

. 

The SIS method assumes that every metabolite in a sample is subject to the same amount of unwanted 

variation and they can be simply measured by a single internal standard
18

. However, the use of a single 

internal standard may result in highly variable normalized values, which depend on the internal 

standard
18

. SIS method has been used to identify factors influencing extraction and derivatization of 

Arabidopsis thaliana samples in the GC/MS-based metabolomics analysis
20

. 

Total Sum is a method normalizing the dataset by the sum of squares
11

. The sum of squares of all 

variables in a sample equals one, after each sample is scaled using sum normalization method
11, 19

. 

And total sum normalization relies on the self-averaging property
19

. A sample-specific constant 

assigns an appropriate weight to each sample, which attempts to minimize possible differences in 

concentration between samples
19

. Total sum normalization is used to correct for LC/MS-based 

metabolomics data
48

. 

Vast Scaling (Variable Stability Scaling) weights each variable according to a metric of its stability and 

it is an extension of auto scaling
21

. This method focuses on stable variables that do not show strong 

variation using the standard deviation and the coefficient of variation is as scaling factors
7
. Vast scaling 
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can be used in unsupervised and supervised analysis, but it is not appropriate for large induced 

variation without group structure
7
. Moreover, vast scaling is used for enhancing multivariate models 

for classification and biomarker identification in metabolomics analysis
21

, which appears to be stable 

and robust for NMR and GC/MS-based metabolomics data
25

. 

VSN (Variance Stabilization Normalization) is one of the non-linear methods aiming to keep the 

variance constant over the entire data range
22, 24

. VSN approaches the logarithm for large values to 

remove heteroscedasticity using the inverse hyperbolic sine
24

. For small intensities, it performs linear 

transformation behavior to make the variance unchanged
24

. VSN was originally developed for 

normalizing single and two-channel microarray data
49

, and currently also used to determine metabolic 

profiles of liver tissue during early cancer development by GC/MS
39

. 

Renowned Criteria for Evaluating Normalization Performance Used in NOREVA 

(a) Method’s capability of reducing intragroup variation among samples
50

 

The performance of normalization method is evaluated using intragroup variation between samples. 

Low intragroup variation means high similarity among samples and the reproducibility of analysis
35, 50

. 

Measures of intragroup variability adopted in NOREVA include pooled coefficient of variation (PCV), 

pooled estimate of variance (PEV) and pooled median absolute deviation (PMAD). The lower value of 

PCV, PEV and PMAD shown by boxplots denotes more thorough removal of experimentally induced 

noise and indicates better performance of the normalization method. 

Moreover, relative log abundance (RLA)
18

 plot is used to inspect the possible variations, clustering 

tendencies, trends and outliers within or across group(s). The RLA plot across groups is obtained by 

removing the median from each metabolite across all factors of interest. The boxplots of these scaled 

metabolites provide a way of comparing the behavior of metabolites between two groups. For RLA 

plots within group, each metabolite is scaled by removing the median within each factor of interest. 

Boxplots of RLA can be used to visualize the tightness of the replicates within groups. The RLA plot 

should have a median close to zero and low variation around the median
11

. 

In addition, differences across groups are visualized using the principal component analysis (PCA)
51

, a 

common method used for dimension reduction and visualization. In NOREVA, the PCA plot allows 

overall visualization of variation between 2 groups. The more distinct group variations indicate better 

performance of the applied normalization methods. 

(b) Method’s effect on differential metabolic analysis
35

 

The differential significance of metabolites across groups measured by P-values is calculated using the 

limma package 
52

 in R software. The distribution of P-values and clustering dendrogram and heatmap 

plots based on differential metabolites are used under this criterion
53

. A method would be recognized 
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as well performed when uniform distribution of P-values and obvious differentiation between groups 

in both dendrogram and heatmap are achieved. 

(c) Method’s consistency of the identified metabolic markers among different datasets
54

 

The consistency score is used to quantitatively measure the overlap of the identified metabolic markers 

among different dataset
54

. Firstly, random sampling is performed within the whole dataset to generate 

several sub-datasets. Secondly, all metabolites are ranked based on their significance (q-values). If the 

q-values of different metabolites are the same, absolute fold changes would be considered. Thirdly, a 

group of the most significant metabolites in each sub-dataset is chosen to form a list of differential 

metabolites. Finally, the consistency score is calculated using the most significant metabolites in each 

sub-dataset based on the equation as follow: 

𝑆 =∑∑2𝑖−2

𝑆∈𝐼𝑖

∙ 𝑛𝑆

𝐶

𝑖=2

 

where C is the total number of sub-datasets, 𝐼𝑖 indicates a set of significant metabolites containing the 

intersections of any 𝑖 sub-datasets, and 𝑛𝑆 refers to the number of metabolites in the intersection 𝑆. 

