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Supplementary Figure 1 | Reflectance spectra of Pb1−xSnxSe at zero and high magnetic fields. 

a, The reflectance ratio spectra Rsample/RAl for two Pb1−xSnxSe samples at zero field obtained in Exp 

#1. b, The magneto-reflectance ratio spectra 𝑅 𝜔,𝐵 /𝑅(𝜔,𝐵= 0T) for sample 2 obtained in Exp #1 

(sample 1 shows similar results). The dashed line in a and b shows the screened plasma frequency 

𝜔! = 𝜔!/ 𝜀!. c, The reflectance ratio spectrum Rsample/RAl obtained in Exp #1 and absolute 𝑅 𝜔  

spectrum obtained in Exp #2 for sample 2 in zero field. d, The magneto-reflectance ratio spectra 

𝑅 𝜔,𝐵 /𝑅(𝜔,𝐵= 0T) at a representative field (B=17.5T) for sample 2 in Exp #1 and #3 displayed in 

a ω/𝜔! plot.  
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Supplementary Figure 2 | Experimental and model reflectance spectra at B=17.5 T. The 

spectra Fit #1 and #2 in panel a are obtained using model #1 and #2 shown in Supplementary 

Figures 3 and 4, respectively. Model #1 is the model presented in the main text. The fit spectra in 

panel b are obtained using model #1. The vertical axis is shown in different scales in a and b to 

highlight small features in R(ω, B). The gray area around 175 meV is the energy range in which no 

data can be obtained due to the IR absorption of the optical window in our setup. 
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Supplementary Figure 3 | Real and imaginary parts of optical conductivity from model #1. All 

parameters for model #1 are summarized in Supplementary Table 1, which is the model presented 

in the main text.  
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Supplementary Figure 4 | Real and imaginary parts of optical conductivity from model #2. All 

parameters for model #2 are summarized in Supplementary Table 2.  
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Supplementary Figure 5 | Experimental and model reflectance spectra at B=17.5 T. a, 

Experimental R(ω, B) spectra and two model spectra. b, The Re  𝜎!! 𝜔,𝐵  spectra in two models 

used to generate the model spectra in a. Blue curves: 1/𝜏!!=0.6 meV. Black curves: 1/𝜏!!=3 meV. 
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Supplementary Figure 6 | Drude-Lorentz fit of reflectance spectrum at zero field. a, 

Experimental 𝑅 𝜔  spectrum in zero field and a typical fit using the Drude-Lorentz model. The 

thickness of the experimental spectrum represents the estimated uncertainty. b, The corresponding 

𝜎! 𝜔  spectrum. The parameters for all oscillators in the model are summarized in Supplementary 

Table 3. 
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Supplementary Figure 7 | Experimental and model reflectance spectra at zero field, The model 

R(ω) spectra are calculated from the Drude model 𝜎(𝜔) = !
!!"

(𝜀! − 1−
!!!

!!!!"#
), where 𝜀! 

represents all electronic contributions to the dielectric constant other than the Drude conductivity. 

The model spectra with different values of 𝜀! are generated using 𝛾 = 7 cm−1 and 𝜔! = 𝜔! 𝜀! 

with 𝜔!~260 cm−1. The R(ω) spectrum above 𝜔! increases with increasing value of 𝜀!. 
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Supplementary Table 1 | Parameters for model #1 at B=17.5T. The model spectra are presented 

in the main text and Supplementary Figure 3. These parameters are used in Eq. (3) of the main text. 

𝜀!! = 49.24, and 𝜔!,! = 0 for all oscillators. 
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𝝎𝐜,𝒏	
   (cm-­‐1)	
  

Plasma	
  frequency	
  

𝝎𝐩,𝒏	
   (cm-­‐1)	
  

Linewidth	
  

	
   𝜸𝒏 	
   (cm-­‐1)	
  

124	
   689	
   82	
  

309	
   276	
   15	
  

334	
   325	
   30	
  

-­‐84	
   1301	
   5	
  

-­‐218	
   1117	
   19	
  

-­‐244	
   81	
   12	
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Supplementary Table 2 | Parameters for model #2 at B=17.5T. The model spectra are  

presented in Supplementary Figure 4. These parameters are used in Eq. (3) of the main text for 

magneto-Drude-Lorentz model #2, which is another representative model. 𝜀!! = 49.73 , and 

𝜔!,! = 0 for all oscillators. 
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   𝜸𝒏 	
   (cm-­‐1)	
  

