File name: Supplementary Information **Description**: Supplementary Figures, Supplementary Tables and Supplementary References

File name: Supplementary Data 1 Description: Dataset for two-way ANOVA analysis

File name: Peer Review File Description:

Primer ID	Primer Sequence $(5' \rightarrow 3')$	Purpose		
JG01	ATTATGCCTCTCCCGAATTCATGCATCATTTTGTCCCTGAC	Cloning PIF1 coding region into		
JG02	TTCTCGAGTCGGCCGAATTCTTAACCTGTTGTGTGGGTTTC	pJG4-5 vector for Y1H		
JG03	ATTATGCCTCTCCCGAATTCATGCCTCTGTTTGAGCTTTTC	Cloning PIF3 coding region into		
JG04	TTCTCGAGTCGGCCGAATTCTCACGACGATCCACAAAACTG	pJG4-5 vector for Y1H		
JG05	ATTATGCCTCTCCCGAATTCATGGAACACCAAGGTTGGAG	Cloning PIF4 coding region into		
JG06	TTCTCGAGTCGGCCGAATTCCTAGTGGTCCAAACGAGAACCG	pJG4-5 vector for Y1H		
JG07	ATTATGCCTCTCCCGAATTCATGGAACAAGTGTTTGCTG	Cloning PIF5 coding region into		
JG08	TTCTCGAGTCGGCCGAATTCTCAGCCTATTTTACCCATATG	pJG4-5 vector for Y1H		
U01	ATTCGAGCTCGGTACCCGGG AGTGACAGATCCAACGGCAG	Cloning MIR156A promoter into		
U02	TCGACAGATCCCCGGGGTTTCTTTGCGTTTCTCTTGTC	pLacZi2µ vector for Y1H		
U03	ATTCGAGCTCGGTACCCGGG ATAAGTGCAGAGTCTAAGAC	Cloning MIR156B promoter into		
U04	TCGACAGATCCCCGGGGTTTTCTCTGTTGCATTCCTC	pLacZi2µ vector for Y1H		
U05	ATTCGAGCTCGGTACCCGGG CAGTGCCCTGAATGGATTACAC	Cloning MIR156C promoter into		
U06	TCGACAGATCCCCGGGGAGAGGAGAAGAGAGAGAAG	pLacZi2µ vector for Y1H		
U07	ATTCGAGCTCGGTACCCGGG TAACTCTCTCTCTCTCTCTCTC	Cloning MIR156D promoter into		
U08	TCGACAGATCCCCGGGACTTCTTTTCCCCCATCAACA	pLacZi2µ vector for Y1H		
U09	ATTCGAGCTCGGTACCCGGG CTCAACATTTCCGGTTGACTAC	Cloning MIR156E promoter into		
U10	TCGACAGATCCCCGGGCCTCCTAATTACCTTTCACAC	pLacZi2µ vector for Y1H		
U11	ATTCGAGCTCGGTACCCGGG GACACATCCACAACCACCACTC	Cloning MIR156F promoter into		
U12	TCGACAGATCCCCGGGCCATCAATTCCTCACCACTC	pLacZi2µ vector for Y1H		
U13	ATTCGAGCTCGGTACCCGGG CTGTGAAGTACATAATGGCTG	Cloning MIR156G promoter into		
U14	TCGACAGATCCCCGGGTGCTATTCCCTTACCTCCTTTAG	pLacZi2µ vector for Y1H		
U15	ATTCGAGCTCGGTACCCGGG ATCTGCTTCTTCAGTCAATTC	Cloning MIR156H promoter into		
U16	TCGACAGATCCCCGGGCTTCTTCTCGGGAGGAATAGAAG	pLacZi2µ vector for Y1H		
U17	CGAGCTCGGTACCCGGGGAACCATGCATCTGATTTACAG	Cloning SPL2 promoter into		
U18	GTCGACAGATCCCCGGGGGTTGCATATTAAAGTGTCTG	pLacZi2µ vector for Y1H		
U19	CGAGCTCGGTACCCGGGTATTCAATTAACGTTGCTCG	Cloning SPL3 promoter into		
U20	GTCGACAGATCCCCGGGGAGAAACTGAGAAACACTGTG	pLacZi2µ vector for Y1H		
U21	CGAGCTCGGTACCCGGGACCCATAGGTTATGTAAGTTAC	Cloning SPL4 promoter into		
U22	GTCGACAGATCCCCGGGAACTTAGGATCTGATCACTG	pLacZi2µ vector for Y1H		
U23	CGAGCTCGGTACCCGGGGATTCTTTCTTTAGCTGGTC	Cloning SPL5 promoter into		
U24	GTCGACAGATCCCCGGGGTGACATCCTTTGTCGATGTAG	pLacZi2µ vector for Y1H		
U25	CGAGCTCGGTACCCGGGGGTATAGTTGGATGTTCTATGGC	Cloning SPL9 promoter into		
U26	GTCGACAGATCCCCGGGGGTTCAAGTTCAACGTACACG	pLacZi2µ vector for Y1H		
U27	CGAGCTCGGTACCCGGGCATGGCGTTCTGAAACTCACTC	Cloning SPL15 promoter into		
U28	GTCGACAGATCCCCGGGGACAGAGAAAGAGATGCTTC	pLacZi2 vector for Y1H		
AD1	GGAGGCCAGTGAATTCATGCATCATTTTGTCCCTGAC	Cloning PIF1 coding region into		
AD2	CACCCGGGTGGAATTCTTAACCTGTTGTGTGGGTTTC	pGADT7 vector for Y2H		
AD3	GGAGGCCAGTGAATTCATGCCTCTGTTTGAGCTTTTC	Cloning PIF3 coding region into		

