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. Workflows in QSP: Bridging Conceptual Workflows and Execution?
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Workflow & Technical Methodologies:
Six Stages of QSP model development and Implementation
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Six stages of QSP model
development & implementation

Identifying project needs & goals
Defining model and project scope
Representing the biology
Capturing behaviors

Explore knowledge gaps & variability

Supporting experimental & clinical design
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Workflow & Technical Methodologies:
Six Stages of QSP model development and Implementation
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Considerations & Activities

Careful evaluation of problem
context and specification of the
needs to be met

Clear understanding of the
decisions that will be potentially
Impacted

Deadlines & time frame for
decisions and milestones

Evaluation of whether QSP is the
right approach

Identification and interaction with
key stakeholders and
collaborators

Genentech

A Member of the Roche Group



Workflow & Technical Methodologies:
Six Stages of QSP model development and Implementation
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Workflow & Technical Methodologies:
Six Stages of QSP model development and Implementation

1. Identifying Project Considerations & Activities
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Workflow & Technical Methodologies:
Six Stages of QSP model development and Implementation

1. Identifying Project Focus of todav’s talk

Needs & Goals
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What kinds of uncertainty and variability do we commonly n
encounter

Insufficient or imperfect mechanistic knowledge
« Alternate hypotheses? Conflicting data? Missing data?
« Translational relevance?

Quantitative uncertainty

« Lack of guantitative prior information on modeled entities
and/or process parameters (e.g. what is the level or rate of X)

Known inter-subject or intra-subject (spatial or time)
Variability
« Can be either qualitative or quantitative
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. Using Virtual Subjects to Represent Uncertainty & Variability

Virtual subject (VS)
Single structure & parameterization of the model yielding
virtual measurements within ranges of corresponding data

Reference virtual subject (Ref VS)
Virtual subject with virtual measurements representative of
corresponding real-world data in a specified patient phenotype

Virtual Cohort

Collection of “candidate” virtual subjects with alternate structures
or parameterizations each yielding measurements consistent
with corresponding data

Virtual Population (VPop)

Set of virtual subjects (from a virtual cohort) that is selected and
statistically weighted to reproduce selected statistical features of
corresponding data

©2015 Genentech gfep?pnt?ch



“Reference” calibration indicative of high likelihood of success for
QSP model

7

Considerations & Activities

» A‘reference” calibration ensures topology and mathematical representation sufficient
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. “Reference” calibration indicative of high likelihood of success for
QSP model

4 N
Considerations & Activities

» A‘reference” calibration ensures topology and mathematical representation sufficient

« Sensitivity analysis (local vs. global)!2

Commonly used global sensitivity analysis methods

Weighted average Mult-parametric Fourler amplitude

of local sensitvity Partial rank correlation sensitivity analysis sensitivity analysis
Criteria for comparison analysis (WALS) coefliclent (PRCC) (MPSA) (FAST) Sobol
Discrate inputs Yes Yes Yes Yes Yes
Model indapendence Mo No Mo Yas Yas
Mon-liniear, input-ocutput redationship Yas Yas Yas Yas Yas
Mon-monoatonic input-output relationship Yas Mo Yas Yas Yas
Robustress i Vs s s s
Reproducibility Yas Yas Yas Yas Yas
Ability to apportion the cutput variance Mo Mo Mo Yas Yas
Higher order interaction of parmameters Mo Mo Mo Yas Yas
Cuantitative measure for ranking Yes Yes Yes Yes Yes
Computational efficiency Yas Yas Yas Mo Mo

Zhang et al.?

1. Marino, S., I. B. Hogue, et al. (2008). "A methodology for performing global uncertainty and sensitivity analysis in systems biology." J Theor Biol 254(1): 178-196
2. Zhang et. Al. (2015). “Sobol Sensitivity Analysis: A Tool to Guide the Development and Evaluation of Systems Pharmacology Models”, CPT-PSP, Feb.

©2015 Genentech gfep?ﬂt?php



. “Reference” calibration indicative of high likelihood of success for
QSP model

4 N
Considerations & Activities

» A“reference” calibration ensures topology and mathematical representation sufficient
« Sensitivity analysis (local vs. global)!2
« Parameter estimation via optimization3#4

. J
Optimization Example Strengths Caveats Example prior
approach algorithms applications

Local minimum only;

Simplicity,

Local Levenberg-Marquardt . - Requires convex, smooth  Multiple
Computational efficiency o .
objective function

Deterministic . Computationall .

