THE LANCET Respiratory Medicine

Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Rhodes CJ, Wharton J, Ghataorhe P, et al. Plasma proteome analysis in patients with pulmonary arterial hypertension: an observational cohort study. *Lancet Respir Med* 2017; published online June 14. http://dx.doi.org/10.1016/S2213-2600(17)30161-3.

Appendix: online supplement

Plasma proteome analysis in idiopathic pulmonary arterial hypertension patients stratified by survival: an observational cohort study

Christopher J. Rhodes¹, John Wharton¹, Pavandeep Ghataorhe¹, Geoffrey Watson¹, Barbara Girerd^{6,7,8}, Luke S. Howard^{2,3}, J. Simon R. Gibbs^{2,3}, Robin Condliffe⁵, Charles A. Elliot⁵, David G. Kiely⁵, Gerald Simonneau^{6,7,8}, David Montani^{6,7,8}, Olivier Sitbon^{6,7,8}, Henning Gall⁹, Ralph T. Schermuly⁹, H. Ardeschir Ghofrani⁹, Allan Lawrie⁴, Marc Humbert^{6,7,8}, Martin R. Wilkins¹

1: Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK

2: National Heart and Lung Institute (NHLI), Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK

3: National Pulmonary Hypertension Service, Imperial College Healthcare Trust NHS, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK

4: Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, S10 2RX, UK

5: Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, S10 2JF, UK

6. Univ. Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France;

7. AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin Bicêtre, France;

8. Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France;

9: University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany.

Supplementary Materials

eTable 1 – Methodology for quantification of prognostic proteins in plasma.

eTable 2 – Robustness testing of differences in analytes between survivors and non-survivors in cohorts 1 and 2.

eTable 3 - Performance of prognostic analytes by ROC analysis.

eTable 4 - Sensitivity analysis excluding HPAH patients. Discovery and validation comparisons of protein levels in survivors and non-survivors were performed again excluding 7 HPAH cases. Significance of top 20 robustly prognostic proteins (identified by analysis presented in eTable 2) are shown.

eTable 5 – ROC-derived cut-offs for each of the 9 independent, prognostic proteins validated by alternative assays.

eTable 6 - Clinical characteristics of patients whose protein panel scores did or did not increase after initiation of therapy.

eTable 7 - Cox regression models of panel score against established prognostic marker, NT-proBNP.

eFigure 1 - ROC analysis of 2.5 year survival in cohort 2 predicted by the 9 prognostic proteins, either as a simplified score out of 9 based on cut-offs or using an equation which uses the continuous measurements of each protein for each patient.

eFigure 2 – Mean survival estimates in patients from discovery (cohorts 1 and 2) and validation (cohort 4) divided by panel score.

eFigure 3 – ROC analysis of panel score following removal of any 1 or 2 proteins from the scoring.

eFigure 4 – Sub-analysis of protein panel in patients naïve to PAH targeted therapies.

eFigure 5 - Survival by panel score in PAH patients from cohorts 1 and 2 divided by age and bilirubin levels. A. Patients below 50. B. Patients 50 and above. C. Patients with bilirubin levels below 21 μ mol/L and D. above 21 μ mol/L.

eFigure 6 – ROC analysis of change in panel score, venous oxygen saturations (VenSO2), NT-proBNP, pulmonary vascular resistance (PVR) and mean pulmonary artery pressure (PAP) from diagnostic catheterisation to follow-up after initiation of targeted therapies.

eFigure 7 - Calibration plots for Cox models.

eFigure 8 - ROC analysis of panel score added to REVEAL equation or NT-proBNP compared to REVEAL equation alone.

Supplementary Methodology: Quantification of prognostic panel proteins in plasma samples

Proteins were quantified in plasma samples using the kits described in eTable 1, following the dilution of samples as described.

