| 1  | Rational identification of aggregation hotspots based on secondary structure and amino                                                     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | acid hydrophobicity                                                                                                                        |
| 3  |                                                                                                                                            |
| 4  | Daisuke Matsui <sup>1,2§</sup> , Shogo Nakano <sup>1,2§†</sup> , Mohammad Dadashipour <sup>1,2</sup> , and Yasuhisa Asano <sup>1,2,*</sup> |
| 5  |                                                                                                                                            |
| 6  | <sup>1</sup> Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural                                             |
| 7  | University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.                                                                                  |
| 8  | <sup>2</sup> Asano Active Enzyme Molecule Project, ERATO, JST, 5180 Kurokawa, Imizu, Toyama 939-                                           |
| 9  | 0398, Japan                                                                                                                                |
| 10 |                                                                                                                                            |
| 11 | <sup>†</sup> Current address: Graduate School of Pharmaceutical and Nutritional Sciences, University of                                    |

12Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.

#### 13 Supplemental Information

#### 14 Screening of soluble variants of 3-hydroxybutyrate dehydrogenase and tryptophan

### 15 synthase from *Thermus thermophilus* HB8

- 16 The expression plasmids of 3-hydroxybutyrate dehydrogenase (*Tt*HBD; GenBank accession
- 17 number BAD70516.1) and tryptophan synthase (*Tt*TST; GenBank accession number
- 18 YP\_144360.1) from *T. thermophilus* were from RIKEN BioResource Center (Ibaraki, Japan)<sup>1</sup>.
- 19 These plasmids were transformed into *E. coli* BL21 (DE3), the transformants were grown in LB
- 20 medium, and the protein expression was induced under the same conditions as described in
- 21 Materials and Methods. E. coli XL-1 Red was used for the random mutagenesis according to the
- 22 method described in a previous report  $^2$ . The soluble expressions were obtained from each of the
- two enzymes in SDS-PAGE, and the following amino acid substitutions were identified: A25E

in *Tt*HBD, and V136A in *Tt*TST. The mutated residues were located in  $\alpha$ -helix structures.

25

#### 26 Expression and characterization of ChMOX, AtADC, DmGDH, DmODC, SuPDH, and

- 27 MpLUC
- 28 The genes *chmox*, *supdh*, and *mpluc* were obtained from our laboratory stocks, and *atadc*,
- 29 *dmgdh*, and *dmodc* for the construction of expression plasmids were cloned from the A. thaliana
- 30 or *D. melanogaster* cDNA library. The sequence sizes of *Ch*MOX, *At*ADC, *Dm*GDH, *Dm*ODC,
- 31 SuPDH and MpLUC are 584, 702, 535, 394, 379, and 208 residues, respectively, and the
- 32 theoretical molecular weights are 63,800, 76,200, 59,900, 44,200, 41,300, and 22,500,
- 33 respectively (Fig. S1 and S2). These genes were expressed using the pET, pUC or pCold system
- 34 in E. coli BL21 (DE3) and were cultivated and induced with IPTG. Most of these genes were
- 35 expressed in the insoluble fractions in SDS-PAGE assays. No activity of *Ch*MOX, *At*ADC,
- 36 DmGDH, DmODC or MpLUC could be detected in the crude extracts (soluble fractions), and

37 the activities of *Su*PDH were very low.