Supplementary Table 1. Primers Sequences Used in This Study

AD4	CACCCGGGTGGAATTCTCACGACGATCCACAAAACTG	pGADT7 vector for Y2H	
AD5	GGAGGCCAGTGAATTCATGGAACACCAAGGTTGGAG	Cloning PIF4 coding region into	
AD6	CACCCGGGTGGAATTCCTAGTGGTCCAAACGAGAACCG pGADT7 vector for Y2H		
AD7	GGAGGCCAGTGAATTCATGGAACAAGTGTTTGCTG	Cloning PIF5 coding region into	
AD8	CACCCGGGTGGAATTCTCAGCCTATTTTACCCATATG pGADT7 vector for Y2H		
BK1	CATGGAGGCCGAATTCATGGAGTGTAATGCAAAGC	Cloning SPL2 coding region into	
BK2	GGATCCCCGGGAATTCTCAGTTATAAAACTGGTTCA	pGBKT7 vector for Y2H	
BK3	CATGGAGGCCGAATTCATGAGTATGAGAAGAAGCAAAG	Cloning SPL3 coding region into	
BK4	GGATCCCCGGGAATTCTTAGTCAGTTGTGCTTTTC	pGBKT7 vector for Y2H	
BK5	CATGGAGGCCGAATTCATGGAGGGTAAGAGATCAC	Cloning SPL4 coding region into	
BK6	GGATCCCCGGGAATTCCTATCTAATCTGTGGTCGC	pGBKT7 vector for Y2H	
BK7	CATGGAGGCCGAATTCATGGAGGGTCAGAGAACAC	Cloning SPL5 coding region into	
BK8	GGATCCCCGGGAATTCTTATCTGATCTGTGGTCGCTTG	pGBKT7 vector for Y2H	
BK9	CATGGAGGCCGAATTCATGGAGATGGGTTCCAACTC	Cloning SPL9 coding region into	
BK10	GGATCCCCGGGAATTCTCAGAGAGACCAGTTGGTATG	pGBKT7 vector for Y2H	
BK11	CATGGAGGCCGAATTCATGGACTGCAACATGGTATC	Cloning SPL10 coding region into	
BK12	GGATCCCCGGGAATTCTCAGATGAAATGACTAGGG pGBKT7 vector for Y2H		
BK13	CATGGAGGCCGAATTCATGGACTGCAACATGGTATC	Cloning SPL11 coding region into	
BK14	GGATCCCCGGGAATTCCTATTTTGGTACAACATCAT	pGBKT7 vector for Y2H	
BK15	CATGGAGGCCGAATTCATGGAGTTGTTAATGTGTTC	Cloning SPL15 coding region into	
BK16	GGATCCCCGGGAATTCTCAAAGAGACCAATTGAAATG	pGBKT7 vector for Y2H	
Mut01	ACATGATGTTTTGTCAAAAAAGGGTTTAGAAGATTTCTAAGGTC		
Witton	ATCTTACAGTGAGTGGGTGTTTAATTAACTTCATTAAAGT	Mutagenesis of the G-box of	
Mut02	ACTTTAATGAAGTTAATTAAACACCCACTCACTGTAAGATGACC	MIR156B promoter	
	TTAGAAATCTTCTAAACCCTTTTTTGACAAAACATCATGT		
16.02	AATATTAATTTTTCTAATTAAACTCTTTTCAAGTGAAACTAATAAC		
Mut03		Mutaganagia of the Chay of	
		Millagenesis of the G-box of MIR156D promoter	
Mut04	AATGACCTGTTATTAGTTTCACTTGAAAGAGTTTAATTAGAAAA	million promoter	
Mutor	АТТААТАТТ		
16.05	CGTGGTCAGCCCCTGAGGAGAAGGTCAGTGGGAACGAATATGC		
Mut05	CGCCC	Mutagenesis of the first G-box of	
Mut06	GGGCGGCATATTCGTTCCCACTGACCTTCTCCTCAGGGGCTGAC	MIR156E promoter	
	CACG		
Mut07 Mut08	CTTTCCACTTTCGGCGTGGGAATAGGTCAGTCAGCCCCTGAGG		
	AGACACGTG	Mutagenesis of the second G-box of	
	CACGTGTCTCCTCAGGGGCTGACTGACCTATTCCCACGCCGAA	<i>MIR156E</i> promoter	
Mut09	GTCCAACCCTA	Mutagenesis of the G-box of	
Mut10	TAGGGTTGGACGACGAACAAACCCCATTACGATGACCTACAGG	MIR156F promoter	
		l	