Target	Detection	Dilution	Final volume required/kit	Kits required	Sample	Sample Needed	Prot ocol Mak es	Devel oping time for colou r
Epo	ELISA	2	100	RND: DEP00	А	100	125	35
BNP	Clinical assays	10	100	Clinical assays	В	100	125	
Leptin IGFBP-1	Luminex	20	50	RND: custom LXSAHM-02	С	50	300	
IL-1 R4/ST2	ELISA	50	50	RND: DST200	D	50	450	25
TIMP-1 TIMP-2	Luminex	400	100	LKTM003 Luminex kit from RND	E	100	300	
Apo E	ELISA	2000	50	RND: DAPE00	F	50	400	60
Factor D	DuoSet	10000	100	RND: DY1824	G	100	350	8
Plasminogen	ELISA	30000	50	Universal Bio EP1200-1	Н	150	450	10
Factor H	DuoSet		100	RND: DY4779				20
 A - Dilute 100 μl of plasma with 100 μl of reagent diluent from RND to make 200 μl of 2X A B - Dilute 25 μl of A with 100 μl of diluent to make 125 μl of 10X B C - Dilute 50 μl of A with 450 μl of diluent to make 500 μl of 20X C 								
D - Dilute 200 μl of C with 300 μl of diluent to make 500 μl of 50X D								
E - Dilute 50 μ l of D with 350 μ l of diluent to make 400 μ l of 400X E								
F - Dilute 100 µl	of E with 400 μl	of diluent to make	500 µl of 2000X	F				
G - Dilute 100 μ l of F with 400 μ l of diluent to make 500 μ l of 10,000X G								

H - Dilute 150 μl of G with 300 μl of diluent to make 450 μl of 30,000X H

Kits for ASAH2 (antibodies-online GmbH, Aachen, Germany, ABIN420312), BMP-1 (ABIN416985), XEDAR (RND/BioTechne, Abingdon, UK, DY1093), Pre-kallikrein (ABIN578408), CNDP1 (ABIN421005) were tested but results did not correlate with the proteomic measurements.

eTable 1 – Methodology for quantification of prognostic proteins in plasma.

Differences in median protein expression between
survivors and non-survivors

p<0.05 in	analyses
-----------	----------

Proteins	Cohort 1	Sig.	Cohort 2	Sig.	Cohort 1 /18	Cohort 2 /18	Total /3
BNP-32	0.17	0.0002	0.12	0.00002	18	18	36
IL-1 R4	0.20	0.0022	0.30	0.000004	18	18	36
TIMP-1	0.11	0.0011	0.18	0.00001	18	18	36
Growth hormone receptor	-0.16	0.0012	-0.16	0.00003	18	18	36
Plasminogen	-0.07	0.0003	-0.07	0.0002	18	18	36
BMP-1	-0.16	0.0005	-0.13	0.0002	18	18	36
Prekallikrein	-0.09	0.00004	-0.06	0.0022	18	18	36
RET	-0.11	0.0001	-0.11	0.0007	18	18	36
CNDP1	-0.24	0.0002	-0.17	0.0009	18	18	36
TIMP-2	0.07	0.0026	0.10	0.0001	18	18	36
Leptin	-0.23	0.0011	-0.21	0.0046	18	18	36
Factor D	0.06	0.0023	0.04	0.0038	18	18	36
Аро Е	-0.17	0.0002	-0.12	0.0066	18	17	35
NRP1	0.07	0.0012	0.05	0.0063	18	17	35
a1-Antitrypsin	0.10	0.0034	0.09	0.0029	17	18	35
Еро	0.15	0.0002	0.11	0.0135	18	16	34
IGFBP-1	0.18	0.0069	0.20	0.0027	16	18	34
XEDAR	0.12	0.0086	0.18	0.000004	15	18	33
Factor H	-0.05	0.0005	-0.03	0.0120	18	15	33
ASAH2	-0.15	0.0112	-0.14	0.0030	16	17	33
Factor B	-0.05	0.0142	-0.04	0.0034	13	18	31
PTN	0.07	0.0185	0.14	0.0001	12	18	30
Apo E3	-0.15	0.0003	-0.08	0.0273	18	12	30
IL-2 sRa	0.12	0.0051	0.05	0.0272	17	10	27
PARC	0.11	0.0412	0.16	0.0067	9	18	27
a2-Antiplasmin	-0.04	0.0391	-0.05	0.0028	8	18	26
Kallikrein 7	-0.12	0.0029	-0.07	0.0473	18	8	26
Angiogenin	0.06	0.0173	0.07	0.0089	13	13	26
Afamin	-0.05	0.0225	-0.07	0.0157	9	16	25
C3b	-0.14	0.0276	-0.27	0.0141	9	16	25
ENTP5	-0.09	0.0008	-0.05	0.0416	18	6	24
TFF3	0.12	0.0486	0.12	0.0039	6	18	24
WKFN1	-0.09	0.0094	-0.06	0.0293	14	10	24
Angiopoietin-2	0.10	0.0337	0.16	0.0099	8	16	24
Coagulation Factor V	-0.09	0.0100	-0.09	0.0368	16	8	24
C7	0.07	0.0493	0.11	0.0018	5	18	23
Properdin	-0.06	0.0285	-0.09	0.0171	10	11	21
IL-22BP	-0.11	0.0160	-0.11	0.0289	12	8	20
PCI	-0.05	0.0415	-0.07	0.0499	7	7	14
CDON	-0.07	0.0347	-0.06	0.0499	6	6	14