| 38 | <i>Ch</i> MOX and <i>Mp</i> LUC have no rare codons, but there are six rare codons (Arg200, Arg229,        |
|----|------------------------------------------------------------------------------------------------------------|
| 39 | Arg268, Arg358, Arg512, and Arg630) in AtADC, three rare codons (Arg18, Arg472, and                        |
| 40 | Arg513) in <i>Dm</i> GDH, three rare codons (Arg54, Arg71, and Arg288) in <i>Dm</i> ODC, and one rare      |
| 41 | codon (Arg233) in SuPDH. Because the enzyme was produced in the E. coli BL21 (DE3)                         |
| 42 | expression system, the gene sequences do not affect the production of the mRNAs for the                    |
| 43 | enzymes. The same results were obtained in the E. coli BL21-CodonPlus (DE3)-RIL strain                     |
| 44 | (Stratagene, CA, USA), which contains extra copies of the <i>E. coli argU, ileY</i> , and <i>leuW</i> tRNA |
| 45 | genes. It is suggested that expression speed, translational factors, chaperone recognitions, or            |
| 46 | posttranslational modifications such as glycosylation affect the soluble and active expression of          |
| 47 | the genes.                                                                                                 |
| 48 |                                                                                                            |
| 49 | CD spectra of <i>Ch</i> MOX WT and its variants                                                            |
| 50 | The CD spectra of the ChMOX, MpLUC, DmODC, and AtADC WT and its variant V455D                              |
| 51 | were measured utilizing a Jasco J-715CD spectrometer (Fig. S3). The buffer contained 10 mM                 |
| 52 | potassium phosphate (pH 7.0) and 50 mM sodium chloride, and 0.1 mg/ml of the enzyme was                    |
| 53 | utilized in the measurement. Far-ultraviolet spectra were recorded from 195 to 280 nm                      |
| 54 | according to the method described in a previous report <sup>3</sup> .                                      |
| 55 |                                                                                                            |
| 56 | Soluble expression of carbonyl reductase from yeast Ogataea polymorpha NBRC 0799                           |
| 57 | For the expression of the carbonyl reductase (OgCRD; GenBank accession number                              |
| 58 | LC176491) gene (ogcrd), the already constructed plasmid pET-11a-ogcrd, was used in this                    |
| 59 | study. The plasmids were transformed into E. coli BL21 (DE3). The transformants were grown                 |
| 60 | in LB medium and the protein expression was induced under the same conditions as described                 |

in Materials and Methods. The enzyme activity for the reduction of acetone was assayed at 30°C
by measuring the oxidation of NADH to NAD<sup>+</sup> at pH 6.0. One unit of enzyme activity was
defined as the amount of enzyme catalyzing the oxidation of one micromole of NADH per min.

65 Soluble expression of human crystalline aldehyde dehydrogenase and growth hormone 66 A cDNA of human crystalline aldehyde dehydrogenase (ALDH3A1; GenBank accession 67 number NP 000682.3) was synthesized and amplified using Tks Gflex DNA polymerase and 68 the primers P26 and P27 listed in Table S1. After digestion of pET-15a by NdeI and BamHI, the 69 amplified ALDH3A1 gene was ligated to pET-15a using an In-Fusion HD Cloning Kit. A cDNA 70of human growth hormone (GenBank accession number KJ608193, hGH) was synthesized and 71amplified using Tks Gflex DNA polymerase and the primers P26 and P27 listed in Table S1. 72After digestion by NdeI, the amplified gene was ligated to pET15b with an In-Fusion HD 73 Cloning Kit. The plasmids were transformed into E. coli BL21 (DE3). The transformants were 74grown in LB medium and the protein expression was induced under the same conditions as 75described in Materials and Methods. LDH3A1 activity was measured by monitoring the 76production of  $\beta$ -NADH at 340 nm, following the procedure described in previous reports <sup>4</sup>. The 77 soluble expression levels of hGHs were determined by hGH ELISA kit (Roche, Mannheim, 78Germany). 79 From the analysis of hGH, seven residues, Leu46, Phe55, Leu82, Leu88, Arg95, Val97, and Leu114, which were on  $\alpha$ -helices and had high or low HiSol scores (more than 1.0 or less than -80 81 1.0), were selected as aggregation hot-spots (Table 1). As expected, the mutations L46K, F55H, L82R, L88E, R95S, V97E, and L114K enhanced the solubility compared with WT (Fig. 4C). 82

83

## 84 Additional information

- 85 We declare that there are no competing financial interests in this work.
- 86

| 87 | References   |
|----|--------------|
| 0. | iterer ences |

| 89 | 1 | Yokoyama, S. et al. Structural genomics projects in Japan. Nat Struct Biol 7 Suppl, 943- |
|----|---|------------------------------------------------------------------------------------------|
| 90 |   | 945 (2000).                                                                              |

- 91 2 Matsui, D. & Asano, Y. Heterologous production of L-lysine ε-oxidase by directed
  92 evolution using a fusion reporter method. *Biosci Biotechnol Biochem* 79, 1473-1480
  93 (2015).
- Nakano, S. & Asano, Y. Protein evolution analysis of *S*-hydroxynitrile lyase by complete
  sequence design utilizing the INTMSAlign software. *Sci. Rep.* 5 (2015).
- 96 4 Voulgaridou, G.-P., Mantso, T., Chlichlia, K., Panayiotidis, M. I. & Pappa, A. Efficient *E*.
- 97 *coli* expression strategies for production of soluble human crystallin ALDH3A1. *PloS*
- 98 *one* **8**, e56582 (2013).

