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SUMMARY

Current tools for visualization and integration of pro-
teomicswith other omics datasets are inadequate for
large-scale studies and capture only basic sequence
identity information. Furthermore, the frequent refor-
matting of annotations for reference genomes
required by these tools is known to be highly error
prone. We developed PoGo for mapping peptides
identified through mass spectrometry to overcome
these limitations. PoGo reduced runtime and mem-
ory usage by 85% and 20%, respectively, and ex-
hibited overall superior performance over other tools
on benchmarking with large-scale human tissue
and cancer phosphoproteome datasets comprising
�3 million peptides. In addition, extended function-
ality enables representation of single-nucleotide
variants, post-translational modifications, and quan-
titative features. PoGo has been integrated in estab-
lished frameworks such as the PRIDE tool suite and
OpenMS, as well as a standalone tool with user-
friendly graphical interface. With the rapid increase
of quantitative high-resolution datasets capturing
proteomes and global modifications to complement
orthogonal genomics platforms, PoGo provides a
central utility enabling large-scale visualization and
interpretation of transomics datasets.

INTRODUCTION

Mass spectrometry (MS) and next-generation sequencing tech-

nologies have vastly improved our understanding of the cross-

talk between genome, transcriptome, and proteome and

contribute to a better understanding of the variations between

healthy and disease states. Examples are the identification of

new therapeutic target kinases in breast cancer (Mertins et al.,

2016) and detection of differentially regulated pathways and

functional modules potentially enabling patient stratification in

ovarian cancer to inform therapeutic management (Zhang

et al., 2016).

Substantial advances in MS technologies enable more com-

plete identification and quantification of proteomes, making

these data more comparable with transcriptomics (Aebersold
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and Mann, 2016). Tools to readily visualize proteomics with cor-

responding RNA-sequencing data on a reference genome are

now increasingly indispensable. Numerous approaches have

been implemented such as Proteogenomic Mapping Tool

(Sanders et al., 2011), PGNexus (Pang et al., 2014), PGMiner

(Has et al., 2016), ACTG (Choi et al., 2016), ProteoAnnotator

(Ghali et al., 2014), ProBamSuite (Wang et al., 2016), iPiG (Kuhr-

ing and Renard, 2012), and PGx (Askenazi et al., 2016). Key attri-

butes such as mapping reference (proteome or genome), grade

of integration with other proteomics tools, and support of online

and offline browsers through output formats distinguish the ap-

proaches (Figure 1E). While iPiG, for example, heavily relies on

the annotation format used for UCSC genes, PGx uses sam-

ple-specific protein sequence databases derived from RNA-

sequencing experiments and corresponding genomic coordi-

nates. Both tools, however, require reformatting of a reference

genome annotation in order to enable their mapping. Reference

genome annotation is frequently updated and reformatting new

versions by users is a recurrent source of errors that propagate

to the proteogenomic mapping. Consequentially, reformatting

reference genome annotation prevents efficient and accurate

use of these tools.

RESULTS

We developed PoGo to allow direct mapping to reference anno-

tations and improve the speed and quality of mapping. PoGo le-

verages the annotated protein coding sequences (CDS) together

with a reference protein sequence database (protein-DB) to map

peptides to their genomic loci. Firstly, PoGo maps the genomic

coordinates of CDSs onto the protein (Figure 1B), thereby con-

necting the protein sequences to the genomic coordinate space.

Database search tools enable peptides to be identified from MS

using a protein-DB (Perez-Riverol et al., 2014). By using the

PoGo-indexed database, genomic coordinates of a peptide

are retrieved based on the peptide’s position within the protein

(Figure 1A and STAR Methods). PoGo further takes advantage

of distinct attribute columns of the output file formats, such

as color, to indicate the uniqueness of a peptide across the

genome, to show positions of post-translational modifications,

to allow quantitative comparison between multiple samples

and conditions linking this information to transcripts and genetic

loci (Figure 2 and STAR Methods). The main genome browsers,

Ensembl (Kent et al., 2002), UCSC (Yates et al., 2016), and

BioDalliance (Down et al., 2011), however, have file size limits

for direct upload insufficient for large-scale proteogenomics.
Published by Elsevier Inc.
commons.org/licenses/by/4.0/).

mailto:christoph.schlaffner@sanger.ac.uk
http://dx.doi.org/10.1016/j.cels.2017.07.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cels.2017.07.007&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Figure 1. Schema of the PoGo Algorithm for Mapping Peptides through Proteins to Genomic Loci

(A) Transcript annotation (GTF) and translated sequences (FASTA) form the reference input for PoGo. Standardized proteomics formats are converted into

proprietary tab-separated format with minimal peptide information. All four output formats of PoGo contain genomic alignment supplemented with specifications

for uniqueness of mappings, quantitative information, and post-translational modifications.

