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  Supporting Information 1 

Peptide deformylase assays 2 

Materials 3 

Testing compounds were diluted with 10% DMSO. Actinonin was purchased 4 

from Sigma-Aldrich and will be diluted with 10% DMSO. f-Met-Ala-Ser(fMAS) 5 

was purchased from GenScript and diluted with deionized water. 6 

Fluorescamine was purchased from Sigma and diluted with dry dioxane. 7 

DMSO was purchased from Amresco. 8 

 9 

Buffers 10 

Buffer A, 20 mM Tris, pH 8.0, 10 mM NaCl, 5 mM NiCl2; Buffer B, 20 mM 11 

Tris, pH 8.0, 5 mM NiCl2. 12 

 13 

Methods 14 

1. The amplification of plasmid pET-22b-def and restriction enzyme analysis  15 

The plasmid pET-22b-def obtained from Professor Pei was transformed into 16 

DH5αcompetent cells, which were incubated overnight on LB agar plates 17 

supplemented with 100 g/ml ampicillin at 37℃. The overnight culture of 18 

DH5αcells harboring plasmid pET-22b-def was grown at 37℃ for 16h with 19 

shaking in LB medium containing 100 g/ml ampicillin for plasmid amplication. 20 

The plasmids were extracted and confirmed by the assay of the enzyme 21 

cleavage using EcoRⅠand NdeⅠ. It is consistent[1] with a previous report (～22 
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500bp).  23 

 24 

2. Expression of PDF and determination 25 

The plasmid pET-22b-def was transformed into E.coli BL21(DE3). Clones 26 

were selected at 37℃ on LB agar plates supplemented with 100 g/ml 27 

ampicillin. The overnight culture of BL21(DE3) cells was grown at 37℃ with 28 

shaking in LB medium containing 100 g/ml ampicillin. The culture was 29 

transferred to the 1L LB medium containing 100 g/ml ampicillin at 1% 30 

inoculation(The culture left was added to glycerol and stored at －80℃), and 31 

incubation was continued for 2-3h at 37℃ with shaking to get cells 32 

concentration of an OD600 of 0.6. The culture was added by IPTG to a final 33 

concentration of 200 M and was induced for 4 h at 30℃. The cells were 34 

harvested by centrifugation and resuspended in buffer A plus protease 35 

inhibitor cocktail. The cells were disrupted by sonication. Cell debris was 36 

removed by centrifugation. The overexpressed PDF in BL21(DE3) cells was 37 

determined by 15% SDS-PAGE. The result is consistent[2] with a previous 38 

report. In above steps, E.coli BL21(DE3) cells and E.coli BL21(DE3) cells 39 

carrying pET-22b were used as control.  40 

 41 

3 Purification[3] of Ni-PDF 42 

  All steps were carried out at 0-4 ℃ unless otherwise stated. The supernatant 43 

obtained was loaded onto a Q-Sepharose Fast Flow column and was eluted 44 



3 

 

 

with buffer A plus a linear gradient of KCl from 0 to 0.5mol/L. Fractions were 45 

collected and analysed by SDS-PAGE. The fractions containing the majority of 46 

the 20 kDa PDF were pooled. The pooled fractions were concentrated using 47 

Centrifugal Filter Devices, then was loaded onto a Sephacryl S-300(size 48 

exclusion chromatography) column. Proteins were eluted with a linear gradient 49 

of 0 to 0.15mol/L NaCl in buffer B. Fractions were collected and analysed by 50 

SDS-PAGE. The purest fractions were pooled, concentrated in Centrifugal 51 

Filter Devices and stored at -80° C. The enzyme concentration was 52 

determined using Protein Assay Kit with Bovine Serum Albumin as standard.  53 

 54 

4 PDF in vitro Assay[4]  55 

The assay was performed in a single 96 well plate in a final volume of 100 μl  56 