Generally, a normalization method is more robust if it results in more metabolic markers shared by 

more sub-datasets with a higher consistency score. 

(d) Method’s influence on classification accuracy
18, 25, 53

 

In NOREVA, receiver operating characteristic (ROC) curve together with area under the curve (AUC) 

value based on the support vector machine (SVM) are provided
55

. Firstly, differential metabolic feature 

is identified by the partial least squares discriminant analysis (PLS-DA). Then, the SVM models are 

constructed based on these identified differential features. After k-folds cross validation, a method with 

larger area under ROC curve and higher AUC value is recognized as better performed one. 

(e) Level of correspondence between the normalized data and the reference results
35

 

Additional experimental data are frequently generated as a reference to validate or adjust prior result of 

metabolomics analysis
56

. These reference data can be the spike-in compounds and various molecules 

detected by quantitative analysis or qRT-PCR
56, 57

. Here, log fold changes (logFCs) of concentration 

between 2 groups were calculated, and the level of correspondence between the normalized data and 

the reference ones was estimated based on their variations in logFCs. The normalization performance 

of each method could be therefore reflected by how well the logFC calculated from the normalized 

data corresponded to what is expected based on the reference logFC
35

. Moreover, a boxplot illustrating 

variations in logFCs was provided, and the median of the optimal normalization method would be 

close to zero and the variation around the median would be low.  
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Supplementary TABLES 

Table S1. 24 normalization methods popular in the analysis of MS-based metabolomics data together 

with the representative MS-based metabolomics studies adopting each of these methods. 

No. Method Examaple of MS-based metabolomics studies using each method 

1 Auto Scaling 
Centering, scaling, and transformations: improving the biological information 

content of metabolomics data. BMC Genomics. 7:142, 2006. 

2 CCMN 
Compensation for systematic cross-contribution improves normalization of mass 

spectrometry based metabolomics data. Anal Chem. 81(19):7974-80, 2009. 

3 Contrast 
Metabolomic analysis of the effects of polychlorinated biphenyls in nonalcoholic 

fatty liver disease. J Proteome Res. 11(7):3805-15, 2012. 

4 Cubic Splines 
Characterising and correcting batch variation in an automated DIMS 

metabolomics workflow. Anal Bioanal Chem. 405(15):5147-57, 2013. 

5 Cyclic Loess 
MetPP: a computational platform for comprehensive two-dimensional GC-TOF 

mass spectrometry-based metabolomics. Bioinformatics. 29(14):1786-92, 2013. 

6 EigenMS 
Metabolomics data normalization with EigenMS. PLoS One. 9(12):e116221, 

2014. 

7 Level Scaling 
Liquid chromatography tandem mass spectrometry study of urinary nucleosides 

as potential cancer markers. J Chromatogr A. 1283:122-31, 2013. 

8 
Linear Baseline 

Scaling 

Evaluation of normalization methods to pave the way towards large-scale 

LC-MS based metabolomics profiling experiments. OMICS. 17(9):473-85, 2013. 

9 Log-transform 
Metabolomic Analysis of Liver Tissue from the VX2 Rabbit Model of Secondary 

Liver Tumors. HPB Surg. 2014:310372, 2014. 

10 
Mean 

Normalization 

Joint GC-MS and LC-MS platforms for comprehensive plant metabolomics. J 

Chromatogr B Analyt Technol Biomed Life Sci. 877(29):3572-80, 2009. 

11 
Median 

Normalization 

Quantification of proteins and metabolites by mass spectrometry without 

isotopic labeling or spiked standards. Anal Chem. 75(18):4818-26, 2003. 

12 MSTUS 
Noninvasive urinary metabolomic profiling identifies diagnostic and prognostic 

markers in lung cancer. Cancer Res. 74(12):3259-70, 2014. 

13 NOMIS 
Normalization method for metabolomics data using optimal selection of multiple 

internal standards. BMC Bioinformatics. 8:93, 2007. 

