Optimal Granularity in QSP Model Structures

The Pros and Cons of Model Complexity In Cardiac Simulations

> Dr Steven Niederer King's College London

Quantitative Systems Pharmacology

Population variation

Interspecies variation

What systems are involved?

What Level of Granularity is Required in Time?

Acute Toxicity (<1 minute)

Arrhythmia, QT prolongation

Metabolic Time scales (15-30 minutes)

Acute mitochondria dysfunction

Chronic Lab Toxicity (2weeks – 6 months animal, in-vitro prep) Change in protein expression level Compromised metabolism

Anthracycline Toxicity

Chronic Clinical Toxicity (1+ years patients)

Decreased ejection fraction Heart failure

Do we need to model a system representative of the population or do we need to model the population ?

Is there a cost of complexity?

Accessing correct implementations of the equations

(34 cardiac cell models)

Functional Curation allows automated checking of implementations

Cooper J, Mirams GR & Niederer SA. (2011). High-throughput functional curation of cellular electrophysiology models. *Prog Biophys Mol Biol* **107**, 11-20. https://travis.cs.ox.ac.uk/FunctionalCuration/

In physiology studies there is a saying: We only learn something when the model breaks

An error has occurred: To continue :

Press ENTER to return to your Model, or

Press CRTL + ALT + DEL to restart you simulation

However, if using the model as a tool we simply learn that the tool does not work

Complex models are not a single entity

Complex models combine multiple simpler components into a single framework

> Complex models (should) rely on more data to constrain parameters and Comprehensively validate the model

Fine Model Granularity

PROS Aspire to be closer representation of biology Easy access to model equations Compute time often reasonable

Hard to determine what has gone wrong when they break **CONS** Built from distinct components and not comprehensively validated Validation is often against easily measureable phenotypes

Finding the limitations opportunities of complex models through the model creation process

Case Study: Modelling the Rat Ventricular Myocyte

Wish to model electro-mechanics whole rat heart

- 1. Biphasic calcium frequency response
- Able to operate at physiological (6Hz+) frequency
- 3. Simulate at physiological temperatures

Using the rat as an example

How are we currently modelling the rat ventricular myocyte? Pandit 2001

Modelling the Sodium Potassium pump

Nakao & Gadsby (1989) Luo & Rudy (1991)

Phenomenological Model Incompatible with compound binding

Modelling Protein Function

Lewalle A, Niederer SA & Smith NP. (2014). Species-dependent adaptation of the cardiac Na+/K+ pump kinetics to the intracellular Na+ concentration. *The Journal of Physiology* **592**, 5355-5371.

Hinch Model of rat calcium regulation with graded calcium release

Modelling Data Driven

Modelling Data Driven

Modelling Data Driven

High through put functional curation of models and components

No ability yet to link to experimental data

Cooper J, Mirams GR & Niederer SA. (2011). High-throughput functional curation of cellular ep models. *Prog Biophys Mol Biol* **107**, 11-20.

Defining simple agreed upon quality control tests

Niederer S. (2013). Regulation of Ion Gradients across Myocardial Ischemic Border Zones: A Biophysical Modelling Analysis. PLoS One 8, e60323.

Doxorubicin is an effective anticancer drug

- ✓ Potent and broad-spectrum
- ✓ Widely used in the treatment of leukemias and solid tumors
- ✓ Stops DNA replication and triggers apoptosis
- Severe Cardiotoxicity that leads to CHF
- Cumulative, dose-dependent and irreversible
- ✗ 50–60% contractile dysfunction with 430–600 mg/m2 doses
- Symptoms can progress years or even decades after chemotherapy

- 1) G. Minotti, P. Menna, E. Salvatorelli, G. Cairo, and L. Gianni. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacolog-ical Reviews, 56(2):185{229, Jun 2004.
- 2) Kelvin J. A. Davies and James H. Doroshow. Redox cycling of anthracyclines by cardiac mitochondriai. anthracycline radical formation by nadh dehydrogenase. The Journal of Biological Chemestry, 261(7):3060{7, Mar 1986.
- 3) O. Marcillat, Y. Zhang, and K. J. Davies. Oxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin. Biochemical Journal, 259(1):181{189, Apr 1989.
- 4) J. M. Berthiaume and K. B. Wallace. Persistent alterations to the gene expression prole of the heart subsequent to chronic doxorubicin treatment. Cardiovascular Toxicology, 7:178{191, 2007.
- 5) Dirk Lebrecht, Bernhard Setzer, Uwe-Peter Ketelsen, J org Haberstroh, and Ulrich A. Walker. Time-dependent and tissue-specic accumulation of mtdna and respiratory chain defects in chronic doxorubicin cardiomyopathy. Circulation, 108(19):2423{9, Nov 2003.

Virtual Patient Toxicity

Modelling Anatomy

Lamata P, Niederer S, Barber D, Norsletten D, Lee J, Hose R, et al. Personalization of Cubic Hermite Meshes for Efficient Biomechanical Simulations. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010: Springer Berlin / Heidelberg: 380-387.

Personalised Fibres

Personalised Mechanics

High resolution **Personalised Models**

In collaboration with Gernot Plank

Data Interpretation: Substrate mapping

Quantitative Systems Pharmacology

Population variation

Interspecies variation

Practical Guide for Choosing granularity

How much effort goes into evaluating a novel experimental assay?

- 1. Choose if re-using existing models (assume yes)
- 2. Create list of candidate models that meet or exceed desired complexity/ granularity
- 3. Define a set of functional tests
- 4. Acquire or define ground truth data Consistent data sets will continue to be a challenge
- 4. Evaluate candidate models against tests
- 5. Select optimal candidate
- 6. Evaluate data dependencies
- 7. Improve model as required
- 8. Test interpretation assumptions:e.g. Is a single cell action potential directly related to the QT interval?