Supplementary Information

Capzimin is a potent and specific inhibitor of proteasome isopeptidase Rpn11

Jing Li¹, Tanya Yakushi², Francesco Parlati^{1, 8}, Andrew L. Mackinnon^{1, 8}, Christian Perez³, Yuyong Ma³, Kyle P. Carter⁴, Sharon Colayco⁵, Gavin Magnuson⁵, Brock Brown⁵, Kevin Nguyen⁶, Stefan Vasile⁶, Eigo Suyama⁶, Layton H. Smith⁶, Eduard Sergienko⁵, Anthony B. Pinkerton⁵, Thomas D.Y. Chung⁵, Amy E. Palmer⁴, Ian Pass⁵, Sonja Hess², Seth M. Cohen³ and Raymond J. Deshaies^{*,1,7}

¹Division of Biology and Biological Engineering, Box 114-96, California Institute of Technology, Pasadena CA 91125

²Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA 91125

³Department of Chemistry and Biochemistry, University of California San Diego, La Jolla CA 92093

⁴Chemistry and Biochemistry, UCB 596, University of Colorado, Boulder, CO 80309

⁵Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd, Building 2, La Jolla CA 92037

⁶Sanford-Burnham Center for Chemical Genomics at Sanford-Burnham Medical Research Institute Lake Nona, Orlando, Florida 32827, USA

⁷Howard Hughes Medical Institute

⁸present address: Calithera Biosciences Inc., 343 Oyster Point Blvd. Suite 200, South San Francisco, CA 94080

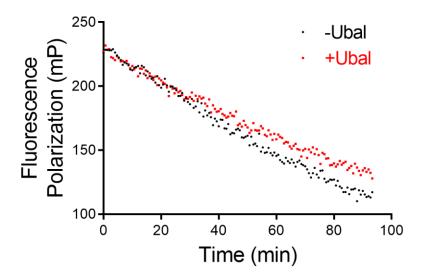
Supplementary Results

Supplementary Table 1. Small molecule screening data

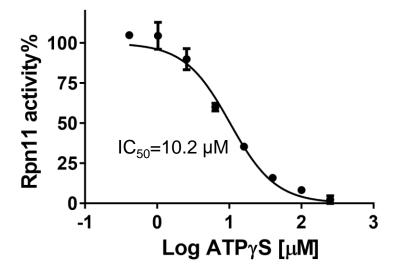
Category	Parameter	Description		
Assay	Type of assay	In vitro biochemical assay		
	Target	Rpn11 (NCBI Protein ID: PSMD14; Gene ID: 10213)		
	Primary measurement	Fluorescent Polarization		
	Key reagents	Ub4-pepOG protein substrate, 26S proteasome from human erythrocytes		
	Assay protocol	 See PubChem Bioassay: AID 588493 (https://pubchem.ncbi.nlm.nih.gov/bioassay/588493) In summary: uHTS Procedure 1) Using LabCyte Echo, transfer 40 nL of test compounds from a 2 mM compound source plate into assay plate Cols. 5-48 (final concentration of test compounds is 20 uM, 1 % DMSO). Transfer 40 nL of 100% DMSO into assay plate Col. 1-4. 2) Pre-incubate 20nM 26S proteasome in Epoxomicin Solution at room temperature for 1 hour, then dilute 10-fold in pre-chilled 1x Assay Buffer. 3) Using Beckman BiorapTR dispense 2uL of Assay Buffer in columns 1 and 2, and 2uL of 26S proteasome solution to columns 3-48. 4) Using Beckman BiorapTR dispense 2ul of Ub4-pepOG substrate into all wells (columns 1-48) 5) Spin plates at 1500 rpm for 1 minute on Eppendorf centrifuge 5810. 6) Incubate for 80 minutes at room temp. 7) Read plates on Perkin Elmer Envision with dual mirror at Ex/Em 480/535 nm in fluorescent polarization mode 		
Library	Library size	359.521		
	Source	Molecular Libraries Small Molecules Repository Library (MLPCN, NIH)		
Screen	Format	1,536 Well Plate Format		
	Concentration(s) tested	20 μM		
	Reagent/ compound dispensing system	Labcyte Echo, Beckman Bioraptr		
	Detection instrument and software	PerkinElmer Envision		
	Assay validation/QC	Z'=0.63, signal to background = 1.6 fold, signal to noise = 12.5 fold, 5.9 signal window		
	Correction factors	None		
	Normalization	None		
Post-HTS analysis	Hit criteria	≥ 40 % of inhibitory activity compared to the DMSO controls		
	Hit rate	0.55%		
	Additional assay(s)	 (1) Against an out-of-family thrombin metalloprotease for selectivity and possible interference with the fluorescence polarization readout. (AID:<u>602333</u>). (2) against MMP2 metalloprotease to exclude nonselective and potential likely Zn2+ chelators (AID:<u>602330</u>). 		