14 Pareto Scaling 
A data preprocessing strategy for metabolomics to reduce the mask effect in data 

analysis. Front Mol Biosci. 2:4, 2015. 

15 Power Scaling 
Serum amino acid profiles and their alterations in colorectal cancer. 

Metabolomics. 8(4):643-53, 2012. 

16 PQN 
Direct infusion mass spectrometry metabolomics dataset: a benchmark for data 

processing and quality control. Sci Data. 1:140012, 2014. 

17 Quantile 
Quantile normalization approach for LC-mass spectrometry based metabolomic 

data from healthy human volunteers. Anal Sci. 28(8):801-5, 2012. 
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18 Range Scaling 
Fusion of mass spectrometry-based metabolomics data. Anal Chem. 

77(20):6729-36, 2005. 

19 RUV-2 
Normalizing and integrating metabolomics data. Anal Chem. 84(24):10768-76, 

2012. 

20 RUV-random 
Statistical methods for handling unwanted variation in metabolomics data. Anal 

Chem. 87(7):3606-15, 2015. 

21 SIS 
Large-scale human metabolomics studies: a strategy for data (pre-) processing 

and validation. Anal Chem. 78(2):567-74, 2006. 

22 Total Sum 
Evaluation of the normalization strategies to correct for urinary output in the 

HPLC-HRTOFMS metabolomics. Anal Bioanal Chem. 408(29):8483-93, 2016. 

23 Vast Scaling 
The influence of scaling metabolomics data on model classification accuracy. 

Metabolomics. 11(3):684-95, 2015. 

24 VSN 
Optimized preprocessing of ultra-performance LC-MS urinary metabolic profiles 

for improved information recovery. Anal Chem. 83(15):5864-72, 2011. 
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Table S2. The coverage of normalization methods popular in MS-based metabolomics analysis in currently available online pipelines. Circle (Օ) indicated 

that the method was provided in the corresponding pipeline; cross (×) indicated that the method was not available in the corresponding pipeline; square (□) 

indicated that the method provided in pipeline was not the same as but related to that used in this study. Those methods highlighted in orange color and bold 

font were not covered by any of these 8 pipelines, and methods highlighted in blue color and bold font were just covered by only one of these pipelines. 

 XCMS online MetaboAnalyst Normalyzer MetaDB MetaPre MetDAT MSPrep 
Metabolomics 

Workbench 

Workflow4Me

tabolomics 

Auto Scaling Օ Օ × × Օ × × Օ × 

CCMN × × × × × × Օ × × 

Contrast × × × × Օ × × × × 

Cubic Splines × □ × × Օ × × × × 

Cyclic Loess × × Օ × Օ × × × × 

EigenMS × × × × × × × × × 

Level Scaling × × × × Օ × × × × 

Linear Baseline × × × × Օ × × × × 

Log-transform Օ Օ □ × Օ × × × × 

Mean Normalization × Օ Օ × × Օ × Օ × 

Median Normalization × Օ Օ × × × Օ × × 

MSTUS × × Օ × Օ × × × × 

NOMIS × × × × × × × × × 

Pareto Scaling Օ Օ × × Օ Օ × Օ × 

Power Scaling × × × × Օ × × × × 

PQN × × × × Օ × × × × 

Quantile × Օ Օ × Օ × Օ × × 

Range Scaling × Օ × × Օ × × Օ × 

RUV-2 × × × × × × × × × 

RUV-random × × × × × × × × × 

SIS × □ × × × × × × × 

Total Sum × Օ × Օ × × × × × 

Vast Scaling × × × × Օ × × Օ × 

VSN × × Օ × Օ × × × × 
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Table S3. The time costs of each procedure in NOREVA for processing a large-scale metabolomics 

dataset MTBLS28
58

 with > 1,000 samples (469 patients and 536 controls) and 1,807 metabolic features. 

The time costs used for web connection were evaluated by uploading MTBLS28 to NOREVA from 8 

different universities around the world, and the calculation time of different normalization methods for 

the same dataset was also assessed. 