(B) Annotated protein coding transcripts in GTF format and respective translated protein sequences in FASTA format are integrated by PoGo through inter-

mediate coordinates (turquoise), representing the exonic structure of the transcript within the protein.

(C) Peptides, identified through searching mass spectrometry data against the protein sequence database, are mapped against the proteins (see also Figure S4).

The position within the proteins then allows retrieval of overlapping coding exons and enables the calculation of the exact genomic coordinates.

(D) Examplemappings of PoGo for the overlapping repeat peptide VPEPGCTKVPEPGCTK in a genome browser (0 mismatches). Application of PoGo allowing for

up to two mismatches results in identification of two additional repeats (1 and 2 mismatches, red boxes; see also Figures S1, S5, and S6). The additional

mappings of the initial peptide sequence were validated through peptides of the exact sequence identified in the same mass spectrometry experiment (vali-

dation). Leucine (L) and isoleucine (I) are substituted through their common single-letter code ‘‘J.’’

(E) Comparison of different peptide-to-genome mapping tools with regard to reference sequence type, integration into frameworks, support of online and offline

genome browsers (blue). Additional features (orange) indicate the superior performance of PoGo over other tools.
Our track-hub generator application, therefore, enables seam-

less online visualization directly from PoGo output and is crucial

for open-access proteomics of large datasets.

We first evaluated PoGo’s performance on large-scale data-

sets using the proteogenomic reanalysis of the draft human pro-

teome maps (Wright et al., 2016). We used the filtered high strin-

gency level set comprising �3 million peptides across 59 adult

and fetal tissues (233,055 unique sequences). The mappings

were derived from the gene annotation set and protein coding

translation sequences for GENCODE (release 20) (Wright et al.,

2016) as GTF and FASTA files. All tools were run with standard

parameter settings and evaluated based on speed, memory us-

age, and number of unique and correct mappings. PoGo (94 s)

was 6.9 and 96.4 times faster than PGx (651 s) and iPiG (memory
error after 9,064 s), respectively, and required 20% less memory

compared with PGx (9.7 GB and 11.9 GB, respectively). These

data show a major improvement in speed and memory usage

in addition to application with a readily available reference

annotation.

In total, 89% of mappings are common between PoGo and

PGx. The 10.5% uniquely reported by PGx could be attributed

to false assignments that were resolved after shifting their frame

to insure correct alignment with the genome. PoGo resulted in 89

completely unique mappings, 72 of these were correct but

incomplete mappings to the start and end of protein sequences

that can be attributed to incompletely annotated transcripts

(CDS start/end not found). In addition, 17 unique mappings

correspond to alternative splicing, immunoglobulin genes, and
Cell Systems 5, 152–156, August 23, 2017 153



Figure 2. Visualization in the Integrative

Genomics Viewer of Different PoGo

Output Formats for the Peptide

IADPEHDHTGFLTEYVATR within the

MAPK3 Gene

Genomic coordinates are shown at the top as the

x axis. GENCODE (v20) annotations of transcripts

are indicated in blue.

(A) In addition to the genomic location of the

peptide, the GTF format also holds other infor-

mation, such as the gene name and gene identi-

fier, while the BED output visualizes uniqueness of

the mapping across the genome. Here, the red

color indicates unique mapping to a single tran-

script of MAPK3.

(B) Genomic loci of post-translational modifica-

tions within a peptide; here, phosphorylation

identified by brackets in the sequence, are de-

picted by thick blocks spanning from the first and

last modification site. The red color in this output

format indicates the presence of phosphorylation

(see also Table S1).

(C) View of log2-fold changes mapped for the

example peptide to the genomic location across

69 ovarian cancer samples (y axis). High values are

shown in red while blue indicates low log2 ratios

(see also Figure S7).
multiple overlapping mappings in a repeat region. For example,

the peptide VPEPGCTKVPEPGCTK (missed cleavage between

repeats of eight amino acids) was mapped by PGx as two

consecutive loci in the SPRR3 gene (Figure S1). PoGo, on the

other hand, mapped the sequence four times with the repeats

overlapping each other (Figure 1C). These repeat mappings

demonstrate the enhanced quality of mappings through our

tool; all occurrences of peptides within the translated protein

coding sequences are correctly identified.