containing:  57 

• 20 μl 0.4 μg/ml PDF  58 

• 20 μl 400 mM Hepes pH 7.0+3.5M KCl+0.175% Brij+5mM NiC12  59 

• 10 μl serial dilution of test compound in 10% DMSO  60 

• 50 μl 8mM formyl-Met-Ala-Ser  61 

The assay was incubated at 37° C for 0, 0.5, 1, 2, 4, 8, 24 h, respectively. 62 

The free amino group of the deformylated (Met-Ala-Ser) product was detected 63 

using fluorescamine, by the following additions:  64 

• 50 μl 0.2M borate pH 9.5  65 

• 50 μl fluorescamine (200 μg/ml in dry dioxane)  66 
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Fluorescence was quantified on Thermo Fluoroskan Ascent FL using an 67 

excitation wavelength of 390 nM and an emission wavelength of 485 nM. 68 

Standard control reactions are a no inhibitor reaction which provides the zero 69 

inhibition figure and a no enzyme and no inhibitor reaction which provides the 70 

100% inhibition figure. The data was analysed by conversion of the 71 

fluorescence units to % inhibition and the inhibitor concentration plotted 72 

against % inhibition. The data was fitted to a sigmoidal function: 73 

y=A+((B-A)/(1+((C/x)D))), wherein A represents zero inhibition, B represents 74 

100% inhibition and C represents the IC50, D represents the slope. The IC50 75 

represents the concentration of inhibitor required to decrease enzyme activity 76 

by 50%.  77 

 78 

NMR and MS Characterization for PDF Inhibitors 79 

Indole derivatives were synthesized as previously described.5  80 

 81 

N-hydroxy-2-(1H-indol-2-yl)acetamide (2) 82 

1H NMR (300 MHz, CH3OD) δ 10.91 (br s, 1H), 10.62 (br s, 1H), 8.87 (br s, 1H), 83 

7.38 (d, 1H, J = 6.0 Hz), 7.28 (d, 1H, J = 6.0 Hz), 6.97 (t, 1H, J = 6.0 Hz), 6.89 84 

(t, 1H, J = 6.0Hz), 6.16 (s, 1H), 3.42(s, 2H). LCMS 191.3 [M ]+. 85 

  86 

N-hydroxy-2-(1-methyl-1H-indol-3-yl)acetamide (3)  87 

1H NMR (300 MHz, CH3OD) δ 10.57 (br s, 1H), 8.72 (br s, 1H), 7.54 (d, 1H, J = 88 
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6.0 Hz), 7.34 (d, 1H, J = 6.0 Hz), 7.13 (s, 1H), 7.12 (t, 1H, J = 6.0 Hz), 6.98 (t, 89 

1H, J = 6.0 Hz), 3.33 (m, 3H) 2.47 (s, 2H). LCMS 204.1 [M] +.  90 

  91 

 92 

N-hydroxy-2-(1-isopropyl-1H-indol-3-yl)acetamide (4) 93 

1H NMR (300 MHz, CH3OD) δ 10.57 (s, 1H), 8.74 (br s, 1H), 7.53 (d, 1H, J = 94 

6.0 Hz), 7.41 (d, 1H, J = 6.0 Hz), 7.27 (s, 1H), 7.07 (t, 1H, J = 5.7 Hz), 6.98 (t, 95 

1H, J = 5.7 Hz), 4.65 (dt, J = 5.1 Hz), 2.47 (s, 2H),  1.39 (d, 6H, J = 5.1 Hz). 96 

LCMS 232.2 [M]+. 97 

 98 

Simulation Details 99 

All simulations place the protein in a rectangular box large enough to 100 

accommodate three layers of solvent and are done with periodic boundary 101 

conditions.  These two operations minimize artifacts that can arise from edge 102 

effects. 103 

 104 

The grand canonical Monte Carlo (GCMC) algorithm used in this study was 105 

developed by Adams[5] in 1975. In the previous studies done by Guarnieri and 106 

co-workers, Mezei’s cavity-bias[6] technique with detailed balance corrections 107 

to improve the efficiency of the Adam’s algorithm was used.  In this study, 108 

however, we do not use cavity-bias, instead it has been replaced with a simple 109 

biased learning algorithm that is much easier to implement and maintain during 110 
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the simulation.  To our knowledge, since there is no description in the 111 

literature of the technical difficulties in performing cavity-biased GCMC, we will 112 

describe these difficulties here, which will clearly show the motivation for 113 

developing a new method.   114 

 115 

The cavity-bias method requires creating a 3-dimensional grid inside the 116 

protein simulation cell.  An algorithm systematically scans every grid point to 117 

discover the vertices that are occupied by a protein atom and the vertices that 118 

are not.  Fragment insertion is attempted only where there are free grid points.  119 