100

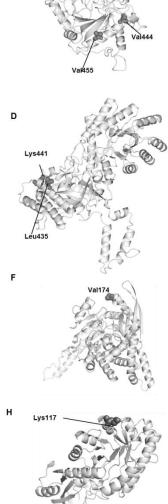
| 101 | Figure S1. Amino acid sequences of ChMOX, AtADC, DmGDH, DmODC, SuPDH, and                                  |
|-----|------------------------------------------------------------------------------------------------------------|
| 102 | MpLUC (A, C, E, G, I, K, respectively) and their homology model structures generated                       |
| 103 | using SWISS-MODEL (B, D, F, H, J, respectively, omitting <i>Mp</i> LUC).                                   |
| 104 | The residues in the sequences are highlighted based on the following factors: the $\alpha$ -helix          |
| 105 | structure in the sequence (underlined), the target $\alpha$ -helix structures (bold font), and the mutated |
| 106 | residues (squared). The structure of <i>Mp</i> LUC is a novel one that could not be predicted.             |
| 107 |                                                                                                            |
| 108 | Figure S2. Depiction of helical wheels of target α-helices of SuPDH and MpLUC. Helical                     |
| 109 | wheels of target $\alpha$ -helices: residues 218-227 (EQAIADIQKL) of SuPDH (A), residues 317-340           |
| 110 | (PARVLAKTENIYTSLLEVFHQAEQ) of SuPDH (B), residues 76-89 (LEVLIEMEANARKA)                                   |
| 111 | of MpLUC (C), and residues 176-201 (SALLKKWLPDRCASFADKIQSEVDNI) of MpLUC                                   |
| 112 | (D)). The hydrophobic amino acids, the hydrophilic amino acids, and the target amino acids are             |
| 113 | represented by black filled circles, white circles and underlined residue numbers, respectively.           |
| 114 |                                                                                                            |
| 115 | Figure S3. Comparisons of the CD spectra of WT proteins (filled circle) and variants                       |
| 116 | (open circles).                                                                                            |
| 117 | CD spectra of the refolded WT of ChMOX and the V455E variant are shown in A, and the                       |
| 118 | changes in CD at 222 nm measured after heat treatment are shown in B. The CD spectra of the                |
| 119 | refolded WT of MpLUC and the A177D variant and the changes in CD at 222 nm induced by                      |
| 120 | heat treatment were also measured (C, D). The changes in CD at 222 nm induced by heat                      |
| 121 | treatment were measured in DmODC WT and K117L (E) and AtADC WT and K441L (F).                              |
| 122 |                                                                                                            |

| 123 | Figure S4. Comparisons of the thermal stability of <i>Mp</i> LUC WT proteins (filled circle), the |
|-----|---------------------------------------------------------------------------------------------------|
| 124 | I80K, and the A177D variant (filled triangle).                                                    |
| 125 | The each luminescence was measured after heat treatment for 30 min.                               |
| 126 |                                                                                                   |
| 127 | Supplemental Tables                                                                               |
| 128 |                                                                                                   |
| 129 | Table S1. Designed oligonucleotides used to perform random mutagenesis and site-directed          |
| 130 | mutagenesis.                                                                                      |
| 131 |                                                                                                   |
| 132 | Table S2. Enzyme activity measurement of the Val444 and Val455 variants of <i>Ch</i> MOX and the  |
| 133 | Leu435 and Lys441 variants of AtADC generated by saturation mutagenesis.                          |
| 134 |                                                                                                   |
| 135 | Table S3. Run time parameters of INTMSAlign for ChMOX, AtADC, DmGDH, DmODC,                       |