The fast and diverse mapping capabilities of PoGo, as

shown above, prompted the current integration of the algo-

rithm into the PRIDE (Vizcaino et al., 2013) tool suite and

soon into the OpenMS framework (Wright et al., 2016). This

dataset also exemplifies the growing need to handle large

numbers of peptides. Therefore, we have generated tissue

track hubs, which are web-accessible directories of genomic

data for visualization of a large number of genome-wide data-

sets at two different significance thresholds from the draft

human proteome maps, allowing identification of genes and

transcripts unique to single tissues. The scaffolding protein
154 Cell Systems 5, 152–156, August 23, 2017
CASS4, for example, was found only in

platelets tissue track represented in the

high-significance filtered hub (Figure S2).

The peptide support for all splice junc-

tions of RBP3 was only identified with

high confidence in the retina dataset.

The corresponding genomic region is

depicted in Figure S3.

The large number of single-nucleotide

variants in individuals can affect the pro-

tein sequences and hinder identification

of peptides through database searching
against a reference genome (Vizcaino et al., 2013). Uniquely

compared with other tools, PoGo is able to account for up to

two non-synonymous variants, resulting in single amino acid

substitutions, in its mapping (Figure S4). Application with the

draft human proteome maps allowing one and two variants re-

sulted in a 1.5- and 60.8-fold increase in runtime (Figure S5).

Unique mappings to single transcripts were reduced by 5.1%

and 15.9% while the number of peptides belonging to multiple

genes increased exponentially by 220.9% and 3,175.2% (Fig-

ures S5 and S6). The mapping of additional repeats of the

sequence VPEPGCTK following application with mismatches

were validated through identified peptides in the sample (Fig-

ure 1C). This highlights the added value to PoGo for mapping

peptides to genomic loci with potential single-nucleotide

variants.

To demonstrate additional PoGo functionalities, we chose the

phosphoproteome of high-grade serous ovarian cancer with

isobaric labeling of 96 tumor samples, identifying 13,646 unique

peptideswith annotated phosphorylation sites (19,156 phospho-

peptides) (Zhang et al., 2016). PoGomapped 13,617 peptides to



15,944 genomic loci in 66.9 s; these could not be mapped by

PGx and iPiG due to phosphorylation annotation in the peptide

sequences. Only a small fraction, 0.2%, of the peptides could

not be mapped due to sequence differences of the originating

proteins between RefSeq andGENCODE databases. Compared

with the other tools, PoGo was able to use the annotated post-

translational modifications and color code them (Table S1) re-

sulting in mappings for 99.8% of the phosphopeptides with their

respective localized phosphorylation sites on the reference

genome (Figure S7).

PoGo also integrates peptide quantitation with genomic loci

through the GCT file format. This allows comparative visualiza-

tion of multiple samples in the Integrative Genomics Viewer

(Thorvaldsdottir et al., 2013) and enables downstream quantita-

tive analysis. The log2-fold changes of phosphopeptides be-

tween all 69 ovarian cancer samples and the pooled reference

were mapped with PoGo (Figure S7). As an example, MAPK3

identified with multiple phosphorylated sites in a single peptide

and the associated fold changes across samples are shown in

Figure 2. To our knowledge, PoGo is the only tool directly inte-

grating quantitative information for peptides with genomic

coordinates.

DISCUSSION

Our data show that PoGo represents a major advance for pep-

tide-to-genome mapping, making it a cornerstone component

of proteogenomics workflows. Although the examples used

here focus on human tissue and cancer cell lines, PoGo can be

applied to any proteomic study for which annotation of coding

sequences in GTF format and translated sequences in FASTA

format are available. The additional functionalities, such as

allowing up to two non-synonymous single-nucleotide variants,

mapping of post-translational modifications, and integration of

quantitation, distinguish it from other tools. Semi-standardized

file formats commonly used in genomics for input and output,

as well as the scalability for large datasets, make PoGo an indis-

pensable component of small- and large-scale multi-omics

studies. The current integration into the PRIDE tool suite and

our track-hub generator application promote open-access pro-

teogenomics, supporting studies focusing on integration of

gene, protein, and post-translational modification expression

(Alvarez et al., 2016) in the future. PoGo has been developed

to cope with the rapid increase of quantitative high-resolution

datasets capturing proteomes and global modifications. Integra-

tion of orthogonal genomics platforms with these datasets

through PoGo will be valuable for large-scale analysis such as

personal variation and precision medicine studies.
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PoGo GUI This paper https://github.com/cschlaffner/PoGoGUI
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GNU C++ compiler (gcc) 6.2.0 GNU Compiler Collection https://gcc.gnu.org

