
Supplementary Material

Section S1 CI and LOR features

For each protein for which we want to predict the outcome of the mutations (the query
protein) we obtained the MSAs using hhBlits with 1 iteration and E-value = 10−4.

In order to compute the Conservation Index (CI) score, originally proposed in [2], we
filtered the MSAs discarding the sequences with less than 10% coverage and less than 10%
sequence identity (SI) with the target sequence. The CI equation is the following (see
also [2, 8]): A is the set of the possible 20 amino-acids and i is the position of the MSA
in which the mutation occurs. fa(i) is thus the frequency of occurrence of amino-acid a

at position i while fa is the frequency of a as observed in the entire alignment:

CI(i) =

√

∑

a∈A

(fa(i)− fa)2 (1)

The LOR score is the log-odd ratio of observing the wild-type amino acid w with
respect to the mutated amino acid m at the target position. To compute the LOR score,
we filtered out from the MSAs the sequences with less than 30% coverage and 30% SI
with respect to the target protein.

LOR = log

(

fw(i)

1− fw(i)

)

− log

(

fm(i)

1− fm(i)

)

(2)

As explained in our previous work [8], fw(i) is the frequency of occurrence of wildtype
(w) amino-acid at position i, while fm(i) is the frequency of the mutated (m) amino-acid
in the same column of the MSA.

Section S2 Domain log-odd score

The PF feature, indicating the sensitivity of the PFAM domains to deleterious variants
is computed in the following way:

PFd = log(
Ndel(d) + 1

Ndel(d) +Nneut(d) + 2
)− log(

Nneut(d) + 1

Ndel(d) +Nneut(d) + 2
) (3)

where Ndel(d) and Nneut(d) indicate, respectively, the number of deleterious and neutral
variants mapped on the domain d. The +1 and +2 terms are the pseudo-counts added
to avoid mathematical errors with the logarithm computation.

Section S3 Opening the random forest black-box: anal-

ysis of the decision profiles with treeinterpreter

library

For the decomposition and the interpretation of the trained Random Forest (RF) model,
we relied on the treeinterpreter python library (https://github.com/andosa/treeinterpreter)
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by Ando Saabas (unpublished work). The method is described here:
http://blog.datadive.net/interpreting-random-forests/ but we briefly summarize the math-
ematical aspects.

Given a target feature vector x, treeinterpreter library visits each tree t in the
trained forest T and analyzes which clauses are activated following the path of decisions
leading from the root of t to the final leaf (corresponding to the prediction t(x)). While
traversing t, the algorithm records whether the features guarding the splitting nodes
pushed the final prediction towards the ”1” or ”0” class. This method produces two
major advances with respect to the classical ”feature relevance” computed during the
training of the RF models. The first one is that the feature relevance is computed
over the entire dataset while treeinterpreter acts on each feature vector x at a time,
explaining why the model T made the particular decision T (x) ∈ [0, 1]. Second, if the
single features contributions are averaged over the entire dataset instead of just focusing
on x, treeinterpreter tells, for each feature, not only its absolute relevance but also
whether it is used to discriminate one class better than the other. The classical feature
relevance focuses necessarily on the entire dataset and gives little insight on understanding
how individual decisions are made.

More formally, for each prediction in a decision tree t there is a path going from the
root to the final leaf, which corresponds to the final prediction of the tree. Every node in
the tree correspond to a decision and is guarded by a clause over a feature. Each decision
influences the final prediction t(x) as it changes the set of the reachable leaves, altering
the path from the root to the final leaf.

As explained in treeinterpreter documentation, a tree t with M leaves divides the
feature space in M regions Rm (1 ≤ m ≤ M) and the final prediction of the tree t can
be written as

t(x) =
M
∑

m=1

cmI(x,Rm)

where cm is a value learned during training and I(x,Rm) = 1 iff x ∈ Rm. This formula
considers only the leaves and thus ignores the path of decisions from the root to the leaf,
that leads to the final leaf and the corresponding cm. This path starts with the value
associated with largest possible region (the entire dataset class balancement in the entire
dataset, called bias) and each step towards the leaves adds or subtracts a specific ck
from the value inherited from the parent node: the result of this summation corresponds
indeed to cm. Since each decision in an internal node is associated to the feature guarding
it, we can rewrite the previous formula as t(x) = bias+