136 SuPDH and MpLUC.

Matsui et al

A


в

#### Е

#### G

I

|        | 10               | 20         | 30          | 40         | 50                 | 60            |
|--------|------------------|------------|-------------|------------|--------------------|---------------|
| MILVT  | LEQTLQDDK        | ASVLDKMVER | HEQILFCHDKA | TGLQAIIAVH | DTTMGPALGO         | <b>CRMAPY</b> |
|        | 70               | 80         | 90          | 100        | 110                | 120           |
| KTHDL  | ALKDVLRLS        | KGMTYKCAA# | DVDFGGGKSV  | IIGDFLKDKT | PEKFRAFGO          | IESLNG        |
|        | 130              | 140        | 150         | 160        | 170                | 180           |
| RFYTG  | DMGTTLED         | FVHAMKETNY | IVGKPVEVGG  | GGDSSIPTAL | GVFYGIKAT?         | QNLFGD        |
|        | 190              | 200        | 210         | 220        | 230                | 240           |
| DKVEG  | RKYSIQGLG        | KVGYKVAEHI | LINEGGNVIVT | DINEQAIADI | <b>CKL</b> GGSAVR1 | /VSSEEI       |
|        | 250              | 260        | 270         | 280        | 290                | 300           |
| YSQQAY | DVFVPCAFG        | GVINDDTLKV | /LKVRGISGSA | NNQLAESRHS | ELLRENGILY         | APDYIV        |
|        | 310              | 320        | 330         | 340        | 350                | 360           |
| NGGGL  | <b>LOVADELYG</b> | TNPARVLAK  | TENTYTSLLEV | FHOAEDDHMT | TATAADRMC          | KRIADA        |
|        | 370              |            |             |            |                    |               |
| KNRNS  | FTQSNRPK         | UNFHQ      |             |            |                    |               |
|        |                  |            |             |            |                    |               |





Gin337

#### к

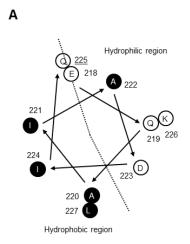
 10
 2.0
 6.0
 6.0
 6.0
 6.0

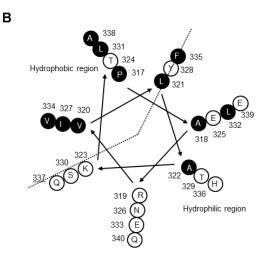
 MMELTYLE LLC ALL XAMP TRANSLO TO 90
 9.0
 10.0
 1.0
 1.0

 SULFYLE ALL XAMP TRANSLO TO 90
 9.0
 10.0
 1.0
 1.0

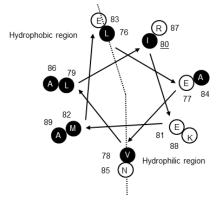
 SULFWEIT ELECTRON TO FOLL TO SULFYLE TO THAT WITH TRANSLOVE
 1.0
 1.0
 1.0
 1.0

 10
 140
 1.50
 1.60
 1.70
 1.80

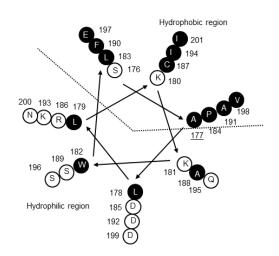

 GENERAL COLLINE ELESTRUCTURE LAW THE RESULFYLE ALL THAT WITH TRANSLOVE
 1.00
 1.00
 1.00


 10
 140
 1.50
 1.60
 1.70
 1.80

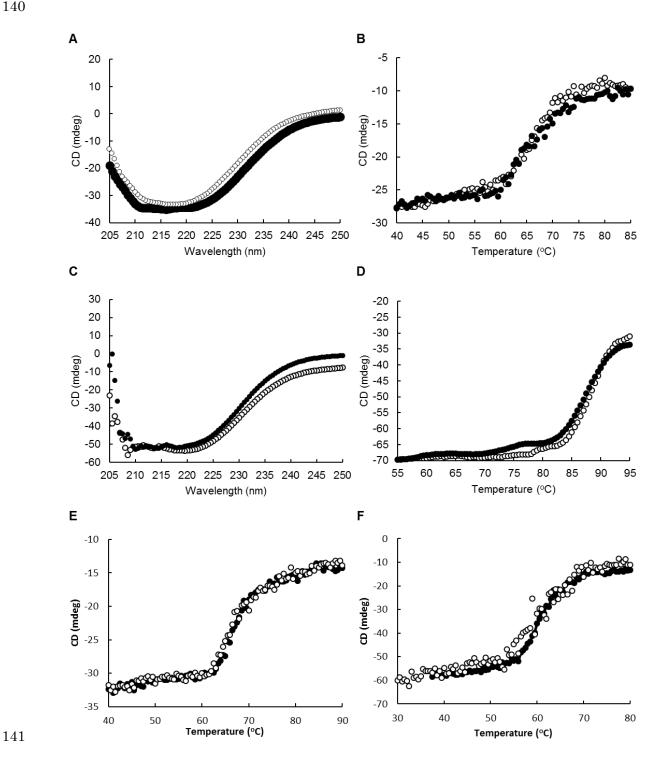
 GENERAL COLLING THE TO SERVICE ALL MARKELAND THE RESULFYLE MARKELAND THE RESULFY