70	
   338	
   50	
  

148	
   459	
   59	
  

235	
   200	
   30	
  

-­‐106	
   1351	
   4.2	
  

-­‐230	
   151	
   25	
  

-­‐325	
   350	
   30	
  

-­‐370	
   226	
   55	
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Supplementary Table 3 | Parameters for Drude-Lorentz model at zero field. The model spectra 

are presented in Supplementary Figure 6. These parameters are used in Eq. (3) of the main text with 

𝜔!,! = 0 for all oscillators, which is the zero-field Drude-Lorentz model. 𝜀!! = 2.733.   
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Linewidth	
  

	
   𝜸𝒏 	
   (cm-­‐1)	
  

0	
   1730.98	
   7	
  

209.78	
   276.55	
   93.41	
  

1005.90	
   1325.32	
   201.24	
  

1241.20	
   1326.11	
   382.13	
  

2313.25	
   7785.34	
   3572.83	
  

4310.72	
   4058.41	
   3426.14	
  

13800	
   14239.48	
   4050	
  

18960.71	
   24857.39	
   5535.32	
  

25645.54	
   104447.11	
   10000.87	
  

44100.83	
   139379.84	
   39529.24	
  

71803.38	
   164841.51	
   57286.62	
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Supplementary Note 1. R(ω, B) spectra of Pb1−xSnxSe and discussion on Se vacancy defects 

 

The magneto-reflectance ratio 𝑅 𝜔,𝐵 /𝑅(𝜔,𝐵= 0T) and the zero-field reflectance R(ω) for two 

Pb1−xSnxSe (x=0.23-0.25) samples were measured in 3 different experiments (Exp #1-3 in sequence) 

with several months between one another. All the data in the main text are from sample 2. 

Supplementary Figure 1a shows the reflectance ratio data Rsample/RAl at zero field obtained in Exp #1, 

which is the reflectance of sample divided by that of a reference aluminum mirror. Because of the 

lack of in situ gold coating in this experiment, the Rsample/RAl spectra are not absolute R(ω). 

Nevertheless, the plasma minimum (dip in Rsample/RAl) at the screened plasma frequency 𝜔! =

𝜔!/ 𝜀! shown in Supplementary Figure 1a should be fairly accurate owing to the frequency 

independent R(ω) of aluminum in this range. Here, the bare plasma frequency 𝜔! is given by 

𝜔!! = 4𝜋𝑒!𝑛/𝑚, 𝜀! represents all high-energy contributions to the dielectric constant other than 

the free carrier contribution. The data in Supplementary Figures 1a and 1b show that the peak in the 

𝑅 𝜔,𝐵 /𝑅(𝜔,𝐵= 0T)  spectrum is exactly at the plasma minimum frequency 𝜔! at zero field 

measured in the same experiment.  

 

In order to obtain the absolute R(ω) spectrum at zero field, we performed Exp #2 with in situ gold 

coating technique, after which 𝑅 𝜔,𝐵 /𝑅(𝜔,𝐵= 0T)  were measured again in Exp #3. We find that 

𝜔! changes slightly from ~34.35 meV to ~32.49 meV (Supplementary Figure 1c), and then to ~31 

meV in Exp #1-3. This observation probably arises from self-doping due to Se vacancies caused by 

the so-called “Se loss phenomenon” in selenides, namely, thermal energy assisted surface Se atom 

escape, which is very common in selenides such as TiSe2, SnSe and Bi2Se3 as discussed in ref. [1] 

and references therein. The sample is cooled down to ~4.5K or ~10K then warmed up to 300K for 

multiple times during different measurements, between which it is briefly exposed to air. Every 

thermal cycling could introduce Se loss, especially for the Se atoms at the surface with the weakest 
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chemical bonding. The Se loss effect could lead to changes in the carrier density n and therefore the 

change of 𝜔! with time, since 𝜔! ∝ 𝑛. Importantly, we find that the frequencies of the features 

in 𝑅 𝜔,𝐵 / 𝑅(𝜔,𝐵 =0T) below 60 meV change proportionally with 𝜔! . As shown in 

Supplementary Figure 1d, 𝑅 𝜔,𝐵 /𝑅(𝜔,𝐵= 0T) measured in Exp #1 and #3 remain the same 

within experimental uncertainty (1%-1.5%) if they are plotted in a ω/𝜔! plot. The scaling results in 

Supplementary Figure 1d demonstrate the robustness of the observed features in 𝑅 𝜔,𝐵 /𝑅(𝜔,𝐵 =

  0T) despite the small change of 𝜔! with time, which is an extrinsic effect. Also, the observed 

main features in 𝑅 𝜔,𝐵 /𝑅(𝜔,𝐵= 0T) above 60 meV change little from Exp #1 to Exp #3, which 

we believe is due to the fact that these features arise from interband Landau level transitions and are 

therefore relatively insensitive to the change of carrier density. 