Branch and Bound Guaranteed global min P . Y Metabolic systems
Global expensive

Simulated Annealing,

Genetic Algorithms,
Stochastic Evolutionary Programming, Computational efficiency; Global minimum not Blood coagulation
Global Evolutionary Strategies, Near global minimum guaranteed Signal transduction

Particle Swarm,
Scatter Search

Fewer and less widely
tested algorithms Lipid metabolism
available

Leverages strengths of local

Hybrid Combinations of the above
and global approaches

Marino, S., I. B. Hogue, et al. (2008). "A methodology for performing global uncertainty and sensitivity analysis in systems biology." J Theor Biol 254(1): 178-196
Zhang et. Al. (2015). “Sobol Sensitivity Analysis: A Tool to Guide the Development and Evaluation of Systems Pharmacology Models”, CPT-PSP, Feb.
Sun, J., V. Palade, et al. (2014). "Biochemical systems identification by a random drift particle swarm optimization approach." BMC Bioinformatics 15 Suppl 6: S1
Rodriguez-Fernandez et al. (2006). "Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems." BMC Bioinformatics 7: 483
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. Workflow and considerations for Reference Subject calibration

Parameter Optimization
Structural Model

& Physiological outcomes
H % . g “Acceptance” Criteria
‘‘‘‘‘‘ > AT PSS : E_ﬁ 1\\\}“&;\\\\\\‘ Y1 ole
| e N T
it~ ™ v R Y3 loe ©
- ~8-+ S Y. |® le
s T o Ys el ©
g~ -k N X Ye lo ®
Ys o |
Parameter space, p Yo ) o

sz

Virtual Subjects

P Pn Reference Invalid
Parameter Sensitivity Virtual Virtual
Subject Subject
4 ™
Considerations
» Defining the objective function is non-trivial & critical for efficient Reference Subject calibration
« lteration on QSP model representation is critical at this stage: (i) modifications to mathematical
representation; (ii) expansion/reduction of biology included; (iii) alternate hypothesis testing
« Developing a suite of algorithms/tools specific for to QSP models is of high value
\ ©2015 Genentech Genentech
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Example: Mechanism-based Asthma disease model for target validation,
molecule selection & biomarker evaluation:

8- . " . Functi?‘al )
i goblet e
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Thad@hoon
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Key Biological mechanisms & scope

. Activation /recruitment of innate immune cells:
eosinophils, basophils, dendritic cells, ILC2s, mast cells,
neutrophils

. Activation of adaptive immune cells: Th2, B, plasma
cells, Th17

. Production of soluble mediators and their effects

. Airway response: Epithelial cell mediator & mucus
production, ASM contraction

Clinical Scope
Clinical endpoints: FEV1, FeNO

Patients types: healthy, asthmatics (range of disease
severity), eosinophilic vs. neutrophil dominant

Interventions: anti-IL5, anti-IL13, anti-IgE, steroids, anti-

|L4/|Lé%dltg%ém%gp1ultiple target interventions

Parameter space, p

sz

p1 pn

120+ parameters
explored in calibration
using Scatter Search

/ Mechanistic in-vitro 8x

~ preclinical data

Physiological outcomes

150+ outcomes used in calibration

/CEII viability (%)

High

Low

Biomarkers & clinical
endpoints

Baseline & response to 10+
interventions

In house and public clinical database

(data from 50+ clinical studies)

FEV1

\M)d Eosinophils Serum Periosfin

IgE

/
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Application of stochastic global optimization for Reference Subject(s)

calibrations in the Asthma QSP platform

(i

mplementation Considerations

\_

Data for different patient phenotypes (variability in mechanistic drivers, disease
severity)

Data across multiple cell types, mediators & clinical readouts for multiple
therapies/interventions

* Appropriate data normalization
+ Simultaneous simulations of all interventions for objective function evaluation

Several mechanistic limitations of model identified in this step and model updated
accordingly