	CTGGGCATTCTC			
Mut l l	TACAGGGCCCACTTTTTATTTCGTCAATAGGAGGTCATTGATTTA			
	GATTGACACGAGTCGAGTATATAGATAG	Mutagenesis of the G-box of		
Mut12	CTATCTATATACTCGACTCGTGTCAATCTAAATCAATGACCTCCTA	MIR156H promoter		
	TTGACGAAATAAAAAGTGGGCCCTGTA			
GUS01	TTGCATGCCTGCAGGTCGACATAAGTGCAGAGTCTAAGAC	Cloning MIR156B promoter into		
GUS02	GGGGATCCTCTAGAGTCGACGTTTTCTCTGTTGCATTCCTC	pBI101 vector		
GUS03	TTGCATGCCTGCAGGTCGACTAACTCTCTCTCTCTCTCTC	Cloning MIR156D promoter into		
GUS04	GGGGATCCTCTAGAGTCGACACTTCTTTTCCCCCATCAACA	pBI101 vector		
GUS05	TTGCATGCCTGCAGGTCGACCTCAACATTTCCGGTTGACTAC	Cloning MIR156E promoter into		
GUS06	GGGGATCCTCTAGAGTCGACCCTCCTAATTACCTTTCACAC	pBI101 vector		
GUS07	TTGCATGCCTGCAGGTCGACGACACATCCACAACCACCACTC	Cloning MIR156F promoter into		
GUS08	GGGGATCCTCTAGAGTCGACCCATCAATTCCTCACCACTC	pBI101 vector		
GUS09	TTGCATGCCTGCAGGTCGACATCTGCTTCTTCAGTCAATTC	Cloning MIR156H promoter into		
GUS10	GGGGATCCTCTAGAGTCGACCTTCTTCTCGGGAGGAATAGAAG	pBI101 vector		
OE01	GATCCCCGGGTACCGAGCTCAGAAGAGGGAGAGATGGTGA	Cloning MIR156B fragment into		
OE02	GATCGGGGAAATTCGAGCTCTCAAGCAGGCAGAGATAGG	pCPB1-1 vector for overexpression		
OE03	GATCCCCGGGTACCGAGCTCCATCGGTTTCTGGACTAATTG	Cloning MIR156D fragment into		
OE04	GATCGGGGAAATTCGAGCTCCATAACTAGAACAATGGAATAAG	pCPB1-1 vector for overexpression		
OE05	GATCCCCGGGTACCGAGCTCCAAAGATAGAAAGATGTAAGGTC	Cloning MIR156E fragment into		
OE06	GATCGGGGAAATTCGAGCTCGCTTCATCGTACGTTATAGATC	pCPB1-1 vector for overexpression		
OE07	GATCCCCGGGTACCGAGCTCGGTATCCGTATATCTCTATAT	Cloning MIR156F fragment into		
OE08	GATCGGGGAAATTCGAGCTCCTAAATGAAATGCTGTAGAGAG	pCPB1-1 vector for overexpression		
OE09	GATCCCCGGGTACCGAGCTCGAAGAGGTAAGAAAGTGAAAGG	Cloning <i>MIR156H</i> fragment into		
010)	GA			
OE10	GATCGGGGAAATTCGAGCTCTCTCAGAATCTTGAACAAAAGC	perbi-i vector for overexpression		
Q01	GTTAAAACTCAGATCTAACACAAAG	aPCR of primary MIR1564		
Q02	GAGAACGAAGACAGGCCAAAG	qPCK of primary <i>MIR156A</i>		
Q03	AGAGGGAGAGATGGTGATTGAGGAATG	aPCR of primary MIR156R		
Q04	GAGAGGTCAAGCAGGCAGAGATAGG	qrck of primary MIRISOB		
Q05	ACTCCAACACCTTCAAAGTCTGC	aPCP of primary MIR156C		
Q06	GAGAGAGAAAGTGAGAGATGGGAAC	qPCK of primary <i>MIR156C</i>		
Q07	CAGAAGAGAGTGAGCACACAAAGGG	aPCP of primary MIP156D		
Q08	GTGAGCACGCAAAAGCAACCATATAC	qrCK of primary MIRT50D		
Q09	GGTCTAGAGTCTTGTTCTTAATCCCC	aDCD of primary MID156E		
Q10	CCTAATTACCTTTCACACTCTACGC	qPCK of primary MIRTSOL		
Q11	TGGTGAGGAATTGATGGTGACA			
Q12	CCTTCAAATATGCAAGAAAGCCAC	qPCR of primary <i>MIR156F</i>		
Q13	GGGACCGAGGCTAATATAACATCAA	qPCR of primary <i>MIR156G</i>		
Q14	ATGCTAGAAAAAGAGCCATGTGTGC			
Q15	AGCACAACCTGGGATTAGCAAA qPCR of primary <i>MIR156H</i>			