Procedures in NOREVA for Processing Metabolomics Data Time Cost 

D
a
ta

 U
p

lo
a
d

in
g
 

Imperial College, London, United Kingdom 1’15’’ 

University of California, Berkeley, United States 2’50’’ 

New York University, New York, United States 3’36’’ 

Université de Paris VIII, Paris, France 3’41’’ 

Goethe University Frankfurt, Frankfurt, Germany 3’10’’ 

Novosibirsk State University, Novosibirsk, Russian 4’17’’ 

Chongqing University, Chongqing, P. R. China 0’05’’ 

Zhejiang University, Hangzhou, P. R. China 0’15’’ 

Data Preprocessing 0’04’’ 

D
a
ta

 N
o
rm

a
li

za
ti

o
n

 

Auto Scaling 2’24’’ 

Contrast 9’52’’ 

Cubic Splines 2’21’’ 

Cyclic Loess 3’01’’ 

EigenMS 69’02’’ 

Level Scaling 2’36’’ 

Linear Baseline 1’37’’ 

Log-transform 2’04’’ 

Mean 9’05’’ 

Median 9’48’’ 

MSTUS 2’58’’ 

Pareto Scaling 2’43’’ 

Power Scaling 3’16’’ 

PQN 9’32’’ 

Quantile 9’07’’ 

Range Scaling 3’22’’ 

Total Sum 2’04’’ 

Vast Scaling 2’50’’ 

VSN 3’25’’ 

Performance Evaluation ~ 9’00’’ 
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Table S4. Evaluation results of 4 criteria on benchmark dataset MTBLS79 (a full list of results for all measures in each criterion). The way calculating those 

measures under each criterion was described in MATERIALS AND METHODS and Supplementary Methods. Besides of quantitative measures, several 

qualitative ones under criterion a and b were also evaluated, and 3 performance levels were provided (Excellent, Good and Fair). Qualitative measures were 

evaluated by visual inspection, and examples illustrating how 3 performance levels were assigned were shown in Supplementary Figure S1. 

Criterion a b c d 

Measure PMAD PEV PCV PCA RLA 
distribution 

of P-value 
heat map consistency AUC 

Auto Scaling 0.8360 0.8810 1421.3951 Excellent Good Good Fair 14.6500 0.8344 

Contrast 0.7797 68.4340 342.4356 Fair Fair Fair Fair 9.7500 0.6250 

Cubic Splines 0.1393 0.0376 262.6381 Good Excellent Excellent Good 13.7500 0.8322 

Cyclic Loess 0.3188 0.2226 29.2876 Good Excellent Good Fair 15.6500 0.8356 

EigenMS 0.1799 0.0419 208.8599 Excellent Excellent Good Excellent 16.4000 0.8010 

Level Scaling 0.2890 0.1231 1421.3951 Good Good Good Good 15.1000 0.8345 

Linear Baseline 0.6035 9.4973 3618.3982 Fair Good Fair Fair 6.3000 0.7072 

Log-transform 0.1349 0.0242 1032.3457 Good Excellent Good Good 14.7500 0.8168 

Mean 0.3100 0.1245 8381.2036 Good Excellent Good Good 14.7500 0.8213 

Median 0.3100 0.1275 1033.6318 Good Excellent Good Good 14.5500 0.8177 

MSTUS 0.0064 0.0001 32.0893 Good Excellent Good Good 14.3500 0.8405 

Pareto Scaling 0.5320 0.3928 1421.3951 Good Good Good Good 14.9500 0.8344 

Power Scaling 0.1660 0.0392 1825.9541 Good Good Good Excellent 14.9500 0.8314 

PQN 0.3260 0.7871 389.2734 Fair Good Good Fair 13.7000 0.8309 

Quantile 0.2989 0.1174 340.6573 Excellent Good Excellent Good 13.8000 0.8119 

Range Scaling 0.1573 0.0313 1421.3951 Excellent Good Good Excellent 15.3500 0.8344 

Sum 2.4336 7.7602 2148.8569 Good Fair Fair Fair 14.7000 0.7538 

Vast Scaling 2.7200 10.3400 1421.3951 Good Excellent Good Fair 15.0000 0.8344 

VSN 0.5626 0.3700 285.9184 Good Excellent Excellent Excellent 13.7500 0.8373 
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Supplementary FIGURES 

Figure S1. Examples illustrating how normalization performances were evaluated for those qualitative 

measures provided in criterion a and b based on the benchmark dataset MTBLS79. There were two 

qualitative measures in each criterion (PCA and RLA in criterion a; distribution of P-value and heat 

map in criterion b), and three performance levels were assigned (Excellent, Good and Fair). These 

measures were evaluated by visual inspection which could be illustrated by the following examples. 
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