~N

J

Capturing the “reference” behavior

Predicted

108 > . ¢
e '::'
N -a - :
10°F
102. A - *
102 10 1cl>2 10*
Observed

Baseline characteristics Clinical data ' i
s Feference virtual patient | | RESPONSE to therapies (severe reference subject)
0.5 i i 08 ' sputum eosinophils il ; i i
o | Dloodcoshophis P phils | Lebrikizumab (anti-1L13)t Omalizumab (anti-IgE)23
. 0.6
an
;E 0.3 " l = 10 | FEVI  FeNO cCCLI3  CCL17  IgE FeNO  IgE  Tecell*  Bocell*
8 8 0.4 1 o — 2 0
g 02 E £ 0 T B B 3 -
= z 0.2 g % 20
0.1 . § 10 o
2 £
0.0 _ 0.0 | = 5 ° 40
Healthy Mild Moderate Severe Healthy Mild Moderate Severe = 20 E"o
& < -60
£
120 FEV1 50 FeNO £ 30 S
100 L . 40 1 R
T 80 " -4 -100
2 o " g 30 | 0
g [+}
g8 40 20 it (1) Corren J et al. Lebrikizumab treatment in adults with asthma. N Engl J Med. 2011 Sep 22;365(12):1088-98
ES 20 10 (2) Hanania NA, et al. Omalizumab in severe allergic asthma inadequately controlled with standard therapy: a
0 0 - randomized trial. Ann Intern Med. 2011 May 3;154(9):573-82
. . (3) Djukanovi¢ R, et al. Effects of treatment with anti-immunoglobulin E antibody omalizumab on airway inflammation
Healthy Mild Moderate Severe Healthy  Mild Severe in allergic asthma. Am J Respir Crit Care Med. 2004 Sep 15;170(6):583-93
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. “Preliminary” model-based insight obtained from Reference Subject

Additional Testing of Reference Subject Behavior (no further fitting)

Response to Dupilumab (anti-1L-4Ra) Clinical Data (mean)*
Severe (Avg. reference)
Severe (Th2 Low reference)
. FEV1 . blood IgE
. . 0
« eosinophils
2 8f g 2
3 ‘S 3 201
2 & 30| g
Q gt Ke) Q
S 4 & 2 -60 1
® 2r EN = g0
0 -10 : : : : -100 : : : :
Data Ref. SevereTh2 Low Th2 High Data Ref. SevereTh2 Low Th2 High Data Ref. SevereTh2 Low Th2 High

Preliminary Exploration with the Reference Subjects

Predictions for Novel Therapy Severe (Avg. reference)
FEV1 FeNO Severe (Th2 Low reference)
10 — 10 e e s e e
[0} Q 0
g g-m- Lebrikizumab 250 mg Q4W
g § ol - - - - Novel Therapy 250 mg Q4W
B = a0}

-50

0 4 8 12 16 20 24 28 32 36 40 44 48 0 4 8 12 16 20 24 28 32 36 40 44 48
Time (weeks) Time (weeks)
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Exploration of variability and knowledge gaps: a unigue and extremely
iImportant aspect of QSP-based work

/Considerations \

« Knowledge gaps typically explored via alternate model structures or alternate
parameterizations; each instance a Virtual Subject

* Multiple Virtual Subjects may “behave” similarly to the known data— i.e, non-unique
» Collective available data utilized to develop the Virtual Population
» Testing against “new” data establishes predictive capability

« “Typical” QSP models are “sloppy”!: focus on ranges of predictions rather than
parameter values

Outcomes/learnings
» Robust QSP-based findings grounded in quantitative biology

- /

1.Gutenkunst, R. N., J. J. Waterfall, et al. (2007). "Universally sloppy parameter sensitivities in systems biology models." PLoS Comput Biol 3(10): 1871-1878.
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. Workflow for developing a Virtual Population

Developing the Virtual Cohort

Physiological outcomes
Structural Model

“Acceptance” Criteria

,: T : ) ~—— Yq eo1le
7 R~ M— - > 2 ® e
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Parameter space, p Pi Egt

Virtual Subjects
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L Reference Invalid
~ o Virtual Virtual
. \ Subject Subject
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. Workflow for developing a Virtual Population

Developing the Virtual Cohort

Physiclogical outcomes

Virtual Cohort

Structural Model “Acceptance” Criteria
H 4 s 12 e® ie
I V2 ° e
- e A Y3 ole o
o s o3 Y: |@ ® le
Lib e aet Vs o1 o0
B ——J}h b ¥s g ®e®
P P < ¥ LN
R S - R Ys oe® |
B - ¥s LX) ®

Parameter space, p Virtual Subjects

T P> Parameter Sensitivity
« Model Analysis 'i' 'n' )

- Reﬂ_erence (Al::_ar:naie) I\;vaﬁdl
\ S\:s;aclt SL:bjL\Jeit sd&fm
P1 Pn
Developing the Virtual Population
Virtual Cohort Clinical Statistics Virtual Population Predictive Simulations
. - E : \ ,,a'/’:
! " ACR:I“I‘LII-W-:ID—III‘I " e ; g h ," Fors T
Statistical weighting - 5 | /
St Weighting algorithm e e
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Statistically weighed virtual population enables robust quantitative
representation of a “real” clinical population