eTable 2 – Robustness testing of differences in analytes between survivors and non-survivors in IPAH cohorts 1 and 2. To assess robustness of differences in analytes between survivors and non-survivors in these cohorts, 18 re-sampling analyses were performed, repeating the analysis each time removing 1/6 of patients in 3 randomised blocks, such that each sample was left out of 3 analyses. Proteins were then ranked by the number of times they met a p-value of <0.05 and those that were found significant in at least 33/36 analyses were selected for further study.

		Cohort	1		Cohort	2
Test Result Variable(s)	Area	SEM	Sig.	Area	SEM	Sig.
Higher value indicates morta	lity					
BNP32	0.774	0.063	0.0002	0.787	0.055	1.9E-05
ST2	0.724	0.067	0.0022	0.806	0.049	5.2E-06
TIMP1	0.738	0.059	0.0011	0.792	0.052	1.4E-05
XEDAR	0.692	0.063	0.0086	0.809	0.051	4.0E-06
TIMP2	0.720	0.062	0.0026	0.766	0.056	7.6E-05
Еро	0.774	0.061	0.0002	0.666	0.063	0.0131
NRP1	0.736	0.052	0.0012	0.683	0.063	0.0063
FactorD	0.722	0.055	0.0023	0.695	0.062	0.0036
a1Antitrypsin	0.714	0.071	0.0034	0.700	0.062	0.0029
IGFBP1	0.697	0.067	0.0069	0.701	0.061	0.0028
Lower value indicates mortal	lity					
Growth hormone receptor	0.736	0.067	0.0012	0.779	0.055	0.0000
Plasminogen	0.767	0.058	0.0003	0.752	0.057	0.0002
BMP1	0.754	0.060	0.0005	0.754	0.056	0.0002
Prekallikrein	0.800	0.057	3.9E-05	0.706	0.061	0.0022
RET	0.780	0.061	0.0001	0.727	0.059	0.0007
CNDP1	0.775	0.061	0.0002	0.722	0.063	0.0009
ApoE	0.773	0.058	0.0002	0.684	0.062	0.0061
Leptin	0.739	0.061	0.0011	0.689	0.061	0.0048
FactorH	0.754	0.063	0.0005	0.669	0.063	0.0120
ASAH2	0.685	0.065	0.0112	0.700	0.061	0.0029

eTable 3 – Performance of prognostic analytes by ROC analysis.