Microsoft C/C++ Optimizing Compiler 18.00.31101 Visual Studio Express 2013 https://www.microsoft.com/en-gb/download

PGx Askenazi et al. (2016) https://github.com/FenyoLab/PGx

iPiG Kuhring and Renard (2012) https://sourceforge.net/projects/ipig

fetchChromSizes.sh UCSC Genome Bioinformatics http://hgdownload.soe.ucsc.edu/admin/exe/

linux.x86_64

bedToBigBed UCSC Genome Bioinformatics http://hgdownload.soe.ucsc.edu/admin/exe/

linux.x86_64

Integrative Genomics Viewer (IGV) v2.3.68 Thorvaldsdottir et al. (2013) http://software.broadinstitute.org/software/igv/

download

UCSC Genome Browser UCSC Genome Bioinformatics http://genome.ucsc.edu

Ensembl Genome Browser Ensembl Archives http://aug2014.archive.ensembl.org

BioDalliance Genome Browser GENCODE http://www.gencodegenes.org
CONTACT FOR REAGENT AND RESOURCE SHARING

Please contact the Lead Author, Christoph Schlaffner (christoph.schlaffner@sanger.ac.uk), further information and requests for re-

sources and reagents.

METHOD DETAILS

Implementation of PoGo
PoGo is amulti-sample peptide-to-genomemapping tool taking as input tab delimited lists of peptides identified throughmass spec-

trometry (MS) with associated number of peptide-to-spectrum matches (PSMs), quantitative value and sample identifier. PoGo also

requires a reference genome annotation in the General Transfer Format (GTF) and translated protein coding sequences in FASTA

format as input. The genomic coordinates of annotated coding sequences aremapped onto their respective protein sequences. Pep-

tides identified through MS are then mapped against protein sequences accounting for up to two mismatches. The genomic coor-

dinates for each peptide are calculated based on their position within the proteins. Eachmapped peptide is additionally assigned the

associated sample identifier as well as the number of PSMs and the quantitative value. Furthermore, post-translational modifications
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annotated in the peptide sequence aremapped to their respective genomic coordinates and color coded for the type of modification.

A separate FileConverter implemented in java supports standardized PSI file formats such as mzIdentML and mzTab through use

of ms-data-core-api. (Perez-Riverol et al., 2015) Furthermore, the file converter is integrated into a java implemented graphical user

interface (GUI) for PoGo enabling non-bioinformaticians to map peptides to reference genomes.

Connecting Proteins with Genomic Coordinates

PoGo requires protein sequences and gene annotations in FASTA and GTF format, respectively. Protein sequences have to be con-

nected to genes and transcripts through type specific identifiers (IDs). For each protein sequence lines from the GTF file containing

the transcript ID and feature-type CDS (coding sequence) are extracted. The order of exons per transcript starts with the first exon in

the sequence reflecting the reading direction during translation, regardless of the strand, resulting in a reverse order of genomic co-

ordinates for transcripts on the reverse strand. This way protein sequences and the exons match directionality. The exonic structure

is mapped onto the protein sequence through construction of protein exons. Let a transcript T be a set of exons t1, t2,. tn where n is

the number of exons and each exon t contains the chromosome identifier, the start and end positions within the chromosome, St and

Et respectively, the strand on which the transcript is annotated. The corresponding protein P is defined as a set of protein exons p1,

p2,. pn, where each protein exon p contains the start and end positions, sp and ep respectively, within the protein sequence so that

the protein is mapped onto the transcript as f : P/T ; pi/ti. For each protein in the FASTA file a map of protein exons to genomic

exons is generated in PoGo.

To account for frame shifts between genomic exons ti and ti+1 each protein exon p also holds information about the number of

base pairs (bp) contributing to the codon of the first (N-term) and last (C-term) amino acid as offsets O= f1;2;3g. In general, the

N-term offset at the beginning of a protein defined asOðp1ðN termÞÞ= 3 resulting inOðpnðC termÞÞ= 3 for complete annotations of

coding transcripts. In instances where the annotation is missing a start or end codon the offsets may vary and is identified through

the annotated frame. C-term offsets OðpiðC termÞÞ for each protein exon p are calculated based on the length of the genomic

exon LðtiÞ and the offset of the N-term OðpiðN termÞÞ so that OðpiðC termÞÞ=X = LðtiÞ mod 3�OðpiðN termÞÞ+ 3 with the excep-

tion OðpiðC termÞÞ=X mod 3 for X>3. N-term offsets of following protein exons Oðpi + 1ðN termÞÞ are calculated so

that OðpiðC termÞÞ+Oðpi +1ðN termÞÞ mod 3= 0.

