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SUPPLEMENTARY MATERIAL

Rank invariant method and Lowess extrapolation

When the number of genes is small in comparative experi-
ments such as the 125 gene project we select the rank invariant
set

S = {g:�rank(Cy5g) – rank(Cy3g)�< d & l < rank[(Cy5g +
Cy3g)/2] < G – l}

to perform normalization.
If the number of genes is large, such as in the 4129 gene

project, we can afford to apply the rank invariant method in an
iterative manner to select a more conserved set of genes.
Firstly we select

S0 = {g�rank(Cy5g) – rank(Cy3g)� < p × G & l < rank[(Cy5g
+ Cy3g)/2] < G – l}

Then at each iteration we select

Si = {g:g ∈ Si – 1 & �rankg ∈ Si – 1(Cy5g) – rankg ∈ Si – 1(Cy3g)�
< p × �Si – 1�}

where �Si� is the number of genes in set Si. The iteration stops
at the kth step when �Sk� = �Sk – 1� and the set of genes Sk is the
chosen rank invariant set.

After selection of rank invariant set S we can fit a normaliza-
tion curve = (A) between ming ∈ SAg and maxg ∈ SAg by the
Lowess method. In order to normalize genes with an average
log intensity > maxg ∈ SAg we perform linear fitting M = α + βA
in the subset T = {g:g ∈ S & rankg ∈ S(Ag) > �S� – 50}. The esti-
mated linear fit is used to normalize genes with an average log
intensity > maxg ∈ SAg. The same extrapolation procedure is
also used to normalize genes with an averaged log intensity <
ming ∈ SAg.

Testing the homogeneity of slide variation

Perform hypothesis testing H0:τ2 = τ1
2 = … = τG

2 versus HA:τg
2

not all equal. Assume ygse to be the normalized log ratio of
gene g, slide s and comparative experiment e and ygse ∼
N(µge,τg

2). Note that under the null hypothesis g
2 = �(ygse –

yg·e)2/S – 1 ∼ χS – 1
2τg

2/S – 1. Therefore, the statistic t = var( g
2)/

mean( g
2)2 converges in probability to 2/S – 1. We compute

the statistic t from R1S1, R1S2 and R2S1, R2S2 in the 4129
gene project and t = 9.2, 7.7, which obviously rejects the
hypothesis.

Markov chain Monte Carlo (MCMC) procedures

Denote by xgse the normalized log ratios of gene g, calibration
slide s and calibration experiment e and by ygse the normalized
log ratios of gene g, slide s and comparative experiment e. We
assume ygse ∼ N(µge,τg

2) and µge ∼ N(θg,σg
2), where θg measures

the true log-fold change in gene g. We pool information across
the calibration slides to obtain a prior distribution for the slide
effect variance τg

2:τg
2 ∼ k g

2/χk
2, where g

2 = [(S – 1) × E × g
2

+ A
2)]/(S – 1) × E + 1 is the weighted value of gene-specific

and overall sample variances obtained from calibration slides.
Here g

2 = �s,e(xgse – xg·e)2/(S – 1)E, A
2 = �g,s,e(xgse – xg·e)2/G(S

– 1)E [xg·e = means(xgse)], G is the total number of genes, S is
the number of slides, E is the total number of calibration exper-
iments, χk

2 is the χ2 distribution with degrees of freedom k and
k is an adjustable degree of freedom. We observed that, on

average, the between-slide variation in comparative experi-
ments is 50% larger than that in calibration experiments for the
125 gene project. To account for this, we multiply g by 1.5 in
the 125 gene project to account for the increased variation in
the comparative experiment. Similarly, the prior distribution
for σg

2 is given by σg
2 ∼ h g

2/χh
2, where g

2 = (E × g
2 + A

2)/
E + 1. Here g

2 = �exg·e
2/E, A

2 = �g,exg·e
2/GE and again χh

2 is
the χ2 distribution with degrees of freedom h and h is an adjust-
able degree of freedom. We note that g

2 is biased upward as
an estimate of σg

2. As a result, our procedure will tend to be
conservative. In this paper we use the prior degree of freedom
k = h = 3. The posterior distributions of the parameters do not
have a closed form solution. Thus we apply the MCMC
method (16) to simulate the distributions of these parameters.

