

Fig. S1









Fig. S4





С

## Steady State ATPase KHC Constructs

|                      | Microtubule            |                        | Tubulin                |                        |
|----------------------|------------------------|------------------------|------------------------|------------------------|
|                      | K <sub>M</sub> (uM)    | k <sub>cat</sub> (s⁻¹) | К <sub>м</sub> (uM)    | k <sub>cat</sub> (s⁻¹) |
| KHC <sub>349</sub>   | <b>0.231</b> +/- 0.026 | <b>22.67</b> +/- 0.94  | <b>2.44</b> +/- 0.31   | <b>6.29</b> +/- 0.46   |
| KHC <sub>349</sub> - |                        |                        |                        |                        |
| Kip3 <sup>L11</sup>  | <b>0.041</b> +/- 0.005 | <b>11.25</b> +/- 0.85  | <b>0.260</b> +/- 0.011 | <b>1.89</b> +/- 0.19   |

## SUPPLEMENTAL FIGURE LEGENDS

Figure S1. Sacharomyces cerevisiae-specific insertions in Loop1 and Loop2 are not required for motility or depolymerization activity. Related to Figure 1, 4-6.

A. Alignment of protein sequences of kinesin-8 family members and KHC. Kip3-specific Loop1 (dL1:aa 30-85) or Loop2 (dL2:aa 106-134) insertions are shown within the brown or green dashed boxes. These Kip3-specific sequences were deleted and denoted as dL1 and dL2. Bottom: diagram of the relevant constructs.

B-D. Single molecule motility of Kip3<sub>FL</sub>, Kip3<sub>FL</sub>-dL1, Kip3<sub>FL</sub>-dL2 or Kip3<sub>FL</sub>-dL1+dL2 (dL1+dL2) constructs assayed by TIRF microscopy on taxol-stabilized microtubules:
B. Velocity. C. Run length and D. Plus-end dwell time (mean +/- SEM; n=75-214 events). D, bottom: kymograph showing the motility and plus-end residence of Kip3-dL1-dL2 on taxol stabilized microtubules. Scale bar: 2um (vertical), 1min (horizontal).

E. Quantification of the depolymerization rates of GMPCPP-stabilized microtubules after addition of the Kip3<sub>FL</sub>-dL1 and Kip3<sub>FL</sub>-dL2 deletion constructs (mean +/- SEM; n<sub>MT</sub>=45-242). Bottom: kymographs from depolymerase assays on GMPCPP-stabilized microtubules with Kip3<sub>FL</sub>-dL1+dL2; 40nM input. Scale bar: 1um (vertical), 2 min (horizontal).

## Figure S2. Purification of Kip3 variants. Related to Figure 1-6.

- A. Coomassie-stained SDS-PAGE gels of representative Kip3<sub>FL</sub> and Kip3 variant purifications.
- B. Coomassie-stained SDS-PAGE gels of representative KHC<sub>560</sub> and KHC variant purifications.
- C. Coomassie-stained SDS-PAGE gels of representative Tub1 and Tub1<sup>D118A</sup> purifications.

Figure S3. A flexible segment on the N-terminus of the neck is required for depolymerization by dimeric Kip3. Related to Figure 3.