Identifying Proteins of Origin for Peptides

To allow fast lookup of proteins containing any given peptide PoGo creates a dictionary of words with length k (k-mer) overlapping by

k-1 amino acids from the protein sequences in the FASTA input. Associated with each k-mer is a list of protein entries containing the

associated protein with identifiers and the start position of the k-mer in the sequence. The dictionary is designed to consider leucine

(L) and isoleucine (I) as equal through substitution with the shared one letter code ‘J’ as they are not distinguishable in MS. Peptides

identified through MS are retrieved from the input file and searched against the dictionary. Thereby PoGo allows imperfect matching

with up to 2 amino acid substitutions (mismatches m) to also identify proteins with potentially underlying non-synonymous single

nucleotide variants. For peptides shorter than ðm+ 1Þ3k residues only the first word of length k is used and all combinations with

m amino acid substitutions are generated. Each new word is looked up in the dictionary. Peptides longer than ðm+ 1Þ3k are split

into consecutive k-mers and searched in the dictionary. At most m consecutive k-mers can contain amino acid substitutions leaving

one word without any substitutions allowing for perfect matching in the look-up table. The presence of the peptide in each found

protein then is validated taking into account the number of mismatches. The gene and transcript identifiers and the respective start

position within each protein are retrieved.

Retrieving Genomic Coordinates for Peptides

Peptides with associated gene and transcript identifiers and the start positions within each protein are used to calculate the

genomic coordinates. The length of the peptide sequence A with start position sA in protein P is used to calculate the end position

eA. To calculate the genomic coordinates for the peptide first the overlapping protein exons p are obtained so that

PðAÞ= fx 3Pjsx%sA%ex v sx%eA%exg. Through the mapping of protein exons to genomic exons PoGo can now retrieve the genomic

exons for the peptide sequence A through PðAÞ/TðAÞ. The genomic coordinates then are calculated as start SA =SE +dSA and end

EA =SE +dEA if the gene is on the forward strand or start SA =SE � dSA and end EA =SE � dEA if on the reverse strand with

dSA = ðsA � sP � 1Þ33+OðPðN termÞÞ and dEA = ðeA � sPÞ33+OðPðN termÞÞ � 1 denoting the distance of the genomic start and

end of the peptide, respectively, from the genomic start position SE of the genomic exon E.

Mapping Post-translational Modifications

Besides mapping peptides, PoGo is also capable of mapping post-translational modifications (PTMs) onto the genome. Post-trans-

lational modifications are commonly annotated in the peptide sequence through round brackets containing the PSI (Proteomics Stan-

dards Initiative) name of the modification following the modified amino acid. With the position of post-translational modifications in the

peptide sequence, start sPTM and end ePTM, themapping of the underlying peptide to the genome the above equations to calculate the

genomic positions are adjusted: dSPTM = ðsA + sPTM � sP � 1Þ33+OðPðN termÞÞ and dEPTM = ðsA + ePTMÞ33+OðPðN termÞÞ � 1.

Different types of PTMs are mapped separately and color coded in the output while multiple occurrences of the same PTM type,

e.g. phosphorylation, within a single peptide are combined into a single mapping using the first and last PTM sites.

Adding Quantitative Information

To allow visualization of quantitative information for peptides on a genome, PoGo records this type of information. Peptide and sam-

ple pairings may only occur once in the input file uniquely identifying a quantitation value. PoGo stores the tuples of sample identifier,

quantitative value and the number of peptide to spectrum matches (PSMs) for each peptide. This information is used in the different

output formats to allow comparative analysis.
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Generating Different Output Formats

PoGo generates output in three formats commonly used in genomics. The first and central output format of PoGo is BED. This format

stores each mapped peptide as a single line of twelve tab delimited columns. Besides chromosome coordinates, the peptide

sequence, strand as well as start and end coordinates of a thick block the start positions and lengths of peptide blocks mapping

to genomic exons are included. Additionally, BED files support individual coloring of each feature. PoGo utilizes this in two different

forms. Firstly, in the general peptide centric output of PoGo peptides are colored based on their uniqueness within the genome. Pep-

tides unique to a single transcript are colored in red while peptides shared between multiple transcripts of a single gene are shown in

black. Peptides mapping to multiple genes are indicated by their grey color. Secondly, PoGo also generates a separate BED file for

peptide forms with post-translational modifications. In this instance the thick block element is used to indicate the position of the

post-translational modification. Two or more modifications of the same type within a single peptide sequence are collapsed to indi-

cate the range between the first and last modification site. The coloring of the uniqueness per peptide in the genome is substituted to

accommodate color coding of post-translational modifications.