Q16	AACATACGCTCATGACACGATCA		
Q17	CGCTGACAGAAGAGAGTGAGCAC	qPCR of mature <i>MIR156</i>	
Q18	AGATTTCCGATACCGAGCACA	DOD CODIA	
Q19	TTGGAGGTTGCTTGAGGGATG QPCK of SPL2		
Q20	ACCGCGGATATGAGCAAAGCCA GAGCGCGTGAAACCTGCTGC qPCR of <i>SPL3</i>		
Q21			
Q22	TGGAGAAGGATCAGGTCGGAGAGG		
Q23	CAGAGTGACCGTGGCTTTTGGT	drck of SPL4	
Q24	GGTCAGAGAACACAACGCCGGG		
Q25	CCTGGCACAGTCGCGATGGA	drek of <i>SrLS</i>	
Q26	CCACGGAAGTATCCTCCATTT		
Q27	TATTCCTGCTTCACATCACCA	drck of SPL0	
Q28	CAGGCAGACTGTTCACCAGA	aDCD of SDL7	
Q29	AGTTTGACGGGACCTGAATG	qrCK of SFL/	
Q30	CAAGGTTCAGTTGGTGGAGGA	aDCD of SDL0	
Q31	TGAAGAAGCTCGCCATGTATTG	drek of <i>SrLy</i>	
Q32	AGCACCCTCTCTTTCTCTGCGT	aDCP of SPL 10	
Q33	CGGCCACGGGAGTGTGTTTGAT	qr CK 01 Sr L10	
Q34	CACTTATGATACAAAGCCTAGACAA	aDCP of SPL 11	
Q35	GGGGATCCGAAGAGGTTGACA	qr CK 01 Sr L11	
Q36	GGGAAATAGTCTTGTAAGCGTTGC	aPCP of SPL 13	
Q37	TGGGACAAAGAAAGTGGTGGT	ф СК 01 <i>51 L15</i>	
Q38	GTGGTCAACCGCAAGATCAGT	aPCP of SPL 15	
Q39	TGAGCCATTGTAACCTTATCG	ф скон <i>ы</i> 115	
Q40	TATCGGATGACGATTCTTCGTGCAG	aPCP of PP14	
Q41	GCTTGGTCGACTATCGGAATGAGAG		
Q42	AACACCCACTCACTGTAAG	ChIP PCP of MIR156R fragment	
Q43	GAGGATGGTAGATAGGAGC		
Q44	TAGGGTTTTGGAGAGATCTG	ChIP_PCR of <i>MIR</i> 56R fragment	
Q45	GCCAAATTTGAGAGAGAGAG		
Q46	CTTCCTTATTCCATTGTTC	ChIP_PCR of <i>MIR</i> /56D fragment	
Q47	TTGTGTTCTTATCTGTCTC		
Q48	ATCTGTACTTGTGTCATG	ChIP-PCR of <i>MIR156D</i> fragment	
Q49	GAGAGTGAGCACGCAAAAGC		
Q50	ATGAGATGACCCACTTGAC	ChIP-PCR of <i>MIR156E</i> fragment	
Q51	TGACCACAGACAGAACAAG		
Q52	CGACAGGTCTCAGTTTCTTC	ChIP-PCR of <i>MIR156E</i> fragment	
Q53	GTGACAGAGAGAGAGAGAGC		
Q54	AACACAAACCGAAACCCAC ChIP_PCR of <i>MIR156E</i> fragment		
Q55	ATCTTGTGATGGTTATGGG		
Q56	AGGTATCCGTATATCTCTA	ChIP_PCR of MIR156F fragment	
Q57	GAGAAGGGGGTGACGGATAG		
Q58	TTGCTCTCTCGCCACAAG	ChIP-PCR of MIR156H fragment	