∑

feature contributions. More
precisely,

t(x) = call +
K
∑

k=1

contrib(x, k)

where call is the bias term (the value based on the balancement of the classes in the entire
dataset), K is the number of features and contrib(x, k) is the contribution of the k-th
feature with respect to the prediction of the instance x. treeinterpreter gets these
contrib(x, k) scores for each t ∈ T by inspecting each tree in the the scikit-learn [9]
implementation of the RF classifier while it performs the prediction for x. It is important
to notice that the value of contrib(x, k) depends on the values assumed by all the features
in x because each feature influences the entire path from the root to the final prediction
in the decision tree.
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The final step in the RF algorithm is to compute the final predictions T (x) of the
entire forest by averaging the predictions t(x) of the single trees:

T (x) =
1

|T |

|T |
∑

j=1

tj(x)

where |T | is the number of decision trees in the forest T . Expanding this summation with
the treeinterpreter formulation of the RF problem, we obtain the final formula as:

T (x) =
1

|T |

|T |
∑

j=1

call +
K
∑

k=1





1

|T |

|T |
∑

j=1

contribj(x, k)



.

showing how the entire RF can be thought as the summation of feature contributions.
treeinterpreter provides scores for the contributions of the features in x by analyzing
the forest and averaging the observed contributions over the trees. The full explanation
is available at http://blog.datadive.net/interpreting-random-forests/ .
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Section S4 Supplementary Tables

Table S1: Table showing the incremental contributions of the features used in DEOGEN2.
We added the features conceptually following the biological scales represented by each
feature, from the molecular aspects (PROV, CI, LOR, EF), to the domain sensitivity to
deleterious variants (PF), the interaction between proteins (INT), the relevance of the
gene for the human health (RVIS, GDI, REC, ESS) and the pathway level (PATH), that
is the broader biological aspect considered in our model.
Features Sen Spe Bac Pre MCC AUC

PROV 78.3 79.6 78.9 73.3 57.3 85.1
+CI 78.1 80.5 79.3 74.1 58.1 86.7
+LOR 76.6 83.2 79.9 76.5 59.6 87.8
+EF 76.5 83.6 80.0 76.8 59.9 88.0
+PF 80.6 88.2 84.4 83.0 69.2 92.4
+INT 81.0 88.4 84.7 83.3 69.8 92.7
+RVIS 81.1 89.5 85.3 84.7 71.2 93.0
+GDI 81.0 89.5 85.3 84.8 71.2 93.1
+REC 82.2 90.1 86.2 85.7 72.9 94.0
+ESS 83.5 90.3 86.9 86.2 74.3 94.5
+PATH 83.8 90.9 87.4 87.0 75.3 94.9
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Section S5 Supplementary Figures

Figure S1: Plot showing the distribution of the Conservation Index (CI) computed from
hhBlits alignments. Before computing the CI, the alignments have been filtered by re-
moving sequences with less than 30% of coverage and less than 30% of sequence identity
with the target sequence. The Wilcoxon’s ranksums p-value between the deleterious and
neutral classes is < 10−300.
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Figure S2: Plot showing the distribution of the Log-odd ratio (LOR) computed from
hhBlits alignments. Before computing the CI, the alignments have been filtered by re-
moving sequences with less than 10% of coverage and less than 10% of sequence identity
with the target sequence. The Wilcoxon’s ranksums p-value between the deleterious and
neutral classes is < 10−300.
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Figure S3: Plot showing the distribution of the early folding (EF) feature with respect to
the neutral and deleterious classes of variants. On the left, the distributions are shown as
violin plots, on the right as histogram. These EF scores have been obtained from an in-
house SVM-based predictor of early folding residues, which are defined as the residues that
are more crucial for the initiation of the protein folding process (paper currently under
review). The predictor has been trained on data taken from the Start2Fold dataset [11]
and uses DynaMine scores as inputs [10]. In this plot, positive scores indicate that the
residue is likely to be involved in the early folding process, while negative scores indicate
the opposite. Early folding residues are generally rare (5-10% of the residues in the
protein sequence) and thus the scores are generally negative. From these plots it appears
that deleterious variants are significantly enriched with EF residues (Wilcoxon’s ranksums
p-value = 1.66× 10−250), explaining a possible structural reason for their deleteriousness.
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Figure S4: Scatter plot showing the distribution of the ratio between deleterious and
neutral variants mapped on PFAM domains. The grey dotted line corresponds to the 1:1
ratio.
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Figure S5: Plot showing how deleterious (red) and neutral (green) variants are mapped
on the protein-protein interaction patches retrieved from INstruct database. As expected
from literature, interaction patches appear to be enriched with deleterious variants (bars
on the left).
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Figure S6: Violin plot showing the distributions of the GDI scores for the neutral and
deleterious classes. Neutral variants tend to be mapped on genes with an higher muta-
tional burden (and thus less affected by purifying selection). The Wilcoxon’s ranksums
test p-value is < 10−300.
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Figure S7: Violin plot showing the distributions of the RVIS scores for neutral and
deleterious variants in Humsavar16. Neutral variants are significantly more likely to map
on genes with higher variation in the general population (genes under less strong purifying
selection). Wilcoxon’s ranksums p-value < 10−300.