The second file format supported by PoGo for mapped peptides is the general transfer format (GTF). PoGo redefines some of the

feature types to accommodate mapping of peptides. The feature type ‘transcript’ is used to indicate a mapped peptide while the

feature type ‘exon’ indicates the concrete mapping of the peptide to underlying genomic exons. PoGo additionally stores information

such as the gene identifier, name and biotype for the gene as well as the number of peptide-to-spectrummatches (PSMs) and quan-

titative values for each sample in which the peptide was identified.

For comparative or quantitative analysis PoGo generates the output format GCT which can be visualized in the Integrative Geno-

mics Viewer (IGV). (Thorvaldsdottir et al., 2013) This third format is similar to a matrix with rows identifying a peptide with genomic

mapping and columns identifying a sample. Each cell holds the quantitative values associated with the peptide and the sample given

in the input file.

Testing
Human Tissue Data

High-resolution MS data from 59 fetal and adult human tissues were used for the validation of PoGo. The raw data of these draft hu-

man proteomemapswere generated by the Pandey lab (Kim et al., 2014), the Kuster lab (Wilhelm et al., 2014), andCutler lab. (Desiere

et al., 2006) All three datasets were combined and reprocessed by Wright et al. (2016) The data were retrieved in a tab delimited

format combining all results from mzid files available from PRIDE Archive. (Vizcaino et al., 2013) Identifications were filtered to the

highest stringency level described in Wright et al. (2016) for identification of novel coding regions (q-value % 0.01 (1% FDR), a

PEP of % 0.01, peptide length between 7 and 29 residues, full tryptic peptides, a maximum of two missed cleavages).

Phosphoproteomic Ovarian Cancer Data

We applied PoGo to isobaric labelled phosphoproteome data from an ovarian tumor study comprising 69 samples. (Zhang et al.,

2016) Phosphopeptides with associated iTRAQ quantitation were downloaded as tab separated file from https://cptac-data-

portal.gorgetown.edu. Lower case characters (s, t and y) in the peptide sequence showing phosphorylation were substituted by up-

per case characters followed by the PSI name of phosphorylation in brackets.

Selected Peptides for Feature Testing

For testing features of PoGo a total of 14 peptides were selected from the above datasets. These peptides include single exon pep-

tides, peptides spanning up to 2 splice junctions, mapping to multiple genes and repeats. Additionally, multiply phosphorylated pep-

tides are included for PTMmapping. Compiled versions for Windows, Linux/Unix and Mac as well as the graphical user interface are

available alongside this test dataset and detailed step by step instructions in Data S1.

Reference Data and PoGo Settings

The annotation of human genes in GTF format and the corresponding protein coding sequence translation as FASTA files were down-

loaded for GENCODE v20 (Wright et al., 2016) from http://www.gencodegenes.org. Gene and transcript identifiers were set as

‘‘ENSG’’ and ‘‘ENST’’ for genes and transcripts, respectively, followed by 11 digits and the word length for k-mers was set to 5 amino

acids. For post-translational modifications 10 biologically relevant types were chosen for easy discriminability of the color code

(Table S1).

Application of Tools for Comparison

For the human tissue and the ovarian cancer phosphoproteome data PoGo’s performance was compared against PGx (Askenazi

et al., 2016) (downloaded from https://github.com/FenyoLab/PGx) and iPiG (Kuhring and Renard, 2012) (downloaded from

https://sourceforge.net/projects/ipig/), two standalone tools available to map peptides to their corresponding genomic coordinates.

Each dataset was formatted using in-house scripts in R and perl to fit the required input format for each tool. Each program was run

using default parameters and the minimum number of required input files. Time and memory usage for tool comparisons were

measured on Ubuntu 12.04 using an Intel Xeon CPU E5-2680 v2 with 2.80 GHz and 100 GB random access memory. Comparison

of the effect of allowing mismatches in PoGo mapping were run on a computer cluster running Linux 64bit with CPU type 2x 2.1 GHz

16 core AMD 6378 and 256 GB memory.