/Each Virtual Subject in the Virtual Population assigned a “weight” corresponding to the )
probability of finding similar measurements in the clinical population

» The virtual population as a whole captures the observed statistics of the “true”
clinical population of interest

The key statistics captured include:

« Mean and distribution of clinical measurements both as baseline and responses
to interventions

* Observed correlations (or lack thereof) between measurements

The weights could either be binary (include/exclude) or be continuous (range from 0-1)

» Calculated using constrained optimization techniques to match the desired
\_ statistics

J

Virtual Population matching means &

distributions of clinical populations
o ] :

-
.
<

Virtual Population captures correlation
between biomarkers observed in clinical data

Clinical data

Clinical data
Virtual population

Virtual population

o G B, °
75 D
o%%gf;o
o ©°8
Bl o

hiomarker?
RIOMarker«
o 1Y)

-

-
i
.
an

= - - biomarker]

ACR-H (% Improvement)

I
L] ]
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Case studies demonstrate implementation of proposed QSP
workflow for Virtual Population

\_

/QSP model for anti-PCSK9

6 states; 20 parameters
High variability in patient clinical measures

Different patient phenotypes (dyslipidemic,
Familial hypercholesterolemics)

Specific inclusion criteria in clinical trials
Clinical data from multiple interventions

Ch. intake

statins
i
\4
Ch. synthesis

rom diet

anti-PCSK9 \
1

LDLr degradation

Ch. utilized/deposited
in periphery

Gadkar et al, CPT-PSP 2014 /

MAPK signaling model

15 states; 35 parameters

Model developed primarily using in-vitro &
preclinical data sets:

Protein signaling dynamics (e.g. pERK, pMEK)
in response to inhibitor treatment in vitro

In vitro cell growth responses to inhibitors
across panels of genetically diverse cell lines

In vivo (xenograft) responses to drug combos

Limited clinical data available: Patient-level tumor
growth response data from Phasel clinical trials

©2015 Genentech
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Virtual Populations to address impact of background statin therapy to
response to anit-PCSK9 and support trial design

* Inclusion criteria for Phase Il available for Virtual Population development
« Expected LDLc for clinical population: Mean £=SD = 125 + 25 mg/dL
» Patients with/without statin background expected (two Vpops developed)

« Variability in response (both LDLc & PCSK9) to statin treatment for clinical population available

Virtual population: development

Baseline measures for virtual populations

aso- T —
500~
300 =
3 E.
=T ComparableDLc 1 E
E 200 S 300~
3 A
9 1 T % | 8 a
100+ -
50 100
Different PCSK9
pulation A pul A pulation B Population A PopulationA  Population B
(prior to statin) (after statin) (no statin) (prior to statin) (after statin) (no statin)
Response to low dose atorvastatin
0
-10 1
. Huded

percent change LDLc

O Clinical data (Mayne et al)
© Virtual population

©2015 Gen&fitesh 0 20 40 e &0
percent change psck9

100

Virtual population: application in research

Evaluation of statin background on response to anti-pcsk9
anti-PCSK9 LDLc

aPCEKS (ugiml)
50 500
50 100 150

LDLc (% change)

01 05

0 20 40

60 80 100 .
oas population A, statin background
population B, no statin

Predictions for proposed Phase Il dosing protocols

100 120

400 mg Q4W

LDLc (% of baseline)
60 80

40

20

0
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Virtual Populations developed to evaluate response to anti-PCSK9 for a
specific patient sub-phenotype

« The most common genetic defects in Familial hypercholesterolemia (FH) patients
are LDLr mutations

« Function LDLr activity in heterozygous FH is 10-25% satins S
» Function LDLr activity in homozygous FH is <5% ch sntess ::,ga."-..,_%
- FH patients have high LDLc levels Y .- N T s
from diet cholesterol
« Correlations of baseline LDLc & PCSK9 levels A b
reported in literature (Raal et al. 2003) Altered in FH patientss
Virtual population: development Virtual population: application in research
LDLc-pcsk9 for Vpop LDLc-LDLr for Vpop S | subjects.
24 -
e LDLr activity<0.25 - -2
s e LDLr activity>0.25 = %F
g ERS =%
correlation (R=0.67) reported in Raal 2013 g | ; B e
1 — S | o : c’7010 0‘.21 04 06 08 10
0 100 ZODLEZ}BIE)‘?(H:;SL)SOO 600 700 Q 100 ZODLDSIE)CO(mA‘lg(:gL)SOO 600 700 LDLr activity (normalized)