 

There are two methods to account for the small change of 𝜔! with time in our data. First, one can 

use the absolute 𝑅(𝜔,𝐵= 0T) spectrum obtained in Exp #2 (Supplementary Figure 1c), and use the 

𝑅 𝜔,𝐵 /𝑅(𝜔,𝐵= 0T) spectra in Exp #1 (Supplementary Figure 1b) after scaling the frequency by 

the ratio of the 𝜔! in Exp #2 and #1 below 60 meV. The validity of this approach is justified by 

the scaling results shown in Supplementary Figure 1d, especially because Exp #2 is performed 

between Exp #1 and #3. As the second approach, the 𝑅 𝜔,𝐵 /𝑅(𝜔,𝐵= 0T) in Exp #1 will be used 

and the corresponding 𝑅(𝜔,𝐵= 0T) spectrum can be obtained from that in Exp #2 (Supplementary 

Figure 1c) after scaling the frequency by the ratio of the 𝜔! in Exp #1 and #2 below 60 meV. This 

is justified because the  𝑅(𝜔,𝐵= 0T) spectrum obtained in Exp #2 can be satisfactorily described by 

the Drude model, and the R(ω) spectra in the Drude model with different 𝜔!  will be identical if 

they are all displayed a ω/𝜔! plot. In both methods, the 𝑅 𝜔,𝐵  spectra are obtained by 

multiplying the 𝑅 𝜔,𝐵 /𝑅(𝜔,𝐵= 0T) spectra by 𝑅(𝜔,𝐵= 0T). In the main text, data obtained 

using the first method is presented and discussed. The data obtained from the second method yield 

the same conclusions discussed in the main text.  
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It has been a longstanding challenge in the research of selenides to control of the sample quality. 

Even for samples with the same nominal Pb/Sn ratio, the actual carrier density is sample dependent, 

which depends strongly on the self-doping effect of Se vacancy defects in each crystal. In the 

Bridgman crystal growth, the details can be slightly different for every batch, such as vacuum 

control and the specific solidification temperature at the solid-liquid interface. Moreover, the 

vacancy defect has higher density closer to the surface. All of these factors fluctuate in each growth, 

which leads to sample-dependent defect density and therefore carrier density. The samples used in 

our IR study are from a batch with low carrier density, but the carrier density is batch dependent 

even for the same nominal Pb/Sn ratio. 

 

Supplementary Note 2. Details on 𝝈𝒙𝒙 𝝎  and 𝝈𝒙𝒚 𝝎  in our analysis of  𝑹 𝝎,𝑩  and CR 

mode of the surface states 

 

As discussed in the main text, the reflectance data R(ω, B) were analyzed using the 

magneto-Drude-Lorentz model. This model ensures that the real and imaginary parts of optical 

conductivity are constrained by Kramers–Kronig relations, therefore it is commonly used to 

describe Landau level transitions including cyclotron resonance (CR). This model is among the 

most used methods of parametrization of optical response functions including optical conductivity. 

The physical meaning of each individual oscillator in the model may not be always clear, but the 

meaningful result is the overall optical conductivity obtained from all oscillators, as discussed in 

details in reference 28 of the main text and references therein. In our analysis, we use one oscillator 

at 𝜔!!! = 𝑒𝐵/𝑚!! based on theoretical study of Landau levels of the SS in TCIs (reference 32 of 

the main text) and several much weaker oscillators to simulate the R(ω, B) spectra below 60 meV, 

which represent a parametrization of the overall optical conductivity as explained above. 
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Supplementary Figure 2 displays the experimental R(ω, B) spectra together with two representative 

model spectra at B=17.5 T. The real and imaginary parts of 𝜎!! 𝜔 , 𝜎!" 𝜔 , 𝜎! 𝜔  and 𝜎! 𝜔  

in representative models are shown in Supplementary Figure 3 and 4，where model #1 is 

corresponding to the model for B=17.5T in Fig 4c of the manuscript. The parameters for all 

oscillators in each model are summarized in Supplementary Tables 1 and 2. 