J

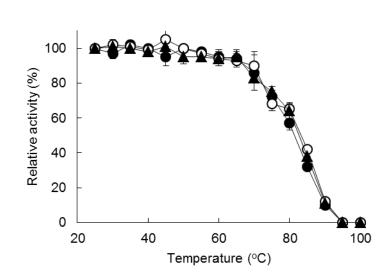
Matsui et al







С




D



Matsui et al



Matsui et al



## **Table S1. Oligonucleotides used in this study.**

| Primer | Comments <sup>a</sup>                                                                               |
|--------|-----------------------------------------------------------------------------------------------------|
| P1     | 5'-GCGCATATGAATCCGACCGAAAAACAAAGATG-3', Amplification of MpLUC gene                                 |
| P2     | 5'-CGCCTCGAGTTAACGATCGCCTGCCAGGCCTTT-3', Amplification of MpLUC gene                                |
| P3     | 5'-GGAGATATACATATGCCTGCTCTAGCTTTTGTTGA-3', Amplification of AtADC gene                              |
| P4     | 5'-TTAGCAGCCGGATCCTCAACCGAAATAAGACCAAT-3', Amplification of AtADC gene                              |
| P5     | 5'-AGAAGGAGATATACATATGCTTCGTTATACGGCACGGATT-3', Amplification of DmGDH gene                         |
| P6     | 5'-TTTGTTAGCAGCCGGATCCCTACTGTTGGGAAATTCCGGAGC-3', Amplification of DmGDH gene                       |
| P7     | 5'-AGAAGGAGATATACATATGGCGGCCGCTACCCCTGAAAT-3', Amplification of DmODC gene                          |
| P8     | 5'-TTTGTTAGCAGCCGGATCCTCATATAGCTTGGAAGTACAGGG-3', Amplification of DmODC gene                       |
| P9     | 5'-ACCGACCCTGGAAGANNSGACATTGATACGAT-3', Saturation site-directed mutagenesis at Val444 of ChMOX     |
| P10    | 5'-ATCGTATCAATGTCSNNTCTTCCAGGGTCGGT-3', Saturation site-directed mutagenesis at Val444 of ChMOX     |
| P11    | 5'-GTTCGAGGCGTACACNNSGCTCTTAACTTTGGA-3', Saturation site-directed mutagenesis at Val455 of ChMOX    |
| P12    | 5'-TCCAAAGTTAAGAGCSNNGTGTACGCCTCGAAC-3', Saturation site-directed mutagenesis at Val455 of ChMOX    |
| P13    | 5'-CGTGAAAGCTGCTTGNNSTATGTTGATCAGCTG-3', Saturation site-directed mutagenesis at Leu435 of AtADC    |
| P14    | 5'-CAGCTGATCAACATASNNCAAGCAGCTTTCACG-3', Saturation site-directed mutagenesis at Leu435 of AtADC    |
| P15    | 5'-ATGTTGATCAGCTGNNSCAGAGATGTGTTGAAG-3', Saturation site-directed mutagenesis at Lys441 of AtADC    |
| P16    | 5'-CTTCAACACATCTCTGSNNCAGCTGATCAACAT-3', Saturation site-directed mutagenesis at Lys441 of AtADC    |
| P17    | 5'-GTGGGCVTCCCGGTCGAATATGGTGGCGGT-3', Amino acid substitution at Lys148 to Ile, Val or Leu of SuPDH |
| P18    | 5'-GATATTGTGAAGCTCGGTGGAAGCGCTGTC-3', Amino acid substitution at Gln225 to Val of SuPDH             |
| P19    | 5'-AGTCAGGYAGCAGATGTTTTTGTTCCTTGT-3', Amino acid substitution at Gln243 to Val or Ala of SuPDH      |
| P20    | 5'-TTCCATATCGCAGAACAGGATCATATGACA-3', Amino acid substitution at Gln337 to Ile of SuPDH             |
| P21    | 5'-AACCGACCGRTATGGAATTTTCATCAGTAA-3', Amino acid substitution at Lys374 to Ile or Val of SuPDH      |