Q59	GTCGGAAGTTGCTTTCACG		
Q60	CTATCACACACTATAGCCG		
Q61	CGCAATGATGGTGGCAGAAG	- ChIP-PCR of <i>MIR156H</i> fragment	
Q62	CAACGAACAAATCACAGAAAACATG	ChIP-PCR of <i>PP2A</i>	
Q63	AAAGGTAAAGAAGACAGCAACGAATT		
P01	TGGATCCCCGGAATTCGAAGTTCATAATCTCTCAGAAAGG	Cloning PIF5 bHLH domain into	
P02	GTCGACCCGGGAATTCTCATTGGAGTTGCATTTGAAGTGAT	pGEX-4T-1 vector	
S01	GATCCATCGATAGTACTGTCGACATGCATCATTTTGTCCCTGAC	Cloning PIF1 coding region into	
S02	GGAGCGGTACCCTCGAGGTCGACTTAACCTGTTGTGTGGTTTC	pSPYCE vector	
S03	GATCCATCGATAGTACTGTCGACATGCCTCTGTTTGAGCTTTTC	Cloning <i>PIF3</i> coding region into	
504	GGAGCGGTACCCTCGAGGTCGACTCACGACGATCCACAAAACT		
504	G	por i CE vector	
S05	GATCCATCGATAGTACTGTCGACATGGAACACCAAGGTTGGAG		
506	GGAGCGGTACCCTCGAGGTCGACCTAGTGGTCCAAACGAGAAC	rSPVCE votor	
300	CG	psr i CE vector	
S07	GATCCATCGATAGTACTGTCGACATGGAACAAGTGTTTGCTG	Cloning PIF5 coding region into	
S08	GGAGCGGTACCCTCGAGGTCGACTCAGCCTATTTTACCCATATG	pSPYCE vector	
GR01	GAGATCGAATTCCCATGGATAAGTGCAGAGTCTAAGAC	Cloning MIR156B promoter into	
GR02	TTTTGGCGTCTTCCATGGTTTTCTCTGTTGCATTCCTC	GTTTTCTCTGTTGCATTCCTC pGREEN 0800 vector	
GR03	GAGATCGAATTCCCATGGATGCGTGTGTGTGTTTGTGTC	Cloning MIR156D promoter into	
GR04	TTTTGGCGTCTTCCATGGCACAAGTACAGATCGAAGG	pGREEN 0800 vector	
GR05	GAGATCGAATTCCCATGGCTCAACATTTCCGGTTGAC	Cloning MIR156E promoter into	
GR06	TTTTGGCGTCTTCCATGGCCTCCTAATTACCTTTCAC	pGREEN 0800 vector	
GR07	GAGATCGAATTCCCATGGGACACATCCACAACCACCACTC	Cloning MIR156F promoter into	
GR08	TTTTGGCGTCTTCCATGGCCATCAATTCCTCACCACTC	pGREEN 0800 vector	
GR09	GAGATCGAATTCCCATGGATCTGCTTCTTCAGTCAATTC	Cloning MIR156H promoter into	
GR10	TTTTGGCGTCTTCCATGGCTTCTTCTCGGGAGGAATAG	pGREEN 0800 vector	
F01	CATATTCGTTCCCACCACGTGTCTCCTCAGGGGCTGACCACGTG		
LUI	ATTCCCACGCCGAAAG	Probe for MIR156E EMSA	
E02	CTTTCGGCGTGGGAATCACGTGGTCAGCCCCTGAGGAGACACG		
E02	TGGTGGGAACGAATATG		
E03	CATATTCGTTCCCACTGACCTTCTCCTCAGGGGCTGACTGA	Mutant probe for MIR156E EMSA	
200	ATTCCCACGCCGAAAG		
E04	CTTTCGGCGTGGGAATAGGTCAGTCAGCCCCTGAGGAGAAGGT		
	CAGTGGGAACGAATATG		
E05	AACAAACCCCATTACGACACGTGACAGGCTGGGCATTCTCCAC	Probe for MIR156F EMSA	
105	ATGCTTTCTTGCCGAAA		
E06	TTTCGGCAAGAAAGCATGTGGAGAATGCCCAGCCTGTCACGTG		
200	TCGTAATGGGGTTTGTT		
E07	AACAAACCCCATTACGATGACCTACAGGCTGGGCATTCTCCACA		
	TGCTTTCTTGCCGAAA	Mutant probe for MIR156F EMSA	
E08	TTTCGGCAAGAAAGCATGTGGAGAATGCCCAGCCTGTTGACCT		
200	TCGTAATGGGGTTTGTT		