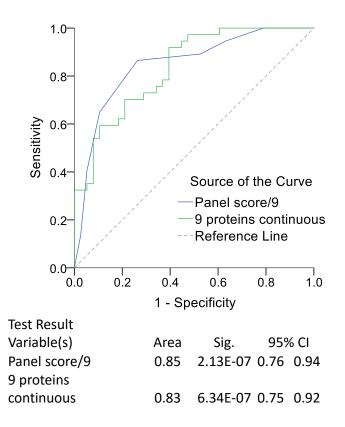
	vs non-survivo	

Proteins	Cohort 1	Cohort 2
BNP-32	0.000132	1.81E-05
IL-1 R4	0.003625	1.46E-06
TIMP-1	0.002162	5.16E-05
Growth hormone receptor	0.002795	5.56E-05
Plasminogen	0.005992	0.000662
BMP-1	0.009586	0.000685
Prekallikrein	0.001615	0.005796
RET	0.001488	0.000817
CNDP1	0.000428	0.001721
TIMP-2	0.002017	0.000101
Leptin	0.003521	0.003724
Factor D	0.005622	0.008352
Apo E	0.000742	0.004597
NRP1	0.002535	0.015836
a1-Antitrypsin	0.004298	0.005691
Еро	0.000236	0.026144
IGFBP-1	0.006922	0.003441
XEDAR	0.041376	9.73E-06
Factor H	0.002662	0.008311
ASAH2	0.0073	0.007768

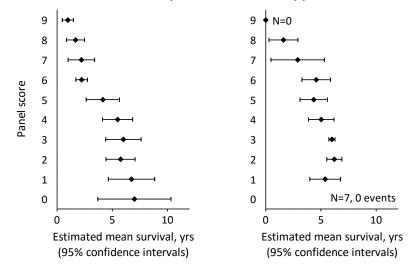
eTable 4 - Sensitivity analysis excluding HPAH patients. Discovery and validation comparisons of protein levels in survivors and non-survivors were performed again excluding 7 HPAH cases. Significance of top 20 robustly prognostic proteins (identified by analysis presented in eTable 2) are shown.

Analyte	Percentile of cut-off in discovery IPAH cohorts 1+2	Equivalent concentration from lab assays in validation IPAH cohort 4
Reduction in protein indicate	es increased risk	
Apo E	0.454	38.13 ug/ml
Factor H	0.463	263.7 ug/ml
Plasminogen	0.514	420.9 ug/ml
Increase in protein indicates	increased risk	
Еро	0.674	31.91 mIU/ml
Factor D	0.537	1733 ng/ml
IGFBP-1	0.697	26.94 ng/ml
ST2	0.807	43.09 ng/ml
TIMP-1	0.312	138.9 ng/ml
TIMP-2	0.638	357.9 ng/ml

eTable 5 – ROC-derived cut-offs for each of the 9 independent, prognostic proteins validated by alternative assays. Concentrations were derived from percentile of ROC-derived cut-off in SomaScan data, i.e. if the optimal cut-off in the SomaScan data indicated 60% of patients with highest levels of the marker were at risk, the value identifying the top 60% of patients determined by the equivalent lab assay is given.

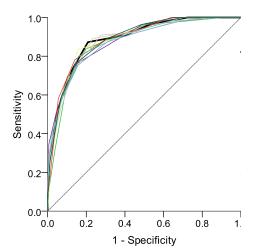

	No increase	Increase		
	Median (IQR) or frequencies			
Age at diagnosis	43.2 (30.0 - 57.0)	52.3 (29.3 - 63.2)	0.43	
Mean pulmonary artery pressure, mmHg	53.3 (45.3 - 59.8)	47 (41 - 51)	0.74	
Pulmonary vascular resistance, dynes/cm5/min				
	1071.6 (781.8 - 1216.8)	678.2 (524.8 - 921.2)	0.17	
Venous oxygen saturations, %				
	60 (56.5 - 63.8)	62.9 (52.5 - 68.3)	0.29	
Mean right atrial pressure, mmHg	7.5 (3 - 11)	6 (4 - 7)	0.66	
Cardiac index, L/min/kg/m2	2.17 (1.6 - 2.6)	2.17 (2.0 - 2.6)	0.24	
Pulmonary artery wedge pressure, mmHg	7 (4 - 9)	9 (6 - 10)	0.43	
NYHA Functional Class, II / III / IV				
	5 / 17 / 6	1 / 11 / 3	0.83	
Single/combination therapy	25/3	15/0	0.19	

Change in Panel score


eTable 6 - Clinical characteristics of patients whose protein panel scores did or did not increase after initiation of therapy.