- P22 5'-CCGCTGGAAGTTCTG<u>AAA</u>GAAATGGAAGCAAAT-3', Amino acid substitution at Ile80 to Lys of *Mp*LUC
- P23 5'-ATTTGCTTCCATTTC<u>TTT</u>CAGAACTTCCAGCGG-3', Amino acid substitution at Ile80 to Lys of *Mp*LUC
- P24 5'-AATGTTAAATGTAGC<u>GAT</u>CTGCTGAAAAAATGG-3', Amino acid substitution at Ala177 to Asp of *Mp*LUC
- P25 5'-CCATTTTTCAGCAG<u>ATC</u>GCTACATTTAACATT-3', Amino acid substitution at Ala177 to Asp of *Mp*LUC
- P26 5'-GCTAATTTTGCTCATATGGCTGCCGCGCGCGCACCA-3', Amplification of ALDH3A gene
- P27 5'-ATGACCCAGCATTAAGGATCCGGCTGCTAACAAAG-3', Amplification of ALDH3A gene
- P28 5'-CGCGGCAGCCATATGTTTCCGACCATTCCGCTGAGCC-3', Amplification of hGH gene
- P29 5'-TTAGCAGCCGGATCCTTAAAAACCACAGCTACCTTCAAC-3', Amplification of hGH gene

<sup>a</sup> Mutation sites are underlined.

|     | ChMOX Val444                |                                            | Ch                                      | MOX Val                     | 455                           | At                                      | AtADC Leu435                |                               |                                         | AtADC Lys441                |                               |                                         |
|-----|-----------------------------|--------------------------------------------|-----------------------------------------|-----------------------------|-------------------------------|-----------------------------------------|-----------------------------|-------------------------------|-----------------------------------------|-----------------------------|-------------------------------|-----------------------------------------|
|     | Total<br>activity<br>(U/ml) | Soluble<br>protein<br>(mg/ml) <sup>a</sup> | Total<br>specific<br>activity<br>(U/mg) | Total<br>activity<br>(U/ml) | Soluble<br>protein<br>(mg/ml) | Total<br>specific<br>activity<br>(U/mg) | Total<br>activity<br>(U/ml) | Soluble<br>protein<br>(mg/ml) | Total<br>specific<br>activity<br>(U/mg) | Total<br>activity<br>(U/ml) | Soluble<br>protein<br>(mg/ml) | Total<br>specific<br>activity<br>(U/mg) |
| Ile | ND                          | 1.4                                        | ND                                      | ND                          | 1.7                           | ND                                      | ND                          | 1.2                           | ND                                      | ND                          | 1.5                           | ND                                      |
| Val | ND                          | 1.7                                        | ND                                      | ND                          | 1.6                           | ND                                      | ND                          | 1.2                           | ND                                      | 0.005                       | 1.4                           | 0.0036                                  |
| Leu | 0.028                       | 1.2                                        | 0.024                                   | 0.022                       | 1.4                           | 0.016                                   | ND                          | 1.4                           | ND                                      | 0.043                       | 1.3                           | 0.0331                                  |
| Phe | ND                          | 0.6                                        | ND                                      | ND                          | 1.3                           | ND                                      | ND                          | 1.8                           | ND                                      | ND                          | 1.3                           | ND                                      |
| Cys | ND                          | 1.7                                        | ND                                      | ND                          | 1.3                           | ND                                      | ND                          | 1.3                           | ND                                      | ND                          | 1.1                           | ND                                      |
| Met | 0.010                       | 1.8                                        | 0.006                                   | 0.010                       | 1.2                           | 0.008                                   | ND                          | 1.1                           | ND                                      | ND                          | 1.4                           | ND                                      |
| Ala | 0.005                       | 0.8                                        | 0.006                                   | 0.005                       | 1.8                           | 0.003                                   | ND                          | 1.2                           | ND                                      | 0.009                       | 1.8                           | 0.0050                                  |
| Gly | ND                          | 1.4                                        | ND                                      | ND                          | 1.5                           | ND                                      | ND                          | 1.3                           | ND                                      | ND                          | 1.2                           | ND                                      |
| Thr | 0.005                       | 1.6                                        | 0.003                                   | ND                          | 1.9                           | ND                                      | ND                          | 1.2                           | ND                                      | ND                          | 1.2                           | ND                                      |
| Ser | 0.020                       | 1.4                                        | 0.014                                   | ND                          | 1.8                           | ND                                      | ND                          | 1.8                           | ND                                      | ND                          | 1.5                           | ND                                      |
| Trp | ND                          | 1.8                                        | ND                                      | ND                          | 1.2                           | ND                                      | ND                          | 1.2                           | ND                                      | ND                          | 1.3                           | ND                                      |
| Tyr | 0.037                       | 1.3                                        | 0.028                                   | ND                          | 1.3                           | ND                                      | ND                          | 1.4                           | ND                                      | 0.005                       | 1.2                           | 0.0042                                  |
| Pro | ND                          | 1.5                                        | ND                                      | ND                          | 1.8                           | ND                                      | ND                          | 1.1                           | ND                                      | ND                          | 1.8                           | ND                                      |
| His | 0.060                       | 0.9                                        | 0.067                                   | ND                          | 1.5                           | ND                                      | 0.036                       | 1.6                           | 0.02                                    | ND                          | 1.2                           | ND                                      |
| Glu | 0.055                       | 1.2                                        | 0.046                                   | 0.040                       | 1.9                           | 0.021                                   | 0.005                       | 1.5                           | 0.00                                    | ND                          | 1.3                           | ND                                      |
| Gln | 0.050                       | 1.4                                        | 0.036                                   | 0.060                       | 1.8                           | 0.033                                   | 0.012                       | 1.2                           | 0.01                                    | ND                          | 1.2                           | ND                                      |
| Asp | 0.050                       | 1.3                                        | 0.038                                   | 0.024                       | 1.4                           | 0.017                                   | 0.002                       | 1.4                           | 0.00                                    | ND                          | 1.2                           | ND                                      |