Assume ygse ∼ N(µge,τg
2) with prior τg

2 ∼ k g
2/χk

2 and µge ∼
N(θg,σg

2) with prior σg
2 ∼ h g

2/χh
2 where gene g = 1, 2, … G,

experiment e = 1, 2, … E and slide s = 1, 2, … se. Data ygse and
g

2, g
2,h,k are known. In order to obtain distributions of the

parameters, an MCMC procedure has been developed.
(i) Compute (µge)(0) = yg·e.
(ii) Generate (σg

2)(i) from distribution σg
2�(µge)(i – 1) where

σg
2�µge ∼ [�e(µge – µ·g)2 + h g

2]/χE + h – 1
2

(iii) Generate (θg)(i) from distribution θg�(µge)(i – 1), (σg
2)(i)

where

θg�µge,σg
2 ∼ N{µg·,σg

2/E}

(iv) Generate (τg
2)(i) from distribution τg

2�(µge)(i – 1),ygse where

τg
2�µge,ygse ∼ [�E

j = 1�
se

s = 1(ygse – µge)2 + k g
2]/(χ2

s1 + … + sE + k)

(v) Generate (µge)(i) from distribution
µge�ygse,(τg

2)(i),(θg)(i),(σg
2)(i) where

µge�ygse,τg
2,θg,σg

2 ∼ N[(seyg·eσg
2 + τg

2θg)/(seσg
2 + τg

2),(τg
2σg

2)/
(seσg

2 + τg
2)]

(vi) Repeat procedures 2–5 N times. We found that N = 4000 is
sufficient for mixing of the Markov chain whose steady-state
distribution is the desired posterior distribution.

The above methodology can also be applied when calibra-
tion experiments are not available to provide prior information.
In such cases we assume the same hierarchical model with
prior distribution τg

2 ∼ k g
2/χk

2 and σg
2 ∼ h g

2/χh
2 where 2 =

�g,s,e(ygse – yg·e)2/G(S – 1)E and 2 = �g,e(yg·e – yg··)2/G(E – 1)
become non-gene-specific. When S and E are small relative to
the prior degrees of freedom h and k the posterior distributions
will tend to be non-gene-specific, while if S and E are large the
posterior distributions are dominated by gene-specific obser-
vations.

Cancellation of non-linearity in reverse labeling

Assume that u1g,v1g are the Cy5 and Cy3 intensities of gene g
on slide 1 and u2g,v2g the intensities on slide 2. In the reverse
labeling design applying the ANOVA model (9) the loga-
rithmic expression ratio of each gene is estimated as

1/2{log(u1g/v1g) – log(u2g/v2g) – meang[log(u1g/v1g) – log(u2g/
v2g)]}
which in calibration experiments should have a distribution
centered at 0 and independent of the absolute intensity of the

M̂ f̂

τ̂
τ̂

τ̂

τ̃ τ̃ τ̂
τ̂

τ̂ τ̂

τ̃

σ̃ σ̃ σ̂ σ̂
σ̂ σ̂

σ̃

τ̃
σ̃

τ̃ σ̃

σ̃

τ̃

τ̃ σ̃ τ̃
σ̃



2 Nucleic Acids Research, 2001, Vol. 29, No. 12

gene. Note also that if ANOVA is adequate, log(u1g/v1g) –
meang[log(u1g/v1g) should also behave in the same way.

In the first and second plots of Figure 8 log(Cy5) – log(Cy3)
versus the average log intensity of Cy5 and Cy3 has a positive
slope trend. This is probably due to the need for a normaliza-
tion function between Cy3 and Cy5.

We decompose Cy5 intensity u = αv + ∆(v), where ∆(v) is
the non-linear part which cannot be explained by αv. By
Taylor expansion

log(u/v) = log[α + ∆(v)/v] ≈ log(α) + [∆(v)/vα]

If the non-linear part ∆(v) on the two slides of reverse labe-
ling are highly positively correlated the second term will be
partially cancelled out in the reverse label average, as in the
third plot of Figure 8.

Figure S1. Intensity plots of genes chosen by non-iterative and iterative (with
P = 0.01, 0.02, 0.05) rank invariant methods for R1S1 from the 4129 gene
project, showing that iteration helps to select a more conserved set of genes.