Supplementary Table 2. 8TQ and Capzimin are uncompetitive inhibitors of Rpn11 (proteasome holoenzyme)

Michaelis-Menten parameters					
8TQ	10 µM	5 µM	2.5 µM	0	
Vmax±S.E.	25.84±3.37	72.84±4.5	114.4±4.02	140.1±1.8	
Km±S.E.	0.36±0.16	0.49±0.09	0.77±0.07	0.82±0.03	
CZM	3.3 µM	1.7 µM	0.3 µM	0	
Vmax±S.E.	63.81±4.05	106.3±1.19	139.5±3.37	172.7±3.29	
Km±S.E.	0.41±0.12	0.66±0.03	0.80±0.07	1.03±0.07	

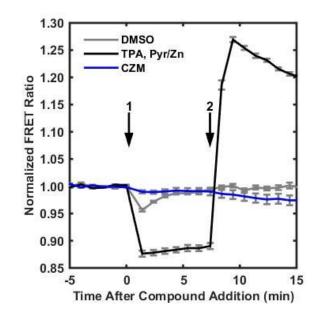

Supplementary Table 3. Summary of Capzimin's IC50 on metalloenzymes

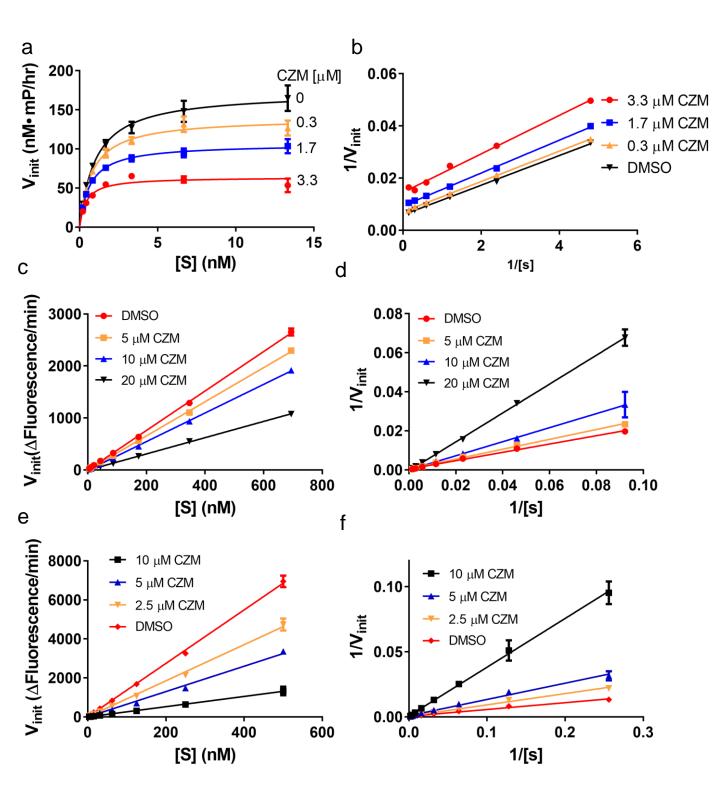
IC50 (μ M) of Capzimin on other metalloenzymes				
HDAC6	MMP 2	MMP 12	hCAII	GLO1
>200	>50	>50	>50	42.8±2.2

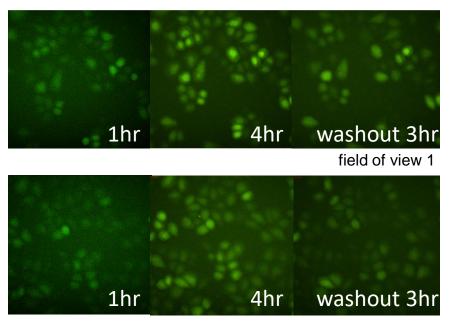

Supplementary Table 4. A subset of 3021-resistant clones have elevated proteasome activity and increased resistance to carfilzomib.