	Length	G-box (5' CACGTG3')	PBE (5' CACATG3')
pSPL2	3257 bp	1	2
pSPL3	2917 bp	1	2
pSPL4	3077 bp	1	2
pSPL5	2744 bp	1	0
pSPL9	3021 bp	0	5
pSPL10	1747 bp	0	0
pSPL11	2738 bp	0	0
pSPL15	1252 bp	0	1

Supplementary Table 2. The number of G-box or PBE in putative SPL promoters

Supplementary Figure 1. Phenotypic analysis of adult *PIF* overexpessors in response to simulated shade

(a) The plant height and rosette-leaf branches between the adult *PIF* overexpessors, *pifq* and wild type plants grown under normal high R:FR (WL) conditions and simulated shade (EOD-FR) conditions. Eight-day-old seedlings grown under WL were transferred into the soil under WL conditions with or without EOD-FR treatment for four weeks before phenotypic analysis. Bar=10 cm. (b) Quantification of plant height and rosette-leaf branches of the *PIF* ovexpressors, *pifq* and wild type. Values given are means \pm SD (n=12). Different letters indicate significant differences by two-way ANOVA.

Supplementary Figure 2. Overexpressors of *MIR156* members show similar phenotypes

Overexpressors of *MIR156B*, *MIR156D*, *MIR156E*, *MIR156F* and *MIR156H* shows more rosette leaves, prolonged expression of juvenile vegetative traits and late flowering compared with wild type. Values given are means \pm SD (n=12). *P<0.05 and **P<0.01 by a Student's *t*-test. Arrow indicates the bolting. Bar=2 cm.