Generating of Track Hubs from PoGo Output
Track hubs were generated to visualize different aspects of the human proteomemaps. The data was filtered to two stringency levels

resulting in two sets. The first result set was filtered to a standard significance (q-value of % 0.01 (1% FDR), a PEP of %0.05 and a
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minimumpeptide length of 7 residues) while the highest stringency level mentioned inWright et al. (2016) (q-value% 0.01 (1%FDR), a

PEP of% 0.01, peptide length between 7 and 29 residues, full tryptic peptides, a maximum of two missed cleavages) was applied to

the second set. Additionally, each set was split into subsets for individual tissues, resulting in 60 files per set. PoGo was run with

default parameters using the property of passing a comma separated list of input files to be mapped separately. The Track-Hub

Generator application then was run using the 60 output files in BED format to generate two track hubs; one for each significance level

filter. Folders and files required for track hubs are generated automatically. The script ‘fetchChromSizes.sh’ and tool ‘bedToBigBed’

from UCSC (both downloaded from http://hgdownload.cse.ucsc.edu) (Kent et al., 2010) are used in the Track-Hub Generator to

create binary files from the original BED files used for track hubs. The generated track hubs are accessible through ftp and http

via http://www.sanger.ac.uk/science/projects/proteogenomichubs (see Figures S2 and S3).

QUANTIFICATION AND STATISTICAL ANALYSIS

Comparison between Tool Outputs
To compare themappings between the tools, instances weremarked as equal when chromosome name, start and end positions, the

exon starts and lengths as well as the peptide sequence were the same using the merge function in R (https://www.r-project.org).

Frameshifts then were identified amongst unique mappings per tool through shifting start and end positions by up to two base pairs

and comparing those to the consensus mappings. Remaining unique mappings of the tools then were examined manually by

comparing the peptide sequence to the translated sequence of the respective genomic coordinates in the IGV browser. (Thorvalds-

dottir et al., 2013)

DATA AND SOFTWARE AVAILABILITY

PoGo executables forWindows, Mac and Linux aswell as PoGoGUI and FileConverter for PoGo are available from here: http://www.

sanger.ac.uk/science/tools/pogo.

PoGo source code in C++ is available via github: https://github.com/cschlaffner/PoGo.

PoGo GUI source code in java is available via github: https://github.com/cschlaffner/PoGoGUI.

FileConverter for PoGo source code in java is available via github: https://github.com/cschlaffner/FileConverter.

The Track-Hub Generator application is available here: http://www.sanger.ac.uk/science/tools/trackhub-generator.

Track-Hub Generator is also available on github: https://github.com/cschlaffner/TrackHubGenerator.

The generated track hubs for high and standard significance are accessible in the Sanger Institute’s website: http://www.sanger.

ac.uk/science/data/proteomics-trackhubs.
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Figure S1. Mapping to repeat region, Related to Figure 1. Visualization in IGV of 
peptide mappings in a genome browser with genomic coordinates shown at the top 
as x-axis. The peptide ‘VPEPGCTKVPEPGCTK’ with missed cleavage between two 
repeats of 8 amino acids within the gene SPRR3 (GENCODE (v20) annotation 
shown in blue) is mapped to four overlapping loci (black) while PGx only maps it to 
two consecutive loci (green). Furthermore, PoGo only maps each peptide once to the 
same locus. PGx, however, maps all occurrences within the input set to each 
genomic position.    



 

Figure S2. Track-hub visualization for peptides of CASS4, Related to STAR 
Methods. Visualization of track-hub generator output for the reanalyzed draft human 
proteome maps in the UCSC genome browser for the genomic region of CASS4. 
Genomic coordinates are shown as x-axis while tissues within the dataset represent 
the y-axis. GENCODE (v20) annotation of two transcripts is shown in black at the 
top. Peptides identified in the whole dataset are shown underneath in red, 
representing unique mapping to a single transcript, and black, indicating unique 
mapping to the gene. Peptides identified within single tissues are shown below. All 
peptides identified in the region were only found in platelets (red and black bars in 
the lower third of screenshot). The protein is involved in tyrosine kinase-based 
signaling related to cell adhesion and spreading.  