- A. Kinesin-8s have a unique neck architecture. Probability of forming a coiled-coil (MARCOIL) for various kinesin-8s at the base of the neck. The start of the first residue of the neck has been placed as the x-axis origin. Top: Cartoon illustrating the beginning of the neck at the "0" residue position. Bottom: sequence alignment of the beginning of the neck region for the kinesin-8s shown in the graph. Other kinesin-8s were omitted for clarity. Similar results were obtained with PCOILS and COILS.
- B. Probability of forming a coiled-coil (MARCOIL) for Kip3<sub>FL</sub> and neck mutants. Kip3<sub>FL</sub> is shown in grey; Kip3 'coiled-coiled' (Kip3<sub>FL</sub>-CC, purple) has its native neck replaced by a leucine zipper as described in (Su et al. 2013); Kip3<sub>FL</sub>-CC3G (mexican pink) contains a 3 glycine insertion at the base of the leucine-zipper neck (450). The Kip3<sub>FL</sub>-CC3G mutant was engineered to have a coiled-coil probability similar to Kip3<sub>FL</sub>.
- C. D. E. Quantification of the motility of the neck mutants under single molecule conditions, imaged by TIRF microscopy on taxol-stabilized microtubules: C. Run Length; D. Velocity (mean +/- n=155-430 events); E. Plus-end dwell time (mean +/- SEM; n=26-149 events). Note that the assays shown here were performed at 100 mM KCI. At an ionic concentration of 50 mM KCI the motility of Kip3<sub>FL</sub>-CC's is comparable to Kip3<sub>FL</sub> (Su et al. 2013)
- F. A unique neck architecture is required for Kip3's depolymerization activity. Measurement of the depolymerization rate of GMPCPP-stabilized microtubules Kip3<sub>FL</sub> (grey), Kip3<sub>FL</sub>-CC (purple), Kip3<sub>FL</sub>-CC3G (Mexican pink) at 12nM and 24nM dimer (mean +/- SEM; n<sub>MT</sub>=32-249). **Right:** Kymographs of GMPCPP-stabilized microtubules upon addition of Kip3 neck mutants (24nM input). Scale bar: 2 um (vertical), 2 min (horizontal).

G. The ability to bind tubulin dimers correlates with depolymerization activity. Left: Schematic of the tubulin competition assay. The microtubule on-rate of the relevant motor construct is measured in the presence of varying concentrations of soluble tubulin. Right: Single molecule on-rate for taxol-stabilized microtubules in the competition assay after addition of tubulin for Kip3<sub>FL</sub> (grey), Kip3<sub>FL</sub>-CC (purple) and Kip3<sub>FL</sub>-CC3G (mexican pink). On-rates were normalized to 0nM tubulin. Data was fit to an enzymatic competition model by an inhibitor, see methods. Kip3<sub>FL</sub>: Ki<sup>APP</sup> = 1.3 nM +/- 1.2 nM (95% CI fit, R<sup>2</sup>=0.92; N=5-9 flow-cells per concentration, n=1836 total events); Kip3<sub>FL</sub>-CC: Ki<sup>APP</sup>=29.8 nM +/- 30nM (95% CI fit, R<sup>2</sup>=0.84, N=4-6 flow-cells per concentration, n=4031 total events); Kip3<sub>FL</sub>-CC3G Ki<sup>APP</sup> = 7.2 nM +/- 6nM (95% CI fit, R<sup>2</sup>=0.94, N=4-8 flow cells per concentration, n=5619 total events).

Figure S4. Characterization of Kip3 variants. Related to Figure 2, 4, 5, S1, S3.

- A. In *vivo* complementation by *kip3* mutant constructs. Left: Diagram of Kip3 full length dimer constructs used. Middle: Benomyl resistance assay: Cultures expressing the indicated constructs were spotted onto plates of YPD+ 1% DMSO (LHS, control) or on YPD + 30ug/ml benomyl in 1 % DMSO to assay for resistance to the microtubule depolymerizing drug benomyl. Wild-type strains are benomyl sensitive whereas the deletion allele, *kip3*∆, is benomyl resistant. Right: Control western blot for strains used in benomyl resistance assay. Actin was used as a loading control. Kip3-GFP and other constructs steady-state levels were detected with an anti-GFP antibody.
- B. Kip3 L2 increases the microtubule-on rate of the motor. Single molecule microtubule on-rate (k<sub>on</sub>) for Kip3<sub>FL</sub> and Kip3<sub>FL</sub>-L2<sup>KHC</sup> measured with TIRF microscopy on taxolstabilized microtubules (mean +/- SEM; n=673-913 events).