Supplementary Figure 3. Phenotypic analysis of *MIR156* overexpressor in response to simulated shade

(a) The plant height and rosette-leaf branches of *MIR156* overexpessor and wild type plants grown under high R:FR (WL) conditions or treated with EOD-FR. Eight-day-old seedlings grown under WL were transferred into the soil under WL conditions with or without EOD-FR treatment for four weeks before phenotypic examination. Bar=10 cm. (b) Quantification of plant height and rosette-leaf branches of *MIR156* overexpessor and wild type plants. Values given are means \pm SD (n=12). Different letters indicate significant differences by two-way ANOVA.

Supplementary Figure 4. Increased accumulation of PIF proteins and up-regulation of representative shade-avoidance marker genes in response to EOD-FR treatment

(a) PIF protein accumulation in the PIF-OE lines rapidly increases when exposed to EOD-FR treatment. Two-week-old seedlings over-expressing MYC or HA -tagged PIF proteins (PIF1-MYC, PIF3-MYC, PIF4-HA and PIF5-HA) grown under normal high R:FR conditions were exposed to EOD-FR for 15 minutes and harvested at the given time points before immunoblot analysis. Tubulin was used as the internal control. W: white light; E: EOD-FR. (b) qRT-PCR showing that expression of shade-avoidance marker genes are up-regulated in response to the EOD-FR treatment.

Eight-day-old wild type seedling grown under high R:FR were treated with 15-minute EOD-FR and harvested at the given time points for RNA extraction. Values given are means \pm SD (n=3). *P<0.05 and **P<0.01 by a Student's *t* -test. (c) PIFs up-regulate the expression of shade-avoidance marker genes. The expression was determined by quantitative RT-PCR in 8-day-old seedlings grown under high R:FR conditions. *PP2A* was used as reference gene. Values given are means \pm SD (n=3). *P<0.05 and **P<0.05 and **

Supplementary Figure 5. The primary transcript level of *MIR156* declines while several *MIR156* targeted *SPLs* increase when exposed to EOD-FR treatment (a) The relative expression levels of individual primary *MIR156* in 2-week-old wild type seedlings grown under WL or treated with EOD-FR. Values given are means \pm SD (n=3). *P<0.05 and **P<0.01 by a Student's *t* -test. (b) GUS staining of 8-day-old *pMIR156::GUS* seedlings grown under high R:FR conditions or treated with EOD-FR. EOD-FR treatment led to a significant reduction of GUS staining in the seedlings. Bar=200 μ m. (c) Fluorometric quantification of GUS activity. Relative activity is normalized to the protein content in the plant extracts. Activities are plotted as percent of activity in the controls (WL). Homozygous T3 transgenic plants were used in the assay. Values given are means \pm SD (n=3). *P<0.05 and **P<0.01 by a Student's *t* -test. (d) Comparison of *SPL* genes expression levels between WL and EOD-FR conditions. Eight-day-old wild type seedlings grown under WL conditions were treated with or without EOD-FR for 6 days and then harvested for RNA extraction and quantitative RT-PCR analyses. Values given are means \pm SD (n=3). *P<0.05 and **P<0.01 by a Student's *t*-test.

Supplementary Figure 6. All putative *MIR156* promoters harbor the putative PIF binding elements (G-box or PBE-box)

Around 3-kb upstream promoter regions of each *MIR156* gene were obtained from TAIR (The Arabidopsis Information Resource, www.arabidopsis.org) to search for the PIF binding site G-box (5'-CACGTG-3') or PBE-box (5'-CACATG-3'). The position of the first base of each mature *miR156* was designed +1 in this study. The arrow pairs indicate the fragments amplified by ChIP-PCR in this study.

a	pMIR156B	-428	acacccactcactgtaaga CACGTG tagaaatcttctaaaccctt -383
	pMIR156Bm	-428	acacccactcactgtaaga TGACCT tagaaatcttctaaaccctt -383
	pMIR156D	-1622	gaaaagaattttcatgcaa CACATG gttattagtttcacttgaaa -1577
	pMIR156Dm	-1622	gaaaagaattttcatgcaa TGACCT gttattagtttcacttgaaa -1577
	pMIR156E	-1542	ttcgttcccacCACGTGtctccccaggggctgacCACGTGattcc-2497
	pMIR156Em	-1542	ttcgttcccacTGACCTtctccccaggggctgacTGACCTattcc-2497
	pMIR156F	-2809	cgaacaaaccccattacga CACGTG acaggctgggcattctccac -2764
	pMIR156Fm	-2809	cgaacaaaccccattacga TGACCT acaggctgggcattctccac -2764
	pMIR156H	-776	ctcgtgtcaatctaaatcaa CACGTG cctattgacgaaataaaaa -731
	pMIR156Hm	-776	ctcgtgtcaatctaaatcaa TGACCT cctattgacgaaataaaaa -731

Supplementary Figure 7. Mutagenesis of the G-box in the *MIR156* promoters and quantification of PIF binding activity.