 

Depending on the width and spectral weight of the oscillators used in our analysis and their 

distributions in 𝜎!(𝜔) and 𝜎!(𝜔), we find that a range of 𝜔!!! values with different possible 

𝜎!! 𝜔  spectra can reproduce the spectral feature in R(ω, B) below 25 meV and its evolution with 

B field. Two representative models are shown in Supplementary Figure 3 and 4. Specifically, 

simulated 𝜎!! 𝜔  spectra using 𝑚!! values in the range of 0.15-0.19 𝑚! for the CR mode yield 

model R(ω, B) spectra that can fit the experimental data with the same quality as those shown in 

Supplementary Figure 2a within experimental uncertainties. As discussed in the main text, scanning 

tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES) 

experiments [2-4] suggest that the effective mass for the SS associated with the Dirac cone at 𝐸!"!" 

is 𝑚!! = 𝐸!!!/(𝑣!!!)! =0.15±0.015  𝑚!. Therefore the effective mass values 𝑚!!  estimated from 

our IR experiments are consistent with those inferred from STM and ARPES measurements within 

15% (Fig. 4d of the main text). This excellent agreement strongly supports our identification of the 

CR mode of SS discussed in the main text. The small deviation between our results and STM and 

ARPES measurements may arise from the difference in Fermi energy in different samples. 

Moreover, the spectral feature in R(ω, B) data below 25 meV are well below the energy range of all 

allowed LL transitions from the bulk states, so it can only be assigned to the SS.  

 

The lineshape of 𝑅 𝜔,𝐵  is determined by real and imaginary parts of 𝜎!! 𝜔  and 𝜎!" 𝜔  

based on Eq.(4) in the main text. Although there is a sharp peak due to SS in Re  𝜎!! 𝜔 , the 
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contributions from all real and imaginary parts of 𝜎!! 𝜔  and 𝜎!" 𝜔  in Supplementary Figure 3 

and 4 lead to a relatively smooth lineshape for 𝑅 𝜔,𝐵  in this spectral range, which is a 

consequence of the spectral properties (lineshapes) of optical response functions typically described 

by magneto-Drude-Lorentz oscillators.  

 

Supplementary Note 3. Comparing R(ω, B) data with the conventional magnetoplasma effect 

in semiconductors 

 

Conventional doped semiconductors exhibit the so-called magnetoplasma effect in magnetic field [5, 

6]: the plasma minimum (edge) in the R(ω) spectra in zero field splits into two minimums (edges) 

in R(ω, B) in magnetic field, with the high (low) energy edge moving to higher (lower) energies 

with increasing field. This effect is observed in the regime of 𝜔!<<𝜔!, where 𝜔! is the frequency 

of the plasma minimum in the R(ω). Such a behavior in R(ω, B) spectrum arises from a single CR 

mode at 𝜔! in the optical conductivity 𝜎!! 𝜔,𝐵  that is well separated in energy from other 

resonances such as interband LL transitions [5, 6]. In our measurements of Pb1−xSnxSe, the observed 

features in R(ω, B) below 50 meV are entirely different from the magnetoplasma effect described 

above. Our observation results from the overall contributions of two resonances in this energy range: 

the CR mode of the SS and the LL+0→LL+1 transition from the bulk states (Fig. 4c of the main text). 

We stress that the LL+0→LL+1 transition around 30-40 meV is the LL transition with the lowest 

energy from the bulk states, which can not produce the dramatic changes below ~25 meV in R(ω, B) 

with increasing magnetic field. The latter observation suggests the existence of a low energy 

resonance below the LL+0→LL+1 transition of the bulk, which we demonstrate to be the CR mode of 

the SS.  
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Supplementary Note 4. Scattering rate and mobility of the surface states 

 

As illustrated in Supplementary Figure 5, the width of the dip feature around 32 meV in R(ω, B) is 

directly related to the width of the CR mode of the SS in Re  𝜎!! 𝜔  spectra. Therefore, the very 

narrow dip feature around 32 meV in the R(ω, B) data suggests that the scattering rate for the SS 

1/𝜏!! is very low. We find that Re  𝜎!! 𝜔  spectra with 1/𝜏!!~1.2± 0.6 meV for the surface 

CR mode can reproduce the R(ω, B) data. As shown in Supplementary Figure 5, larger values of 

1/𝜏!!  are inconsistent with the narrow dip feature in R(ω, B). This estimation of 1/𝜏!! allows us 

to estimate the mobility of the SS as discussed in the main text. 

 

It is instructive to compare the surface mobility in TCIs to the mobility of graphene [7-9] since both 

materials feature massless Dirac fermions. In a simple Drude model, the mobility of carriers in 

graphene is given by [8]:  

𝜇 = 𝑒𝑣!𝜏/(ℏ𝑘!) = 𝑒𝜏/𝑚,     (1) 

where 𝑚 = 𝐸!/𝑣!!. In a previous study [9] of graphene samples with carrier density n~  4.7×10!" 

cm-2 (corresponding to m~0.04 me), the scattering rate is found to be 1/𝜏~30 meV based on IR 

study of Landau level transitions, which yields an IR mobility of 𝜇!"~5,700 cm2 V-1 s-1 based on 