The cavities are continuously monitored during the simulation, because when 120 

a fragment insertion is accepted, the previously free grid is now occupied and 121 

no further insertion attempts occur at this site unless a successful deletion 122 

from this site happens.  There are 2 major practical problems with cavity-bias, 123 

1) the appropriate spacing of the grids is not obvious and 2) where the grids 124 

are started is arbitrary.  If the grid spacing is made very small, <1A for 125 

example, then there is a very large number of grids to keep track of during the 126 

simulation and many of them are superfluous.  If the grid spacing is made 127 

larger, there is a chance of missing an important cavity.  When it was 128 

recognized that important cavities could be missed in this process, an 129 

algorithm that periodically shifts the grids by a fraction of an Angstrom was 130 

employed, because repositioning the grids often uncovers an additional cavity.  131 

These procedures result in several difficulties, 1) how often should the grids be 132 
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shifted, 2) once the grids are shifted how many new and additional trial 133 

configurations need to be generated to sample potentially newly uncovered 134 

cavities, 3) many of the grids are superfluous arising from an overly dense grid 135 

due to the desire to not miss anything important, 4) an overly dense grid 136 

significantly slows down the simulation making it much less efficient, and 5) 137 

what is the best way to keep track of the difference between multiple sets of 138 

shifted grids. To avoid all of these issues, the grid spacing is made very dense 139 

by setting it to half of an Angstrom, which requires no grid shifting.  Because 140 

every fragment is significantly larger than half of an Angstrom, an algorithm is 141 

needed to determine where a set of connected free grid points of sufficient 142 

volume is located in order to find viable cavities for attempted particle insertion.  143 

This is done for every fragment, since different fragments have different sizes.   144 

 145 

All of these considerations require maintaining, and updating a large 146 

bookkeeping operation during a GCMC simulation.  Since GCMC is run at 147 

one fixed chemical potential while SACP is a sequence of chemical potentials, 148 

SACP with cavity bias requires following the grids through a whole multiplicity 149 

of such simulations. 150 

 151 

Intrinsic to the SACP process is a clear method for replacing cavity-bias with a 152 

simple learning algorithm.  GCMC simulations at high chemical potentials 153 

overcome energy barriers and there is a dramatically enhanced probability of 154 
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accepting an inserted trial fragment at these high chemical potentials except if 155 

the attempted insertion directly overlaps with a protein atom.  Fragment 156 

overlap with a protein atom can be readily and quickly detected by doing a 157 

vectorized Lennard-Jones calculation with SIMD vector instructions on 158 

4-vectors available in the Intel architecture.  This allows for detecting 4 159 

different potential atom overlaps simultaneously. When any atom of a trial 160 

inserted fragment overlaps a protein atom an overflow results in an IEEE NAN 161 

(not a number).  This fragment is immediately rejected and a new trial 162 

insertion or deletion is attempted.  Within 500,000 trial steps at very high 163 

chemical potentials the simulation cell is completely stuffed with fragments in 164 

all three solvent layers and in every possible cavity of the protein.  We 165 

continue to run the simulation at this highest chemical potential until the 166 

particle number changes by <1% for 200,000 steps.  Just to be clear, the 167 

particles are randomly inserted and deleted with equal probability anywhere 168 

within the simulation cell.  The fast rejection when atom overlap occurs and 169 

the initial very high chemical potential results in fragments being inserted in 170 

every protein cavity capable of accommodating a fragment and with a 171 

completely filled bulk. 172 

 173 

When the chemical potential is lowered (this is the annealing phase) new trial 174 

inserts and deletes actually produce little to no change in the system.  This is 175 

because the large multi-body network of interactions between the densely 176 
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packed solvent particles is extremely stable and resistant to a fragment 177 

deletion, which would result in small evacuated areas.  Insertions are not 178 

possible, because every part of the simulation cell is packed with fragments.  179 