	Hazard ratio	95% CI	Sig.
Development (Cohorts 1 + 2)			
Panel of 9 proteins	2.64	1.94 - 3.58	6E-10
NT-proBNP	1.49	1.16 - 1.91	0.002
Validation (Cohort 4)			
Panel of 9 proteins	1.94	1.27 - 2.98	0.002
NT-proBNP	1.37	0.95 - 1.98	0.096

eTable 7 - Cox regression models of panel score against established prognostic marker, NT-proBNP.



eFigure 1 - ROC analysis of 2.5 year survival in cohort 2 predicted by the 9 prognostic proteins, either as a simplified score out of 9 based on cut-offs or using an equation which uses the continuous measurements of each protein for each patient.

A Mean survival in cohorts 1+2 by score B Survival by panel score in cohort 4

eFigure 2 – Mean survival estimates in patients from A. discovery (cohorts 1 and 2) and B. validation (cohort 4) divided by panel score.

Variable	AUC	Sig.	95%	6 CI
removed			Lower	Upper
None	0.89	5.30E-18	0.842	0.938
Factor D	0.89	6.87E-18	0.841	0.937
Factor H	0.89	8.34E-18	0.841	0.934
TIMP1	0.89	1.00E-17	0.837	0.936
Еро	0.89	1.43E-17	0.836	0.934
TIMP2	0.88	1.69E-17	0.835	0.933
IGFBP1	0.88	2.05E-17	0.833	0.933
Plasminogen	0.88	4.44E-17	0.827	0.931
ApoE	0.87	1.30E-16	0.819	0.927
IL-1 R4	0.87	1.33E-16	0.821	0.925