* Range of clinical measures (LDLc, PCSK9) at *  QSP model predicts that response to anti-pcsk9 is
baseline consistent with expected enrollment in compromised for FH subjects with LDLr activity
potential clinical study less than 10% of normal
©2015 Genentech gfep?ﬂnut?php




Case studies demonstrate implementation of proposed QSP
workflow for Virtual Population

QSP model for anti-PCSK9

6 states; 20 parameters
High variability in patient clinical measures

Different patient phenotypes (dyslipidemic,
Familial hypercholesterolemics)

Specific inclusion criteria in clinical trials
Clinical data from multiple interventions

Ch. intake

anti-PCSK9
1

statins
i
\4
Ch. synthesis

rom diet

in periphery

LDLr degradation

Ch. utilized/deposited

Gadkar et al, CPT-PSP 2014

\_

ﬂPK signaling model

15 states; 35 parameters

Model developed primarily using in-vitro &
preclinical data sets:

Protein signaling dynamics (e.g. pERK, pMEK)
in response to inhibitor treatment in vitro

In vitro cell growth responses to inhibitors
across panels of genetically diverse cell lines

In vivo (xenograft) responses to drug combos

Limited clinical data available: Patient-level tumor
growth response data from Phasel clinical trials

%
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(= }—0
-7 .

7

Kirouac, ACoP 2015

~

/

©2015 Genentech

Genentech

A Member of the Roche Grou,

p



Tumor Size

Comparison across multiple single and combination therapies for

MAPK pathway inhibitors

* Model developed using in-vitro & preclinical data
*  Model translation to predict tumor size for a
clinical population
» Uncertainty in translation included
» Greater intersubject tumor heterogeneity
» Pharmacokinetic variability included

25

12, Invitro data

Log10[Conc] (M)

xenograft data

Cdlibration Testing
|

Representative figures for model calibration & testing

r
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" .. - SCN SY HE
< " o~ . L T
2+ & % § ¥ % %4
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o3 A <
e e ﬁ
1.5 T
1k i}
0.5 K1 i 1
0
\ J \ J \ J
| Y !
Single agent Two agents Three agents
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Limited confidence in predictive capability

with Virtual Cohort

~N

@ Virtual Subjects
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Tumor Size

Comparison across multiple single and combination therapies for

MAPK pathway inhibitors

* Model developed using in-vitro & preclinical data
*  Model translation to predict tumor size for a
clinical population
» Uncertainty in translation included
» Greater intersubject tumor heterogeneity
» Pharmacokinetic variability included

., invitro data xenograft data

Cdlibration Testing
|

8

7

6%
ik
54 °

5 d b

2

1

0

Tumor S

Log10[Conc] (M)

Representative figures for model calibration & testing

4 N
« Limited confidence in predictive capability

with Virtual Cohort

* Clinical data available for two protocols
utilized for weighting to generate the Virtual
Population

2P MEE : o<
o, o ., e :
[ l\. ; ‘i:° % 3 '01 o - e
21 3 § & 30N
151 y
1 - ]
05 '3: i 7
0 o o
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@ Virtual Subjects
® Clinical data
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Tumor Size

Comparison across multiple single and combination therapies for

MAPK pathway inhibitors

* Model developed using in-vitro & preclinical data
*  Model translation to predict tumor size for a
clinical population
» Uncertainty in translation included
» Greater intersubject tumor heterogeneity
» Pharmacokinetic variability included

., invitro data xenograft data

Cdlibration
@ |

4
P
b

]

oo TE T

R S
o Q
o P

:

b

Testing

%@ .
*Tagd

Log10[Conc] (M)

Representative figures for model calibration & testing
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Limited confidence in predictive capability

with Virtual Cohort

Clinical data available for two protocols
utilized for weighting to generate the Virtual

Population

Increase in quantitative confidence in

predictions with Virtual Population

~N

@ Virtual Subjects
® Clinical data
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Frequently Asked Questions of QSP models in the context of
uncertainty & variability

« How can you build a model of biology we don't quite understand?
What about competing hypotheses? Conflicting data?

«  With enough parameters you can fit an elephant. The model is
underspecified and the parameters are not identifiable.

 How do we evaluate and interpret this work? To what extent should
we trust the predictions?