There is only a significant change in the system when the chemical potential is 180 

lowered to a free energy value that is capable of destroying the large 181 

connected network of solvent-solvent-solvent multibody interactions.  For 182 

different fragments the position of the phase transition will be different so we 183 

initially run an SACP simulation lowering the chemical potential in a very 184 

coarse manner to approximately locate the phase transition region.  The 185 

coarse chemical potential schedule that we typically use is: 100, 50, 20, 10, 5, 186 

2, 0, -2, -5, -10, -20, -50, and -100.  Simulations can be run by setting a fixed 187 

number of trial configurations, such as 5,000,000.  To avoid an arbitrary 188 

choice, we simply monitor the average number of particles at a given chemical 189 

potential and when this particle number changes by <1% for 200,000 trials, the 190 

simulation is deemed to have reached equilibrium and it goes to the next lower 191 

chemical potential with the process repeated.  When the particle number 192 

changes by greater than 40% between 2 different chemical potentials, the 193 

phase transition has been located and this preliminary phase is automatically 194 

ended.  195 

 196 

The real simulation starts with a check point file at a high enough chemical 197 

potential that is just before the phase transition.  The annealing schedule is 198 
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set to decrease the chemical potential by a single digit.  For example, if the 199 

phase transition occurs between -5 and -10, the simulation is restarted with a 200 

chemical potential of -5 using the final configuration from the check point file 201 

and the annealing schedule is -6, -7,-8,-9 …etc.  Just to be clear, since -5 is 202 

before the phase transition the simulation box is completely stuffed with 203 

fragments including every possible internal protein cavity capable of binding a 204 

fragment.  As the simulation proceeds with lowering the chemical potential, 205 

deletion attempts becomes more probable and occur more often.  Every time 206 

a fragment is deleted that is anywhere in the vicinity of the protein including 207 

any internal cavities, its coordinates are recorded in a table.  This provides a 208 

detailed and easy record of all the cavities in the protein capable of binding a 209 

fragment with no superfluous cavities, no need for grids, and thus no need for 210 

grid shifting.  When the simulation reaches a chemical potential where the 211 

number of total particles in the simulation cell has dropped significantly, this 212 

indicates that much of the bulk particles have been deleted.  This means that 213 

trial insertions into the bulk will almost completely fail, because it is attempting 214 

to insert a particle into a vacuum at a relatively low chemical potential.  This is 215 

when surface insertion bias is turned on.   216 

 217 

Specifically, as the annealing process continues, surface insertion bias is 218 

turned-on when one of two criteria is met whose purpose is to detect that the 219 

simulation is in a surface-only mode (no fragments in the bulk): 220 
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1. The average over all fragments of the minimum distance between the 221 

center of mass of the fragment and the center of mass of the nearest 222 

protein residue is less than the sum of the fragment radius and the 223 

average of all the protein residue radii.  The radius in this case is 224 

defined as the distance of the atom furthest from the center of mass, 225 

plus its van der Waals radius.  And the number of fragments remaining 226 

in the system is less than the number of protein residues (so the 227 

criterion scales with protein size).  Note that this criterion takes 228 

advantage of the fact that fragments and residues are not spherical and 229 

have an aspect ratio more than 1 so that fragments must be tightly 230 

bound to the protein to achieve the criterion.  This is questionable for 231 

small fragments like ammonia, methane, or water.  In those cases the 232 

second criterion kicks in. 233 

2. The number of fragments remaining in the system is less than a fixed 234 

number (typically, 100).  This criterion works fine and has the 235 

advantage of being very simple. 236 

 237 

When surface insertion bias is active, each time a fragment is deleted its 238 

coordinates are added to a list. This algorithm is extremely simple and 239 

exceptionally accurate – a location in the protein is retained on a list of cavities 240 

only if a fragment has been successfully deleted from this position, thus there 241 

are no spurious cavities sampled during this phase of the simulation.  This list 242 
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serves as location bias sites for subsequent insertions.  At the beginning of 243 

each new lower chemical potential, sites that have less than 50% occupancy 244 

during the previous higher chemical potential sampling period are removed 245 

from further consideration.  A biased sampling technique requires detailed 246 

balance corrections to maintain microscopic reversibility.  At any particular 247 