# 145 Table S2. Saturation mutagenesis at Val444 and at Val455 of *Ch*MOX and at Leu435 and at Lys441 of *At*ADC

\_

| Asn | 0.050 | 1.2 | 0.042 | 0.022 | 1.5 | 0.015 | 0.012 | 1.2 | 0.01 | ND | 1.3 | ND |
|-----|-------|-----|-------|-------|-----|-------|-------|-----|------|----|-----|----|
| Lys | 0.012 | 1.1 | 0.011 | 0.042 | 1.3 | 0.032 | 0.001 | 1.4 | 0.00 | ND | 1.1 | ND |
| Arg | 0.055 | 1.5 | 0.037 | 0.040 | 1.5 | 0.027 | ND    | 1.1 | ND   | ND | 1.5 | ND |

U/ml of cell-free extract prepared from a 3-ml LB culture in triplicate; ND, not determined

<sup>a</sup>Concentration of soluble proteins means concentration of soluble fraction of crude enzyme solution.

|                    | ChMOX            | AtADC         | DmGDH         | DmODC         | MeHNL         | SuPDH         | <i>Mp</i> LUC   |
|--------------------|------------------|---------------|---------------|---------------|---------------|---------------|-----------------|
| Types of Blast     | Blastp           | Blastp        | Blastp        | Blastp        | Blastp        | Blastp        | Blastp          |
| Database           | Non redundant    | Non redundant | Non redundant | Non redundant | Non redundant | Non redundant | Non redundant   |
| C                  | ChMOX            | AtADC         | DmGDH         | DmODC         | MeHNL         | SuPDH         | MpLUC           |
| Sequence of target | (GenBank ID; not | (GenBank      | (GenBank      | (GenBank      | (GenBank ID:  | (GenBank ID:  | (GenBank ID;    |
| protein (STP)      | registered)      | ID:15227223)  | ID:24649283)  | ID:24586472)  | 55469815)     | 1842144)      | not registered) |
| Total number of    |                  |               |               |               |               |               |                 |
| sequences in the   | 5,000            | 5,000         | 5,000         | 5,000         | 825           | 158           | 37              |
| library            |                  |               |               |               |               |               |                 |
| $N_{ m pick}$      | 8                | 8             | 8             | 8             | 8             | 8             | 8               |
| $N_{ m trial}$     | 500              | 500           | 500           | 500           | 1000          | 1,000         | 500             |

# 147 Table S3. INTMSAlign parameters for *Ch*MOX, *At*ADC, *Dm*GDH, *Dm*ODC, *Su*PDH and *Mp*LUC