©2015 Genentech gfept?nt?ch



. Acknowledgements

Genentech, South San Francisco

Saroja Ramanujan — QSP Group Lead
Daniel Kirouac
Iraj Hosseini

PCSK9 QSP working group
Asthma QSP working group

MAPK Signaling QSP working group

External Collaborators & Advisors

Piet van der Graaf
Don Mager

©2015 Genentech Genentech

A Member of the Roche Group



. Backup slides

©2015 Genentech gpp?f.nut?php



. Backup slides

Common distinguishing features of QSP approaches

e A coherent mathematical representation of key biological connections in
the system of interest, consistent with the current state of knowledge

e A general prioritization of necessary biological detail over parsimony
potentially including detail at the genetic, protein, cellular, tissue, organ,
and whole-body scales

e Consideration of complex systems dynamics resulting from biological
feedbacks, cross-talk, and redundancies

e Integration of diverse data, biological knowledge, and hypotheses

e A representation of the pharmacology of relevant therapeutic
interventions

e The ability to perform quantitative hypothesis exploration and testing via

biology-based simulation in virtual “subjects” (e.g., humans, animals,
cells)

Ramanujan, Gadkar, Kadambi 2015
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Robust scoping effort determines the biology to be included in
the QSP model & collection of diverse data sets for development

Model schematic developed from current knowledge & input from biology experts

In the presence of PCSK9, LDLR is degraded along
with LDL after internalization

oL & | fa

LDLR 3

S

Target

> & )7 » -

Lywmm

In the absence of PCSK9, LDLR cycles back and forth from the cell
surface to the endosome, internalizing multiple LDL particles

Peterson & Young, J. Lipid Res. 2008. 49: 1595-1599

PCSK9

: anti-PCSK9
statlns !
V
Ch. synthe5|s -
:> ! LDLr degradation
Ch. intake
from diet cholesterol

Biological Mechanisms & Behaviors

+ Untreated hepatic cholesterol balance

» LDLr synthesis/degradation including
regulation by PCSK9

* LDL synthesis and uptake via LDLr

* SREBP2 regulation of PCSK9 & LDLr
expression

* Anti-PCSK9 binding of PCSK9
+ Statin inhibition of cholesterol synthesis

©2015 Genentech

Ch. utilization/elimination

Ch. utilized/deposited
in periphery

Available data

Preclinical data

» Impact of pcsk9 on LDLr in vitro

* Regulation of pcsk9 and LDLr via SREBP2 in vitro

» LDLr specific vs non-specific LDL clearance in

animal models

Patient populations

* pcsk9 & LDLc levels in dyslipidemia, familial
hypercholesterolemia

» Kinetics of hepatocyte cholesterol regulation,
apoB-100 particle dynamics, etc

Statin clinical data (Jupiter & TNT studies)
* Change in LDLc with statins

» Changes in pcsk9 levels on statins and
correlations with other biomarkers

Anti-pcsk9 clinical data (Genentech Phase |

study)

» Phase | clinical data for anti-pcsk9, total
pcsk9, LDLc profiles for monotherapy and
combo with statins

Genentech
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Mechanism based Asthma disease model supporting Genentech pipeline
for target validation, molecule selection & biomarker evaluation

Representing the biology
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Therapies

1 Corren J et al. Lebrikizumab treatment in adults with asthma. N Engl 3 Med.

2011 Sep 22; 365912):1088-98
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Capturing the “reference” behavior

U ntrea‘ted Clinical data
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Workflow & Technical Methodologies:
Six Stages of QSP model development and Implementation

Prior hypotheses and
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. Quantitative Systems Pharmacology: Terminology for this talk

Atibutes

QSP Model ODE based: X =f(X,p,t) X:states/species

(for tools described in this

Logic/algebraic based: X = f(X,p,t) p:parameters

presentation)
Physiological Outcome Any quantlty calculated from.model for
which experimental data available
Virtual Subject A single parameterization of the model AI.I physmlpglcal outcomes are
within available data
A Virtual Subject that exhibits
Reference Subject simulated behaviors representative of
a specific phenotype

Virtual Cohort A collection of virtual subjects

Virtual Population A collection of virtual subjects that is A subset of the Virtual Cohort that

selected to match a “real” population is selected or weighted to match
statistical properties of
experimental or clinical data

Statistical (prevalence) Assignment of weights to different The resulting weighted simulation
Weighting Virtual Subjects in a Virtual Population  results capture statistical features
of experimental data
Variability Subject to subject differences in
mechanistic biology and/or phenotypic
behaviors
Uncertainty or Areas of qualitative or quantitative
Knowledge Gap uncertainty in mechanistic biology,
phenotypic profiles