point in the simulation some of the cavities in the list are occupied by a 248 

fragment and some are free.  As mentioned above, when we are in the first 249 

phase of the annealing schedule with random insertions and deletions, thus 250 

requiring no detailed balance corrections, the GCMC probability density 251 

function as formulated by Adams is used for the accept-reject criteria.  In the 252 

surface insertion bias phase the detailed balance correction for attempted 253 

insertions is NFREE/(NOCCUPIED+1) and for deletions is 254 

NOCCUPIED/(NFREE-1).  Two additional points should be noted, 1) when an 255 

insertion is attempted, the fragment is randomly rotated and translated by 256 

some small amount before the attempted insertion, 2) a quarter of the trial 257 

steps are canonical Monte Carlo – fragments in the simulation cell are chosen 258 

at random and randomly translated and rotated by small amounts, which is 259 

accepted or rejected with a Boltzmann probability density function. 260 

 261 

Our compute facility is a 60-core cluster with Intel E5640 Xeon (Nehalem) 262 

2.67GHz processors.  Each fragment simulation normally runs on a single 263 

core, although there is an option to run a single simulation with up to 12 cores 264 
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using OpenMP.  The simulations on elastase (1ELA) ran from 45 hours for 265 

water runs (the slowest) to 15 hours for propane (fastest).  For a typical 266 

clustering set of 20 fragments and waters, approximately 450 core-hours were 267 

required.  In 2017, on Amazon Web Services with C4 (Skylake) instances, 268 

plus further optimization of the simulation code, this has come down to about 269 

125 core-hours (at a cost of roughly $0.01/core/hour for spot instance pricing).  270 

The scaling is highly dependent on protein size.  When a binding site is 271 

known, a protein subset can be run with location biased sampling to minimize 272 

run time to numbers similar to elastase.  When searching for all hot-spot 273 

binding spots on a large protein complex, the run time can be 5-10 times larger.  274 

On AWS we typically can access 1,000 cpu’s with 36 cores per cpu, so the 275 

hot-spot computations are inexpensive ($10-$20) and can be generally done in 276 

1-3 days. 277 

 278 

Details of the Force Fields  279 

 280 

The force field parameters used for the protein[7] were Amber94.  The 281 

fragment van der Waals parameters were from Gaff[8] data.  The partial 282 

charges for the fragments were generated using Firefly[9] 8.01 using a 6-31G* 283 

basis with DFT B3LYP to generate quantum mechanical electron distributions 284 

that were then used to generate partial charges with RESP[10] fitting.  The 285 

water parameters used in this study were developed in the Jorgensen[11] lab.  286 
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TIP3 parameters were used for the water-protein interactions and TIP4 287 

parameters were used for the water–water interactions. 288 

 289 

Details of the Thermodynamic Cycle    290 

 291 

The process of fragment binding to a protein can be broken down into the, 1) 292 

free energy of desolvating the part of the fragment that interacts with the 293 

protein, 2) the free energy of desolvating the sub-pocket of the protein binding 294 

site that interacts with the part of the fragment that actually binds, and 3) the 295 

free energy of this fragment-protein interaction (illustrated in S1 Fig).  The 296 

present study did not need to include fragment desolvation, which can be 297 

explained by briefly summarizing one of our recent studies that did include the 298 

fragment solvation energy. 299 

Figure S1.  An illustration of the thermodynamics of ligand-protein binding.  300 

The protein binding site must be dehydrated with a DG(P-H2O) as shown in 301 

the top line in order to bind a ligand.  The ligand must be dehydrated with a 302 

DG(L-H2O) as shown in the bottom line in order to interact with the protein.  303 