(a) Mutagenesis of the G-box in the *MIR156* promoters. The G-box (5'-CACGTG-3') or PBE-box (5'-CACATG-3') was mutated into 5'-TGACCT-3' in this study. (b) Quantification of activity of PIF binding to *MIR156* prompters. At least 6 independent yeast clones were used for activity determination. Values given are means \pm SD (n \geq 6). *P<0.05 and **P<0.01 by a Student's *t*-test.

Supplementary Figure 8. SDS-PAGE analysis of purified GST and recombinant GST-PIF5 bHLH domain proteins.

The truncated fragment of *PIF5* cDNA encoding the bHLH domain (52 aa, Glu₂₅₉ -Gln₃₁₀) was PCR amplified and cloned into the vector GEX-4T-1 to generate pGEX-4T-PIF5 construct for GST-PIF5 bHLH domain fusion protein. M: molecular mass standard; Line 1 and 2: *Escherichia coli* BL21 (DE3) harboring GST without or with induction by IPTG, respectively; Line 3: purified GST proteins; Line 4-5: *Escherichia coli* BL21 (DE3) harboring recombinant GST-PIF5 bHLH domain without or with induction by IPTG, respectively; Line 6: purified recombinant GST-PIF5 bHLH domain proteins.

Supplementary Figure 9. PIFs repress the expression of several *MIR156* genes. (a) PIF1, PIF3 and PIF4 repress the expression of *MIR156B*, *MIR156D*, *MIR156E*, *MIR156F and MIR156H* in transient expression assay. Representative images of *N*. *benthamiana* leaves 72 hours after infiltration are shown. (b) Quantitative analysis of luminescence intensity in (A). Five independent determinations were assessed. Values given are means \pm SD (n=5). *P<0.05 and **P<0.01 by a Student's *t*-test.

Eight-day-old wild type, *PIF* overexpressors and *pifq* grown in normal WL conditions were harvested at the same time for RNA extraction and quantitative RT-PCR analyses. Values given represent means \pm SD (n=3). *P<0.05 and **P<0.01 by a Student's *t*-test.

Supplementary Figure 11. *MIR156s* act downstream of *PIFs* in regulating SAS (a) The plant height and rosette-leaf branch number of the adult wild type, *PIF5-OE*, *pifq*, *MIR156-OE*, *MIM156*, and their higher order mutants grown under WL with or without EOD-FR treatment. Eight-day-old seedlings grown under WL were transferred into the soil under WL conditions with or without EOD-FR treatment for four weeks before phenotypic examination. Bar=10 cm. (b) Quantification of the plant height and rosette-leaf branch number of the adult wild type, *PIF5-OE*, *pifq*, *MIR156-OE*, *MIM156*, and their higher order mutants grown under WL with or without EOD-FR treatment. Values given are means \pm SD (n=12). Different letters indicate significant differences by two-way ANOVA.

Supplementary Figure 12. No direct binding of PIFs to SPL promoters was detected.

Yeast one-hybrid assay showing that there was no direct binding of PIFs to the promoters of *miR156*-targeted *SPLs* genes. The binding of FHY3 to the *ELF4* promoter was used as a positive control (Li et al., 2011).

Supplementary Figure 13. No interaction between PIFs and SPLs was detected. Yeast two-hybrid assay showing that there was no interaction between PIFs and SPLs. Seven *miR156*-targeted SPLs were used in this assay. The interaction between pGADT7-T and pGBKT7-53 was used as a positive control.

Supplementary Figure 14. The original full images of immunoblots used to prepare figures.

Supplementary Reference

Li, G. *et al.* Coordinated transcriptional regulation underlying the circadian clock in *Arabidopsis. Nat Cell Biol.* **13**, 616–622 (2011).