11



Figure S8: Scatter plot showing the contributions of the feature PROV (on the y axis)
with respect to the final DEOGEN2 prediction (on the x axis). This plot indicates
whether there is a relationship between a specific feature’s tendency to push towards
the deleterious or neutral classes and the overall prediction obtained from DEOGEN2.
Moreover, it shows the expected range of the contributions for each feature, in function
of the final predictions from DEOGEN2.
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Figure S9: Scatter plot showing the contributions of the feature LOR (on the y axis)
with respect to the final DEOGEN2 prediction (on the x axis). This plot indicates
whether there is a relationship between a specific feature’s tendency to push towards
the deleterious or neutral classes and the overall prediction obtained from DEOGEN2.
Moreover, it shows the expected range of the contributions for each feature, in function
of the final predictions from DEOGEN2.

13



Figure S10: Scatter plot showing the contributions of the feature CI (on the y axis)
with respect to the final DEOGEN2 prediction (on the x axis). This plot indicates
whether there is a relationship between a specific feature’s tendency to push towards
the deleterious or neutral classes and the overall prediction obtained from DEOGEN2.
Moreover, it shows the expected range of the contributions for each feature, in function
of the final predictions from DEOGEN2.
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Figure S11: Scatter plot showing the contributions of the feature EF (on the y axis)
with respect to the final DEOGEN2 prediction (on the x axis). This plot indicates
whether there is a relationship between a specific feature’s tendency to push towards
the deleterious or neutral classes and the overall prediction obtained from DEOGEN2.
Moreover, it shows the expected range of the contributions for each feature, in function
of the final predictions from DEOGEN2.
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Figure S12: Scatter plot showing the contributions of the feature PF (on the y axis)
with respect to the final DEOGEN2 prediction (on the x axis). This plot indicates
whether there is a relationship between a specific feature’s tendency to push towards
the deleterious or neutral classes and the overall prediction obtained from DEOGEN2.
Moreover, it shows the expected range of the contributions for each feature, in function
of the final predictions from DEOGEN2.
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Figure S13: Scatter plot showing the contributions of the feature INT (on the y axis)
with respect to the final DEOGEN2 prediction (on the x axis). This plot indicates
whether there is a relationship between a specific feature’s tendency to push towards
the deleterious or neutral classes and the overall prediction obtained from DEOGEN2.
Moreover, it shows the expected range of the contributions for each feature, in function
of the final predictions from DEOGEN2.
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Figure S14: Scatter plot showing the contributions of the feature ESS (on the y axis)
with respect to the final DEOGEN2 prediction (on the x axis). This plot indicates
whether there is a relationship between a specific feature’s tendency to push towards
the deleterious or neutral classes and the overall prediction obtained from DEOGEN2.
Moreover, it shows the expected range of the contributions for each feature, in function
of the final predictions from DEOGEN2.
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Figure S15: Scatter plot showing the contributions of the feature REC (on the y axis)
with respect to the final DEOGEN2 prediction (on the x axis). This plot indicates
whether there is a relationship between a specific feature’s tendency to push towards
the deleterious or neutral classes and the overall prediction obtained from DEOGEN2.
Moreover, it shows the expected range of the contributions for each feature, in function
of the final predictions from DEOGEN2.
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Figure S16: Scatter plot showing the contributions of the feature RVIS (on the y axis)
with respect to the final DEOGEN2 prediction (on the x axis). This plot indicates
whether there is a relationship between a specific feature’s tendency to push towards
the deleterious or neutral classes and the overall prediction obtained from DEOGEN2.
Moreover, it shows the expected range of the contributions for each feature, in function
of the final predictions from DEOGEN2.

20



Figure S17: Scatter plot showing the contributions of the feature GDI (on the y axis)
with respect to the final DEOGEN2 prediction (on the x axis). This plot indicates
whether there is a relationship between a specific feature’s tendency to push towards
the deleterious or neutral classes and the overall prediction obtained from DEOGEN2.
Moreover, it shows the expected range of the contributions for each feature, in function
of the final predictions from DEOGEN2.
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Figure S18: Scatter plot showing the contributions of the feature CI (on the y axis)
with respect to the final DEOGEN2 prediction (on the x axis). This plot indicates
whether there is a relationship between a specific feature’s tendency to push towards
the deleterious or neutral classes and the overall prediction obtained from DEOGEN2.
Moreover, it shows the expected range of the contributions for each feature, in function
of the final predictions from DEOGEN2.
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