These two lines converge in the middle with the ligand coming together with 304 

the protein DG(P-L).  Fragment binding and protein hydration-dehydration are 305 

rigorously computed with Simulated Annealing of Chemical Potential (SACP).  306 

Ligand dehydration was neglected for the reasons described in the text. 307 

 308 
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The SAMPL3 challenge of 2012 was a contest designed to evaluate the 309 

predictive abilities of fragment-based methods.  The scientists running the 310 

contest picked a protein and performed X-ray analysis with fragment soaking 311 

experiments to explicitly determine all of the positions on the protein where 312 

fragment binding occurs and also conducted binding experiments to obtain the 313 

interaction free energy between the fragments and the protein.  This 314 

information was kept confidential.  The PDB file of the protein and the list of 315 

fragments were made available to the research community.  The challenge 316 

was to submit detailed predictions of fragment binding locations and binding 317 

free energies by a deadline and the experimental data were subsequently 318 

released so that the results could be objectively judged.  SACP was used to 319 

predict fragment-protein binding and water-protein binding.  Clustering high 320 

affinity fragments with water exclusion readily identified the binding site.  The 321 

rank order binding free energy based on the chemical potential – fragments 322 

that still remain bound as the chemical potential was lowered are predicted to 323 

have higher affinity than fragments vacating the binding site at that same 324 

chemical potential – very accurately tracked a large majority of the 325 

experimental data.   326 

 327 

The predictions were made even more accurate when we included a 328 

continuum solvent model for the ligand dehydration.  As would be expected, 329 

this was especially true when comparing fragments that are chemically and 330 
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physically very different, because the solvation free energies are very different.  331 

The continuum solvent model used in this SAMPL3 study was developed[12] 332 

in our group.  While there are many models that accurately predict small 333 

molecule free energies of solvation, many of which are cited in this paper from 334 

our group, we created a new model that is of high accuracy, but is also fast 335 

enough to be incorporated into the simulations.  Just to be clear, running the 336 

full annealing schedules can require performing over 100,000,000 Monte Carlo 337 

trial steps, so incorporating a continuum model for ligand solvation-desolvation 338 

free energy must be very fast.  Complete details of applying SACP to the 339 

SAMPL3 challenge[13] have been published.   340 

 341 

It was not necessary to use the continuum model in the studies presented in 342 

this paper, because the 3 molecules designed to inhibit peptide deformylase 343 

are all congeners of the same core structure and thus would have virtually 344 

identical solvation free energies.  Incorporating the continuum calculation 345 

would not have altered the rank-order binding predictions, so there was no 346 

need to introduce this added calculation.  For the RecA studies, the SACP 347 

simulations led to the clear prediction of one molecule, 6-hydroxydopamine, 348 

which we purchased and had tested.  The 6-HD will obviously be completely 349 

and strongly water solvated, because of the positively charged amine group 350 

and the 3 hydroxyl groups  Additionally, because no comparative analysis 351 

between different fragments was required, there was no need to employ the 352 
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solvation free energy calculation for 6-HD.  The SACP prediction was so 353 

compelling because the fragment pattern produced 6-HD interacting with RecA 354 

in a manner that mimicked 2 universally conserved amino acids, so it was 355 

worth just testing it experimentally.  Finally, for all of the other test cases, 356 

SACP predictions of fragment-protein and water-protein binding with clustering 357 

and water exclusion (which accounts for fragment-water competition for 358 

binding to a location on the protein) reproduced all of the known experimental 359 

data cited in this study. 360 

361 
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 362 

Fragment set for clustering and methodology 363 

364 

 365 

Figure S2. The basis fragment set used to probe the various targets described 366 

in the manuscript. This is similar to the dataset in our previous publication.[14] 367 

 368 

Successful computational hot-spot mapping using are algorithm is based on 369 

three principles. First, the chemical fragments need to have highly favorable 370 

interaction energies with the protein. If the energies are too favorable, there 371 

will be one or no fragment binding sites. On the other hand, if the energies are 372 

marginally favorable, say at the phase transaction, then the entire protein 373 

surface will be covered with fragments. Thus, we take energetic values 374 

approximately halfway between the phase transition and the value at which 375 
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only one fragment appears on the surface. Our second principle is to exclude 376 

sites where tightly bound water molecules could potentially block fragment 377 

binding. Our SACP approach gives quantitative values for each water 378 

molecule on the protein surface. We categorize these into three bins (i) bulk 379 

water like and easy to displace, (ii) bound but only a small energy to displace, 380 

and (iii) tightly bound and high energetic cost to replace. During our clustering 381 

algorithm, the waters in category iii are kept in place and exclude hot-spot 382 

identification in those sites. Lastly, we look for sites where a diverse set of 383 

chemical fragments bind.  384 

385 
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