 

Figure S3. Track-hub visualization for peptides of RBP3, Related to STAR 
Methods. Visualization of track-hub generator output for the reanalyzed draft human 
proteome maps in the UCSC genome browser for the genomic region of RBP3. 
Genomic coordinates are shown as x-axis while tissues within the dataset represent 
the y-axis. GENCODE (v20) annotation of two transcripts is shown in black at the 
top. Peptides identified in the whole dataset are shown underneath in red, 
representing unique mapping to a single transcript, and black, indicating unique 
mapping to the gene. Peptides identified within single tissues are shown below. All 
peptides identified in the region were only found in retina (red and black bars in the 
lower third of screenshot) spanning all three splice junctions showing proteomic 
support for the annotated gene structure.  



 

Figure S4. Schematic of algorithm enabling variant mapping, Related to Figure 
1. Graphical representation of the initial step in PoGo algorithm that generates and 
uses an indexed dictionary lookup supporting amino acid variants to identify 
annotated proteins for a given input peptide sequence and enable genomic mapping. 
(A) The annotated proteins from the FASTA input are indexed through splitting the 
sequences into words of length k (k-mer) overlapping each other by k-1 amino acids. 
For each k-mer the originating proteins and the positions of the word within the 
protein sequence are stored. (B) Lookup procedure for input peptides shorter than k 
times one plus the number of mismatches. The first word of length k from the peptide 
sequence is used to generate combinations of allowed mismatches within the word. 
Each new k-mer then is looked up in the dictionary to retrieve associated proteins 
and start positions.  (C) For peptides longer than k times one plus the number of 
mismatches will contain at least one non-overlapping k-mer without a substitution. 
Therefore the peptide is split into consecutive words of length k. Each word then is 
used to look up matching proteins in the k-mer dictionary.  



 

Figure S5. Comparison of runtime, memory and mapped loci for substitution 
enabled mapping, Related to Figure 1. Comparison of runtime (left side y-axis), 
number of mapped loci (x-axis), and memory requirements (right side y-axis) across 
multiple settings for PoGo’s unique functionality allowing 0, 1, and 2 mismatches 
between the reference protein and peptide sequences. The setting allowing 2 
mismatches is split into two classes allowing them over the whole peptide length: (i) 
mismatches have to be at least 5 amino acids apart and (ii) any position within the 
peptide is allowed to accommodate a mismatch. All three measured variables 
increase exponentially with the number of mismatches allowed.  



 

Figure S6. Distribution of uniqueness for substitution enabled mapping, 
Related to Figure 1. Distribution of mappings between different uniqueness classes 
over application of PoGo with different settings accounting for 0, 1, and 2 
mismatches (y-axis). The setting allowing 2 mismatches is split into two classes 
allowing them over the whole peptide length: (i) mismatches have to be at least 5 
amino acids apart and (ii) any position within the peptide is allowed to accommodate 
a mismatch. While the overall number of mappings increases exponentially for more 
allowed mismatches and the number of unique mappings to single transcripts only 
drops by ~8,000 between 0 and 2 mismatches. The reverse direction for mappings to 
multiple genes, however, as an exponential function, indicates that small numbers of 
amino acid substitutions reduce the number of reliable mapping of peptides to unique 
proteins in a reference database significantly.  



 

Figure S7. Visualization of phosphoproteome with quantitative features of 69 
ovarian cancer samples, Related to Figure 2. The x-axis represents coordinates 
across the whole human reference genome (GRCh38). The histogram indicates the 
number of mappings for phosphopeptides per genomic locus. The heat map 
underneath indicates the log2-fold changes of peptide expression over all samples 
(y-axis) compared to a pooled reference sample. This visualization through 
quantitative mapping within PoGo enables comparative analysis on a genome wide 
scale. 

  



Modification PSI-MS Name Color 

Phosphorylation phospho red  

Acetylation acetyl dark orange  

Amidation amidated light orange  

Oxidation oxidation yellow  

Methylation methyl dark green  

Ubiquitinylation glygly or gg light green  

Sulfation sulfo light turquoise  

Palmitoylation palmitoyl dark turquoise  

Formylation formyl dark blue  

Deamidation deamidated purple  

Any other post-translational modification  pink  

Table S1. Color coding of multiple post-translational modifications in PoGo 
output, Related to Figure 2 and STAR Methods. PoGo is capable of mapping 
post-translational modifications to genomic loci and further uses color coding to 
distinguish between different modification types. The default color code is shown in 
the table. 

 

Data S1. PoGo test procedures and files, Related to STAR Methods. Small scale 
test dataset, PoGo binaries and graphical user interface with detailed step by step 
instructions.  
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