- C. Kymographs illustrating the normalized flux of motors to the plus-end for Kip3<sub>FL</sub> and Kip3<sub>FL</sub>-L2<sup>KHC</sup> imaged by TIRF microscopy. Kip3<sub>FL</sub> was introduced at 100pM and Kip3<sub>FL</sub>-L2<sup>KHC</sup> at 300pM. See methods for details. Scale bar: 1 min (horizontal), 2 um (vertical).
- D. Kip3 binds preferentially to curved regions of flow-bent microtubules. Taxol-stabilized microtubules were bent under flow, labelled Kip3<sub>438</sub> was introduced into the flow chamber and imaged under TIRF microscopy. Integrated Kip3<sub>438</sub> intensity was plotted against the absolute curvature (κ) of the microtubule (mean +/- SE) at 600pM, 3nM and 100nM input respectively (n<sub>MT</sub>=139, 52, 61 respectively). KHC<sub>325</sub> at 15nM input is shown as a control (n<sub>MT</sub>=165). A line with a slope of 0 has been drawn as a visual reference.
- E. Kip3<sub>448</sub> depolymerizes GMPCPP-stabilized microtubules similarly to Kip3<sub>438</sub> and like dimeric Kip3-L11<sup>KHC</sup> (Fig. 2D), Kip3<sub>448</sub>-L11<sup>KHC</sup> lacks depolymerase activity. Quantification of the depolymerization rate (GMPCPP-microtubules) of Kip3<sub>438</sub>, Kip3<sub>448</sub>, Kip3<sub>438</sub>-L11<sup>KHC</sup>, Kip3<sub>448</sub>-L11<sup>KHC</sup> and the no motor control. Shown are mean +/- SEM (n<sub>MT</sub>=100-298).
- F. Affinity and off-rate measurements of the binding of tubulin to immobilized monomeric Kip3 constructs using bio-layer interferometry. All assays were performed in ATP unless stated in the table. Shown are mean +/- SEM (n=14-30 concentrations per condition). SS: measured using steady state values.
- G. Tubulin does not interfere with ATP binding to Kip3. Tubulin-incubated Kip3<sub>448</sub> was rapidly mixed with varying concentrations of mantATP. Left, top: schematic of the experiment. Left, bottom: representative trace upon mixing of motor-tubulin complex and mantATP. A bi-exponential signal can be observed with two distinct phases. The initial fast phase reflects the initial binding of mantATP to the Kip3448-tubulin complex and is reported in Figure 5F. The second, slow phase (shown here) is inferred to correspond to the post-hydrolysis mantATP exchange after ADP release from a

tubulin-bound ADP-motor. Slow phase of the bi-exponential signal is plotted for Kip $3_{448}$  (middle) and Kip $3_{448}$ -L11<sup>KHC</sup> (right). Shown are mean +/- SEM; N=5-6 per point.

## Figure S5. Steady state ATPase assays for Kip3 constructs. Related to Figure 4, 5.

- A. Steady state ATPase assays with monomeric Kip34<sub>348</sub> variants and Kip3<sub>FL</sub>-CC. Left: Microtubule-stimulated (left, blue traces) or tubulin-stimulated (right, red traces) ATPase activity (mean +/- SEM; n=3-4 curves per condition). Dashed lines represent weighted fits to the Michaelis-Menten equation. ATPase rates are shown in Fig. 4D.
- B. Steady state ATPase assays with dimeric Kip3<sub>FL</sub>, KHC<sub>349</sub> and KHC<sub>349</sub>-L11<sup>KHC</sup> on microtubules (blue) or free tubulin (red) as substrate (0-10 uM). Shown are the ATPase rates (1/s, mean +/- SEM; n=3-4 curves per condition). Dashed lines represent weighted fits to the Michaelis-Menten equation. Binding of KHC<sub>349</sub> to MTs is salt sensitive, therefore these assays were conducted without added salt, see methods.
- C. Values from steady state ATPase assays with KHC<sub>349</sub> and KHC<sub>349</sub>-Kip3<sup>L11</sup> constructs on microtubules or free tubulin as substrate. ATPase assays with KHC<sub>349</sub> were conducted without added salt, see methods. Shown are mean +/- SEM; n=3-4 curves per condition.