	3021 IC ₅₀ (µМ)	CFZ IC ₅₀ (nM)	Peptidase activity (LLVY-AMC)
HCT116	2.2	7.1	100%
Line 4	5.3	60	144%
Line 5	2.7	11	127%
Line 6	6.2	45	130%
Line 9	4.2	16	153%

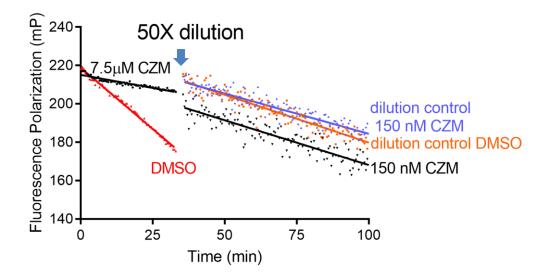
Vendor and catalog No.	Applications
Enzo, ADI-SPA-200-F	WB
Santa Cruz, sc-365949	WB
Life Technologies, 32-2400	WB
Santa Cruz, sc-1616	WB
Santa Cruz, Sc-8017	IF
Cell Signaling, 7558S	IF
Santa Cruz, sc-25575	IF
BD bioscience, 610959	WB
Cell Signaling, 2524S	WB
Cell Signaling, 5683P	WB
Cell Signaling, 3177P	WB
BioLegend, 647502	WB
Cell Signaling, 2895P	WB
Santa Cruz, sc-100711	WB
Santa Cruz, sc-25778 HRP	WB
	Enzo, ADI-SPA-200-F Santa Cruz, sc-365949 Life Technologies, 32-2400 Santa Cruz, sc-1616 Santa Cruz, sc-1616 Santa Cruz, Sc-8017 Cell Signaling, 7558S Santa Cruz, sc-25575 BD bioscience, 610959 Cell Signaling, 2524S Cell Signaling, 2524S Cell Signaling, 3177P BioLegend, 647502 Cell Signaling, 2895P Santa Cruz, sc-100711


Supplementary Figure 1: Ub aldehyde has little effect on the kinetics of Ub₄peptide^{OG} cleavage. Shown are kinetic curves from the Rpn11 assay performed in the absence (black) or presence (red) of 1 μ M Ub aldehyde.

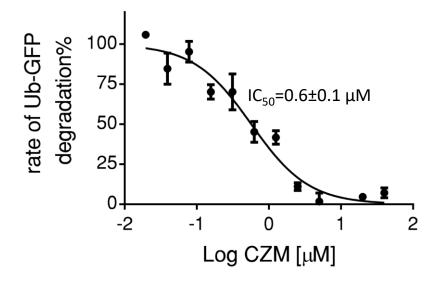

Supplementary Figure 2: Cleavage of Ub₄peptide^{og} requires ATP hyrolysis. The IC₅₀ for inhibition of Rpn11 activity by non-hydrolyzable ATP γ S was determined. Error bars represent s.d., n=4


Supplementary Figure 3: Structure of Zn(cyclen)²⁺

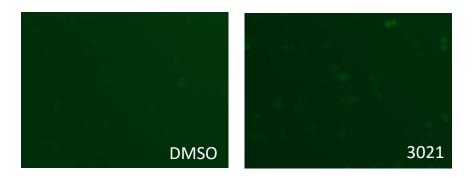
Supplementary Figure 4: Capzimin does not alter cellular zinc. Cells were treated with 0.5% DMSO (gray, n=11 cells), 50 μ M TPA (black, n=12 cells), or CZM 10 μ M (blue, n=11 cells) at arrow 1. At arrow 2, TPA-treated cells were washed and treated with 0.75 μ M pyrithione and 12 μ M buffered zinc solution (Pyr/Zn).

