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Preamble 
This appendix provides further methodological detail and more detailed results for Global, regional, and 

national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic 

obstructive pulmonary disease and asthma, 1990-2015: a systematic analysis for the Global Burden of 

Disease study 2015. This study complies with the Guidelines for Accurate and Transparent Health 

Estimates Reporting (GATHER) recommendations. It includes detailed tables and information on data in 

an effort to maximize transparency in our estimation processes and provide a comprehensive 

description of analytical steps.  
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Appendix Table 1. Health states, lay descriptions, and disability weight values for COPD and asthma in 

GBD 

Health state Lay description Disability weight (95% UI) 

COPD, mild Has cough and shortness of breath after heavy physical 
activity, but is able to walk long distances and climb 
stairs. 

0.019 (0.011–0.033) 

COPD, moderate Has cough, wheezing, and shortness of breath, even 
after light physical activity. The person feels tired and 
can walk only short distances or climb only a few stairs. 

0.225 (0.153–0.31) 

COPD, severe Has cough, wheezing, and shortness of breath all the 
time. The person has great difficulty walking even short 
distances or climbing any stairs, feels tired when at rest, 
and is anxious. 

0.408 (0.273–0.556) 

Asthma, controlled Has wheezing and cough once a month, which does not 
cause difficulty with daily activities.  

0.015 (0.007–0.026) 

Asthma, partially 
controlled 

Has wheezing and cough once a week, which causes 
some difficulty with daily activities. 

0.036 (0.022–0.055) 

Asthma, uncontrolled Has wheezing, cough, and shortness of breath more than 
twice a week, which causes difficulty with daily activities 
and sometimes wakes the person at night. 

0.133 (0.086–0.192) 
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Appendix Figure 1: Mapping of USA 2005 distribution of GOLD classes I, II, and III and IV combined into 
distribution of asymptomatic, mild, moderate, and severe COPD in Medical Expenditure Panel Surveys, 
2001 to 2009. 
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DisMod-MR 2.1 estimation 
 

a. Estimation of sequelae and causes 

The most extensively used estimation method is the Bayesian meta-regression method DisMod-MR 2.1. 

For some causes such as HIV/AIDS or hepatitis B and C, disease-specific natural history models have been 

used where the underlying three-state model in DisMod-MR 2.1 (susceptible, cases, dead) is insufficient 

to capture the complexity of a disease process. For some diseases with a range of sequelae differentiated 

by severity, such as chronic obstructive pulmonary disease (COPD) or diabetes mellitus, DisMod-MR 2.1 is 

used to meta-analyze the data on overall prevalence. Separate DisMod-MR 2.1 models are then used to 

analyze data on the proportion of cases with different severity levels or sequelae. Likewise, DisMod-MR 

2.1 is used to meta-analyze data on the proportions of liver cancer and cirrhosis due to underlying 

etiologies such as hepatitis B, hepatitis C, and alcohol use.  

 

b. DisMod-MR 2.1 description 

Until GBD 2010, non-fatal estimates in burden of disease assessments were based on a single data source 

on prevalence, incidence, remission, or a mortality risk selected by the researcher as most relevant to a 

particular geography and time. For GBD 2010, we set a more ambitious goal: to evaluate all available 

information on a disease that passes a minimum quality standard. That required a different analytical tool 

that would be able to pool disparate information presented in varying age groupings and from data 

sources using different methods. The DisMod-MR 1.0 tool used in GBD 2010 evaluated and pooled all 

available data, adjusted data for systematic bias associated with methods that varied from the reference 

and produced estimates by world regions with uncertainty intervals using Bayesian statistical methods. 