Supplementary Eq. (1). The estimated 𝜇!" is in reasonable agreement with the reported DC 

mobility 𝜇!"~4,000 cm2 V-1 s-1 [9]. The lower value of 𝜇!" compared to 𝜇!" might arise from 

disorder effects as discussed in [7]. The good agreement between 𝜇!" and 𝜇!" in graphene [9] 

supports our estimation of the surface mobility 𝜇!! in TCIs using an equation similar to 

Supplementary Eq. (1). Moreover, a scattering rate of 1/𝜏~2 meV was observed in IR 

measurements of graphene/BN with mobility 𝜇~50,000 cm2 V-1 s-1 [7]. Therefore, the scattering 

rate and mobility from previous studies of graphene [7,9] provide further support for our estimation 

of 𝜇!!~40,000 cm2 V-1 s-1 in TCIs.  
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Supplementary Note 5. Analysis of total Drude spectral weight in zero field 

 

We use the Drude-Lorentz model to fit the 𝑅 𝜔  data in zero field. One typical fit to 𝑅 𝜔  and 

the corresponding 𝜎! 𝜔  are shown in Supplementary Figure 6 with the parameters for all 

oscillators in the model summarized in Supplementary Table 3. The optical conductivity 

𝜎 𝜔 =𝜎! 𝜔 +i𝜎! 𝜔  from Drude-Lorentz fit is consistent with that evaluated from 

Kramers-Kronig (KK) transformation of R(ω). The total Drude spectral weight (SW!"!#$) can be 

directly determined by the bare plasma frequency 𝜔! of the Drude oscillator from SW!"!#$ =

!!!!

!"#
𝜔!!, where 𝜔! is in cm!!, Ω is Ohm. The total (observed) plasma frequency 𝜔! for the 

Drude mode can be obtained from fitting the entire R(ω) spectrum shown in Supplementary Figure 

6a, because it is related to the screened plasma frequency 𝜔! by:  

𝜔! = 𝜔! 𝜀!     (2) 

where 𝜔!~260 cm!! corresponds to the plasma minimum in R(ω) and 𝜀! is determined by all 

Lorentzian oscillators obtained from fitting the overall R(ω) spectrum above 𝜔!. 𝜀!  represents all 

electronic contributions to the dielectric constant other than the Drude conductivity, which is given 

by (see for example, [10]):  

𝜀! ≡ 𝜀!(𝜔) !→! = 1+ !"#
!
𝑃 !! !!

!!!!!!
𝑑𝜔′!

!! !→!
      (3) 

where P denotes the Cauchy principal value, frequencies are in cm−1, 𝜎! is in Ω!!cm!!, and 𝜔! 

is a frequency separating the Drude mode and the interband transitions (𝜔!~200  cm!!). The 

high-energy contribution of 𝜎! 𝜔  to 𝜀! is negligibly small because of the denominator of the 

integrand in Supplementary Eq. (3). Taking into account the uncertainties of 𝜎! 𝜔  from both 

Drude-Lorentz fit and KK transformation of R(ω) as well as those for 𝜔!, we estimate 𝜀!~45± 9 

using Supplementary Eq. (3).  



	
   18	
  

 

In fact, the lineshape and absolute value of the R(ω) spectrum above 𝜔! directly reflects the value 

of 𝜀!. Because the R(ω) spectrum shows a typical metallic behavior near and below  𝜔!, we can 

use a simple Drude model to illustrate the dependence of R(ω) on 𝜀!. Supplementary Figure 7 

displays model R(ω) spectra calculated from the Drude model 𝜎(𝜔) = !
!!"

(𝜀! − 1−
!!!

!!!!"#
) with 

different values of 𝜀!, which shows that the R(ω) spectrum above 𝜔! increases with increasing 

value of 𝜀!. Although R(ω) spectra from the Drude model in Supplementary Figure 7 only intends 

to qualitatively illustrate the effect of 𝜀!, it shows that the absolute value of the experimental R(ω) 

spectrum above 𝜔! can be reproduced by 𝜀!~52± 10, which is in good agreement (within 15%) 

with the result from our full analysis (𝜀!~45± 9) using Drude-Lorentz model. Therefore, our 

analysis demonstrates that 𝜔! = 𝜔! 𝜀!~ 1744± 174  cm−1 and SW!"!#$ ≈ (7.9± 1.6)×

10!  Ω!!cm!!. This method of evaluating SW!"!#$ doesn’t rely on the integral 𝜎! 𝜔 𝑑𝜔!!
! , so it 

is not limited by the lack of information on 𝜎! 𝜔  for the Drude mode below ~7meV.	
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