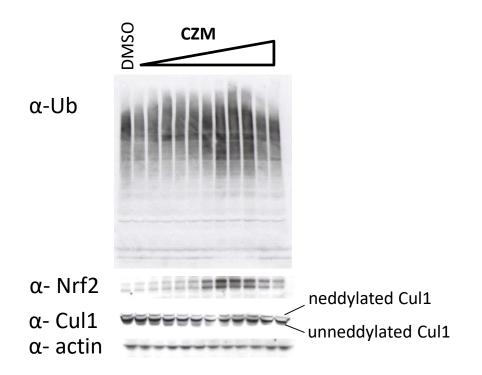


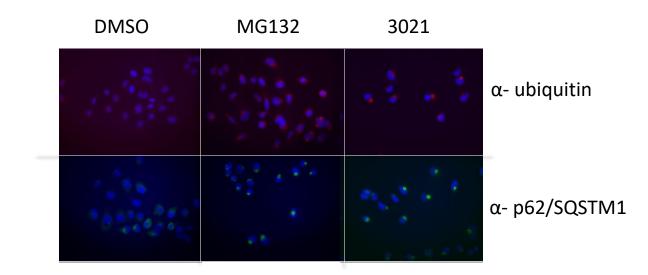
Supplementary Figure 5: CZM is an uncompetitive inhibitor of Rpn11 (proteasome holoenzyme), but a competitive inhibitor of AMSH and BRCC36. Shown are the Michaelis Menten curves (a, c, e) or Lineweaver-Burke plots (b, d, f) of Rpn11 (a, b), AMSH (c, d) or BRCC36 (e, f) activity assay in the presence of different concentrations of CZM. Error bars represent s.d., n=3.

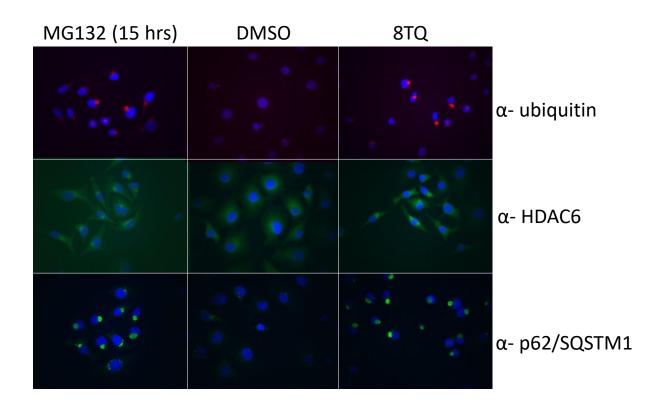


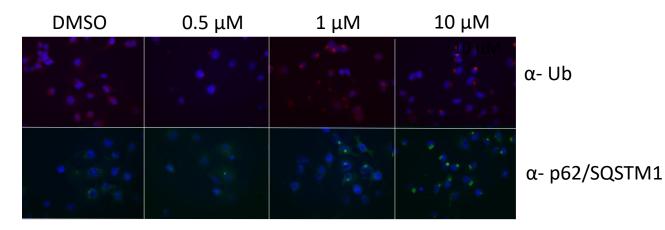
field of view 2

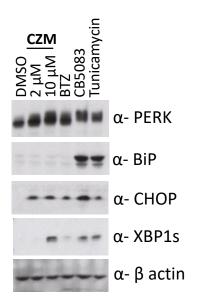

Supplementary Figure 6: Capzimin reversibly inhibits the proteasome in cells. Shown are fluorescence images of cells taken at different time points (as indicated) after treatment with 4μ M of *CZM* or washout of *CZM*.

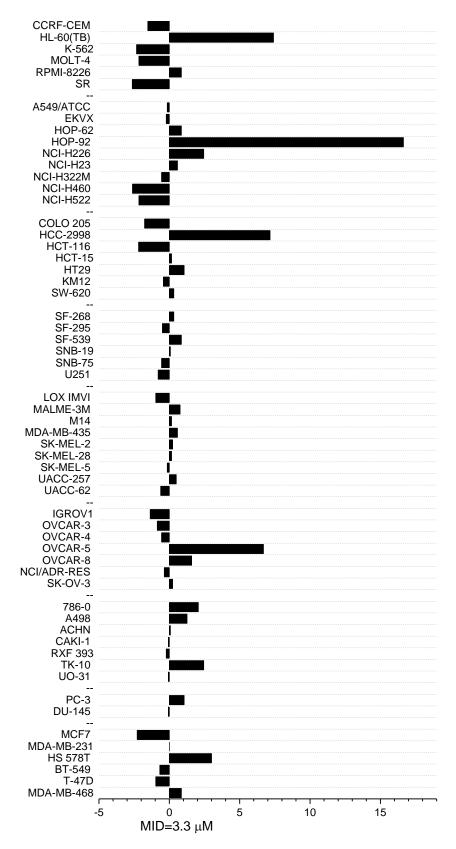

Supplementary Figure 7: Capzimin is a reversible inhibitor in vitro. Shown is the fluorescence polarization kinetics before and after 50X dilution. Before dilution, high concentration of CZM (black) showed >80% inhibition of Rpn11 activity compared to DMSO control (red). After 50X dilution, CZM (black) showed <10% inhibition of Rpn11 activity compared to the DMSO control (orange). A pre-diluted sample (blue) with same concentration of proteasome and CZM served as dilution control.