For GBD 2013, the improved DisMod-MR 2.0 had increased computational speed allowing computations 

that were consistent between all disease parameters at the country rather than region level. The 

hundred-fold increase in speed of DisMod-MR 2.0 was partly due to a more efficient rewrite of the code 

in C++ but also by changing to a model specification using log rates rather than a negative binomial model 

used in DisMod-MR 1.0. In cross-validation tests, the log rates specification worked as well or better than 

the negative binomial specification.3 For GBD 2015, the computational engine (DisMod-MR 2.1) remained 

substantively unchanged but we rewrote the “wrapper” code that organises the flow of data and settings 

at each level of the analytical cascade. The sequence of estimation occurs at five levels: global, super-

region, region, country and, where applicable, subnational geographical units. The super-region priors are 

generated at the global level with mixed-effects, nonlinear regression using all available data; the super-

region fit, in turn, informs the region fit, and so on down the cascade. The wrapper gives analysts the 

choice to branch the cascade in terms of time and sex at different levels depending on data density. The 

default used in most models is to branch by sex after the global fit but to retain all years of data until the 

lowest level in the cascade. For GBD 2015, we generated fits for the years 1990, 1995, 2000, 2005, 2010, 

and 2015; see Appendix Figure 2 below. 
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Appendix Figure 2. GBD 2015 DisMod-MR 2.1 Analytical Cascade
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In updating the “wrapper,” we consolidated the code base into a single language, Python, to make the 

code more transparent and efficient and to better deal with subnational estimation. The computational 

engine is limited to three levels of random effects; we differentiate estimates at the super-region, region 

and country level. In GBD 2013, the subnational units of China, the UK, and Mexico were treated as 

“countries” such that a random effect was estimated for every geography with contributing data. 

However, the lack of a hierarchy between country and subnational units meant that the fit to country 

data contributed as much to the estimation of a subnational unit as the fits for all other countries in the 

region. We found inconsistency between the country fit and the aggregation of subnational estimates 

when the country’s epidemiology varied from the average of the region. Adding an additional level of 

random effects required a prohibitively comprehensive rewrite of the underlying DisMod-MR engine. 

Instead, we added a fifth layer to the cascade, with subnational estimation informed by the country fit 

and country covariates, plus an adjustment based on the average of the residuals between the 

subnational unit’s available data and its prior. This mimicked the impact of a random effect on estimates 

between subnationals.  
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For GBD 2015 we improved how country covariates differentiate nonfatal estimates for diseases with 

sparse data. The coefficients for country covariates are re-estimated at each level of the cascade. For a 

given geography, country coefficients are calculated using both data and prior information available for 

that geography. In the absence of data, the coefficient of its parent geography is used, in order to utilise 

the predictive power of our covariates in data-sparse situations.  

 

c. DisMod-MR 2.1 likelihood estimation 

Analysts have the choice of using a Gaussian, log-Gaussian, Laplace, or Log-Laplace likelihood function in 

DisMod-MR 2.1 The default log-Gaussian equation for the data likelihood is: 

−𝑙𝑜𝑔[𝑝(𝑦𝑗|𝛷)] = log(√2𝜋) + log(𝛿𝑗 + 𝑠𝑗) +
1

2
(

log(𝑎𝑗 + 𝜂𝑗) − log(𝑚𝑗 + 𝜂𝑗)

𝛿𝑗 + 𝑠𝑗
)

2

 

where, yj is a “measurement value” (ie, data point); Φ denotes all model random variables; ηj is the offset 

value, eta, for a particular “integrand” (prevalence, incidence, remission, excess mortality rate, with-

condition mortality rate, cause-specific mortality rate, relative risk, or standardised mortality ratio) and aj 

is the adjusted measurement for data point j, defined by: 

𝑎𝑗 = 𝑒(−𝑢𝑗−𝑐𝑗)𝑦𝑗 

where uj is the total “area effect” (ie, the sum of the random effects at three levels of the cascade: super-

region, region, and country) and cj is the total covariate effect (ie, the mean combined fixed effects for 

sex, study-level, and country-level covariates), defined by: 

𝑐𝑗 = ∑ β𝐼(𝑗),𝑘𝑋̂𝑘,𝑗

𝐾[𝐼(𝑗)]−1

𝑘=0

 

with standard deviation  

𝑠𝑗 = ∑ ζ𝐼(𝑗),𝑙𝑍̂𝑘,𝑗

𝐿[𝐼(𝑗)]−1

𝑙=0

 

where k denotes the mean value of each data point in relation to a covariate (also called x-covariate); I(j) 

denotes a data point for a particular integrand, j; βI(j),k is the multiplier of the kth x-covariate for the ith 

integrand; 𝑋̂𝑘,𝑗 is the covariate value corresponding to the data point j for covariate k; l denotes the 

standard deviation of each data point in relation to a covariate (also called z-covariate); ζI(j),k is the 

multiplier of the lth z-covariate for the ith integrand; and δj is the standard deviation for adjusted 

measurement j, defined by: 