95% CI

Upper

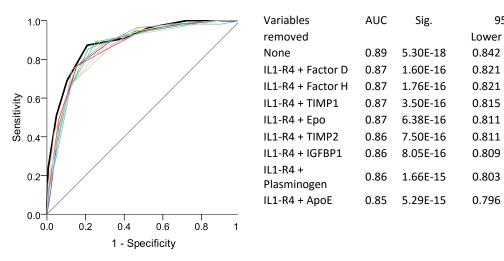
0.938

0.923 0.922

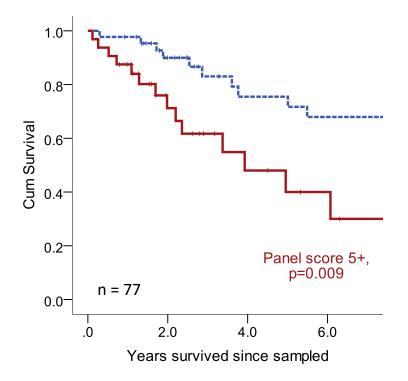
0.921

0.918

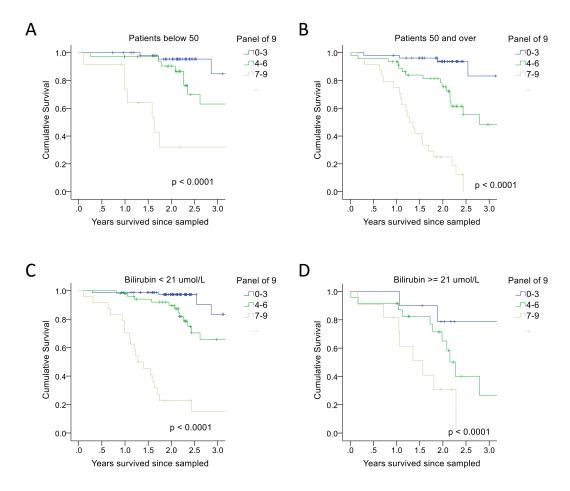
0.917

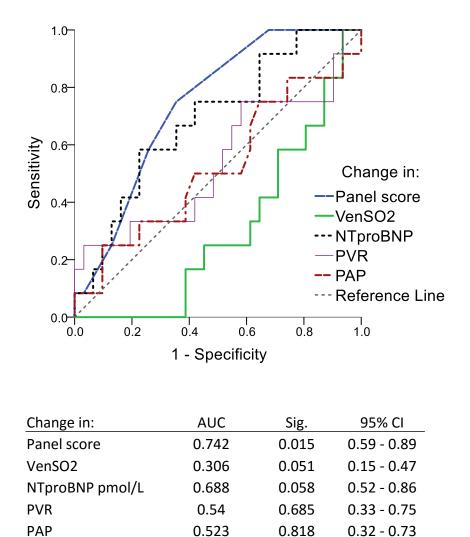

0.918

0.915

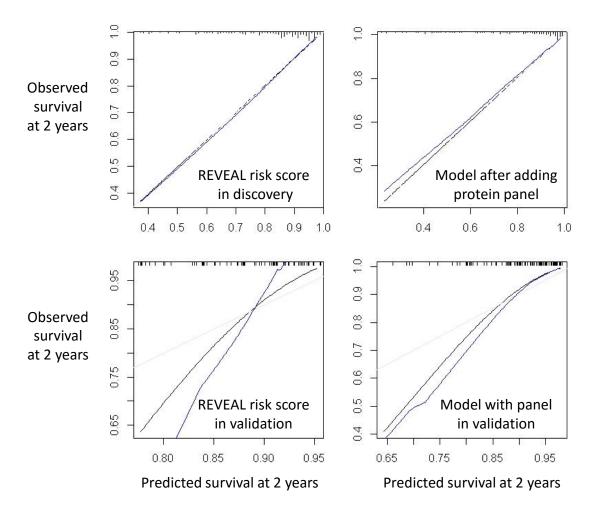

0.91

Prognostic performance of the panel score after removing single variables

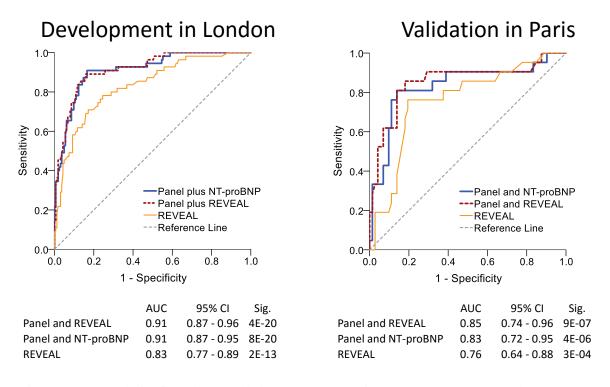

Prognostic performance of the panel score after removing two variables


eFigure 3 – ROC analysis of panel score following removal of any 1 or 2 proteins from the scoring.

eFigure 4 – Sub-analysis of protein panel in patients naïve to PAH targeted therapies. 40 additional samples from patients in Cohort 1 before they commenced therapy were analysed in addition to the patients already analysed before therapy. Kaplan-Meier analysis shows estimated survival over time in treatment-naïve IPAH patients divided by panel score.



eFigure 5 - Survival by panel score in PAH patients from cohorts 1 and 2 divided by age and bilirubin levels. A. Patients below 50. B. Patients 50 and above. C. Patients with bilirubin levels below 21 μ mol/L and D. above 21 μ mol/L.



Prognostic performance of changes in variables measured at diagnostic and follow-up catheterisations

eFigure 6 – ROC analysis of change in panel score, venous oxygen saturations (VenSO2), NT-proBNP, pulmonary vascular resistance (PVR) and mean pulmonary artery pressure (PAP) from diagnostic catheterisation to follow-up after initiation of targeted therapies.

eFigure 7 - Calibration plots for Cox models. Each plot indicates the calibration between predicted and expected mortality at 2 years before (black) and after (blue) correcting for optimism. The grey line in each plot indicates the ideal of observed=predicted. The dashes at the top of each plot indicate predicted mortality for individuals included in the study. The validation plots are slightly skewed at lower predicted risks where there were few patients.

eFigure 8 - ROC analysis of panel score added to REVEAL equation or NT-proBNP compared to REVEAL equation alone.