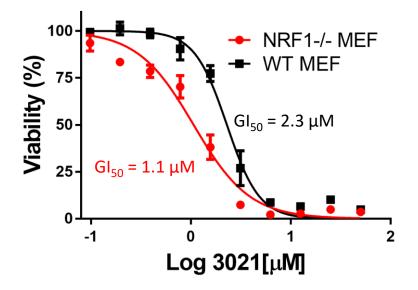

Supplementary Figure 8. Capzimin block the clearance of accumulated Ub^{G76V}GFP.The degradation rate of Ub^{G76V}-GFP was measured at different concentrations of capzimin by cycloheximide chase assay. Error bars represent s.d., n=3

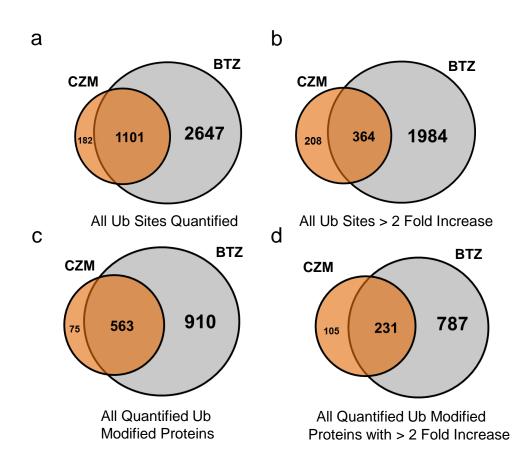

Supplementary Figure 9. 3021 has little effect on Ub^{G76V}GFP accumulation. Shown is a fluorescence image of cells taken 4 hours after treatment with DMSO or 5 μ M of 3021.

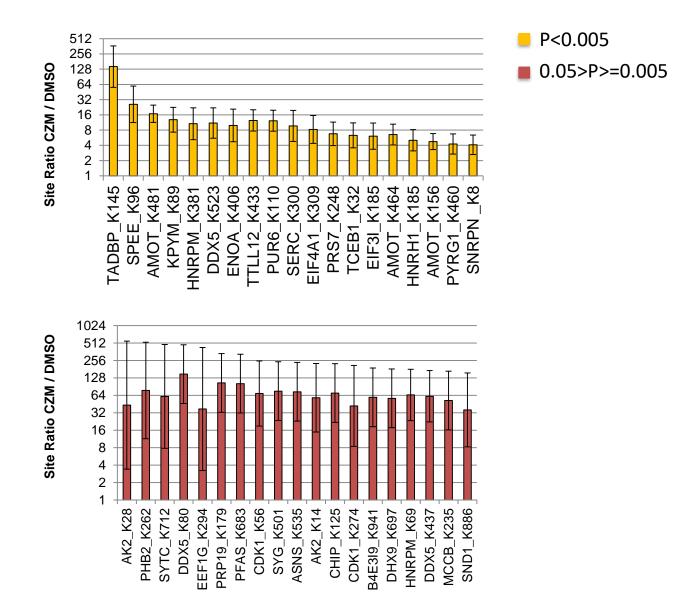

Supplementary Figure 10: Capzimin treatment induces accumulation of polyubiquitinated species and Nrf2 in 293T cells. 293T cells were treated for 2 hours with different concentrations (10 nM to 100 μ M) of capzimin and cell lysates were fractionated by SDS-PAGE and immunoblotted with antibodies against ubiquitin, Nrf2, Cul1 and actin, as indicated.


Supplementary Figure 11: 3021 induces aggresome formation. A549 cells were treated with DMSO, 5 μ M MG132 or 10 μ M *3021* for 15 hours before being fixed and stained with antibodies against ubiquitin or p62/SQSTM1.

