Biochem. J. (2013) 449, 605–612 (Printed in Great Britain) doi:10.1042/BJ20121121

SUPPLEMENTARY ONLINE DATA Regulation of adipogenesis by cytoskeleton remodelling is facilitated by acetyltransferase MEC-17-dependent acetylation of α -tubulin

Wulin YANG*, Xiangxiang GUO*, Shermaine THEIN*, Feng XU⁺, Shigeki SUGII*⁺, Peter W. BAAS[§], George K. RADDA* and Weiping HAN⁺⁺ ||¶¹

*Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, †Singapore Institute for Clinical Sciences, A*STAR, Singapore, ‡Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore, §Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, U.S.A., ||Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, and ¶Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore

Supplementary Figures S1–S6, and Supplementary Tables S1 and S2 are on the following pages.

¹ To whom correspondence should be addressed (email weiping_han@sbic.a-star.edu.sg).

Figure S1 Disruption of MTs by nocodazole enhances lipid accumulation during adipogenesis

(A) Treatment with nocodazole increased triacylglycerol accumulation after adipogenic cocktail treatment. 3T3-L1 cells were treated with various concentrations of nocodazole or vehicle (Mock) for 2 h each on days 2, 4 and 6 after adipogenic cocktail treatment. Lipid accumulation was assessed by microscopy ($20 \times$). Two different fields are shown for each condition to illustrate reproducibility. (B) Propan-2-ol extracts of Oil-Red O from the nocodazole experiments were used to determine relative total lipid content. Values are means \pm S.E.M. (n = 3-4 independent experiments). *P < 0.05. Scale bar in (\mathbf{C}) = 50 μ m.

Figure S2 Expression profile of MEC-17 in 3T3-L1 cells during adipogenesis

(A) qPCR was used to assess mRNA levels of the acetyltransferase MEC-17 in 3T3-L1 cells at different time points after adipogenic cocktail treatment. Values are means ±S.E.M. n = 3 independent experiments, each measured in triplicate. (B) Western blots showing protein levels of MEC-17 in 3T3-L1 cells at the time points indicated after adipogenic cocktail treatment.

Figure S3 Expression profile of deacetylases, SIRT2 and HDAC6 during adipogenesis

Expression levels of SIRT2 (**A**) and HDAC6 (**B**) were evaluated in 3T3-L1 cells at the time points indicated during adipogenesis by qPCR. Values are means \pm S.E.M. (n = 3 independent experiments, each measured in triplicate). (**C**) Western blots showing protein levels of SIRT2 and HDAC6 in 3T3-L1 cells at the time points indicated after adipogenic cocktail treatment.

В

Figure S4 Impaired morphological transition in acetylation-resistant tubulin-expressing cells during adipogenesis

(A) Lysates from stable 3T3-L1 cells expressing EGFP- α -tubulin (EGFP-Tubulin-WT) or EGFP- α -tubulin-K40R mutant (EGFP-Tubulin-K40R) were examined by immunoblotting using anti- α -tubulin, anti-(acetylated α -tubulin) and anti- β -actin antibody. (B) Stable 3T3-L1 cells expressing EGFP- α -tubulin (EGFP-Tubulin-WT) or EGFP- α -tubulin-K40R (EGFP-Tubulin-K40R) were fixed and LDs were stained with LipidTOX reagent (red), and imaged on a confocal microscope. Note the diffuse staining pattern of EGFP-Tubulin-WT and increased LD staining at a late stage of differentiation. In contrast, the majority of EGFP-Tubulin-K40R expressing cells retained a fibroblast-like morphology and relatively intact MT network. Scale bars = 10 μ m.

Figure S5 Enhanced adipogenesis in SIRT2- or HDAC6-KD cells is associated with increased acetylation of α-tubulin

(A) 3T3-L1 cells with efficient KD of SIRT2 or HDAC6. (**B** and **C**) The levels of acetylated α -tubulin were detected in SIRT2- (**B**) or HDAC6- (**C**) KD cells at different time points after adipogenic cocktail treatment. (**D**) Stable 3T3-L1 cells with KD of SIRT2 or HDAC6 were stained with Oil-Red 0 and imaged on a microscope at days 4 and 7 after adipogenic cocktail treatment. Note both cell lines showed increased Oil-Red 0 staining at day 4, but only SIRT2-KD cells showed more staining at day 7. (**E**) Propan-2-ol extracts of Oil-Red 0 cells from (**D**) were used to determine the relative lipid content. As was found in (**D**), lipid content was increased in both cell lines at day 4, but only SIRT2-KD cells showed increased lipid content at day 7. Values are means \pm S.E.M. (n = 3-4 independent experiments). *P < 0.05, **P < 0.01 and ***P < 0.001. Scale bar in (**D**) = 50 μ m. Ctrl., control.

Figure S6 Increased co-localization of katanin with $\alpha\text{-tubulin}$ during adipogenesis

(A) 3T3-L1 cells expressing EGFP-tagged katanin were fixed, stained with the anti-tubulin antibody at days 0, 3 and 5 after adipogenic cocktail treatment, and imaged on a confocal microscope. Scale bars = 10 μ m. (B) Pearson's coefficients at the time points indicated. Values are means \pm S.E.M. (n = 3-4 independent experiments).

Received 16 July 2012/2 November 2012; accepted 5 November 2012 Published as BJ Immediate Publication 5 November 2012, doi:10.1042/BJ20121121

Table S1 Target sequences for KD of MEC-17, SIRT2, HDAC6 and katanin

Target	Oligonucleotide name	Sequence $(5' \rightarrow 3')$
MEC-17	M/KD1	GCCATACTCTTCCAGTGAC
MEC-17	M/KD2	AGTTGGATACAAGAAGCTC
SIRT2	S/KD	GAAGGAGTGACACGCTACA
HDAC6	H/KD	GGGCTGGATCTGAACCCTG
Katanin	K/KD1	GCAGTGGTGTTACCAATGT
Katanin	K/KD2	GACAACGTTCTTCAATGTC

Table S2Real-time qPCR primers

aP2, adipocyte P2; GLUT4, glucose transporter 4; LDLR, low-density lipoprotein receptor; TBP, TATA-box binding protein.

Target	Forward primer $(5' \rightarrow 3')$	Reverse primer $(5' \rightarrow 3')$
MEC-17	GAGCCATTATTGGTTTCCTCAAAG	AGCCTCCCGGTCATCCA
SIRT2	AGCCAACCATCTGCCACTAC	CCAGCCCATCGTGTATTCTT
HDAC6	GACAGCGAAAGAGTAGGCACAA	AGGTGGCGCTGGATTCC
Katanin	GCCAGCCGAAGGATGAAA	GCACCTCCAACACCATCCAT
PPAR _γ	CATGACCAGGGAGATCCTCAA	AGCAAACTCAAACTTAGGCTCCAT
C/EBPα	CCAAGAAGTCGGTGGACAAGA	CGGTCATTGTCACTGGTCAACT
GLUT4	GTGACTGGAACACTGGTCCTA	CCAGCCACGTTGCATTGTAG
Perilipin A	GGGACCTGTGAGTGCTTCC	GTATTGAAGAGCCGGGATCTTTT
aP2	GCCAAGCCCCAACATGATCA	TTCCACGCCCAGTTIGAAG
ldlr	CCACTTCCGCTGCAACTCA	CGTCGCAGGCCCAAAG
TBP	ACCCTTCACCAATGACTCCTATG	TGACTGCAGCAAATCGCTTGG