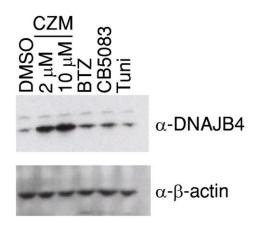

Supplementary Figure 12: 8TQ prevents the clearance of aggresomes. A549 cells were treated with 5 μ M MG132 for 15 hours to induce aggresome formation. MG132 was then washed away. The cells were treated with DMSO or 5 μ M 8TQ for 24 hours before being fixed and stained with antibodies against ubiquitin, HDAC6, or SQSTM1.


Supplementary Figure 13: 3021 prevents the clearance of aggresomes. A549 cells were treated with 5 µM MG132 for 15 hours to induce aggresome formation. MG132 was then washed away and cells were treated with DMSO or different concentration of **3021** for 24 hours before being fixed and stained with antibodies against ubiquitin or SQSTM1.

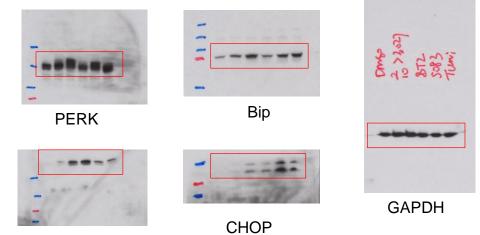

Supplementary Figure 14: Capzimin induces an unfolded protein response in 293T cells. 293T cells were treated for 8 hours with different concentrations of Capzimin (2 or 10 μ M), BTZ (1 μ M), the p97/VCP inhibitor CB5083 (10 μ M), or Tunicamycin (2 μ g/ml) and cell lysates were fractionated by SDS-PAGE and immunoblotted with antibodies against PERK, Bip, Xbp1s, CHOP and actin , as indicated.


Supplementary Figure 15: Summary of GI_{50} values from NCI60 screen. The average GI50 (3.3 μ M) was set to zero, and the sensitivity of individual cell types relative to the average is plotted on a linear scale.

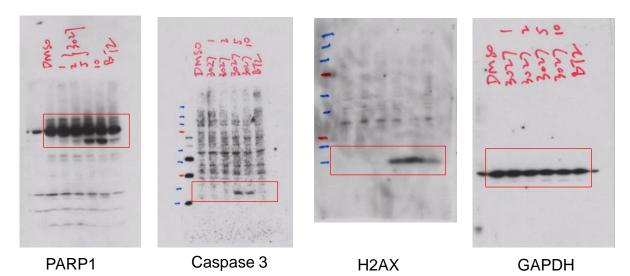
Supplementary Figure 16: Cells lacking Nrf1 are more sensitive to 3021. WT (black) or *nfe2l1*^{-/-} MEF cells (red) were treated with different concentrations of **3021** for 72 hours and then mixed with CellTiter-Glo reagent to quantify viable cells. Measured luminescence values were normalized to DMSO control and data were fitted to a dose-response equation to determine the GI50. Error bars represent s.d., n=3.


Supplementary Figure 17: Comparison of the effects of CZM and BTZ treatment on ubiquitination site occupancy and protein level. Venn diagram of the data from the proteomic experiment, showing comparison of the effects of capzimin (orange) and bortezomib (gray) on ubiquitination sites (a, b) and protein levels (c, d).

Supplementary Figure 18: Largest changes in ubiquitination site occupancy upon treatment with Capzimin . Bar graphs of the data from the proteomic experiment, showing the ubiquitination sites that showed the largest change in occupancy upon treatment with capzimin. Top panel: sites with p-value ≤ 0.005 . Bottom panel: sites with p-value between 0.05 and 0.005.



Supplementary Figure 19: Largest changes in protein levels upon treatment with capzimin. Bar graphs of the data from the proteomic experiment, showing the proteins that showed the largest change in abundance upon treatment with capzimin. Top panel: proteins that increased in level. Bottom panel: proteins that decreased in level. Yellow bars: proteins with p-value ≤0.005. Red bars: proteins with p-value between 0.05 and 0.005.


Supplementary Figure 20: Capzimin promoted accumulation of DNAJB4. 293T cells were treated with different concentrations of capzimin (2 or 10 μ M), BTZ (1 μ M), CB5083 (10 μ M), or Tunicamycin (2 μ g/ml) for 8 hrs. Western blot analyses were performed using antibodies against DNAJB4 and β -actin.

For Fig. 3d

Xbp1s

For Fig. 4c