𝛿𝑗 = 𝑙𝑜𝑔[𝑦𝑗 + 𝑒(−𝑢𝑗−𝑐𝑗)𝜂𝑗 + 𝑐𝑗] − 𝑙𝑜𝑔[𝑦𝑗 + 𝑒(−𝑢𝑗−𝑐𝑗)𝜂𝑗] 
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Where mj denotes the model for the jth measurement, not counting effects or measurement noise and 

defined by:  

𝑚𝑗 =
1

𝐵(𝑗)−𝐴(𝑗)
∫ 𝐼𝑗

𝐵(𝑗)

𝐴(𝑗)
(a) da 

where A(j) is the lower bound of the age range for a data point; B(j) is the upper bound of the age range 

for a data point; and Ij denotes the function of age corresponding to the integrand for data point j. 
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Spatiotemporal Gaussian process regression 
 

 

 

 

Spatiotemporal Gaussian process regression (ST-GPR) has been used for risk factors where the data 

density is sufficient to estimate a very flexible time trend. The approach is a stochastic modelling 

technique that is designed to detect signals amidst noisy data. It also serves as a powerful tool for 

interpolating non-linear trends.1,2 Unlike classical linear models that assume that the trend underlying 

data follows a definitive functional form, GPR assumes that the specific trend of interest follows a 

Gaussian process, which is defined by a mean function 𝑚(∙) and a covariance function 𝐶𝑜𝑣(∙). For 

example, let 𝑝𝑐,𝑎,𝑠,𝑡 be the exposure, in normal, log, or logit space, observed in country c, for age group 

a, and sex s at time 𝑡:  

(𝑝𝑐,𝑎,𝑠,𝑡) = 𝑔𝑐,𝑎,𝑠(𝑡) + 𝜖𝑐,𝑎,𝑠,𝑡 

where  

𝜖𝑐,𝑎,𝑠,𝑡 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑝  
2 ), 

𝑔𝑐,𝑎,𝑠(𝑡) ~ 𝐺𝑃 (𝑚𝑐,𝑎,𝑠(𝑡), 𝐶𝑜𝑣 (𝑔𝑐,𝑎,𝑠(𝑡))). 

The derivation of the mean and covariance functions, 𝑚𝑐,𝑎,𝑠(𝑡) and 𝐶𝑜𝑣 (𝑔𝑐,𝑎,𝑠(𝑡)), along with a more 

detailed description of the error variance (𝜎𝑝 
2 ), is described below.  

Estimating mean functions 
We estimated mean functions using a two-step approach. To be more specific, 𝑚𝑐,𝑎,𝑠(𝑡) can be 

expressed, depending on the exposure transformation, as: 
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𝑙𝑜𝑔(𝑝𝑐,𝑎,𝑠(𝑡)) = 𝑋𝑐,𝑎,𝑠𝛽 + ℎ(𝑟𝑐,𝑎,𝑠,𝑡) 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑐,𝑎,𝑠(𝑡)) = 𝑋𝑐,𝑎,𝑠𝛽 + ℎ(𝑟𝑐,𝑎,𝑠,𝑡) 

𝑝𝑐,𝑎,𝑠(𝑡) = 𝑋𝑐,𝑎,𝑠𝛽 + ℎ(𝑟𝑐,𝑎,𝑠,𝑡) 

where 𝑋𝛽 is the summation of the components of a hierarchical mixed-effects linear regression, 
including the intercept and the product of covariates with their corresponding fixed effect coefficients. 
For a majority of models, predictions were not made using the random effects component of the linear 
model. The second part of the equation, ℎ(𝑟𝑐,𝑎,𝑠,𝑡), is a smoothing function for the residuals, 𝑟𝑐,𝑎,𝑠,𝑡, 
derived from the linear model.3 Descriptions of exposure transformations and which covariates were 
used in linear models can be found in Section 3, Risk-specific estimation.   

While the linear component captures the general trend in exposures over time, much of the data 

varaibility may still not be adequately accounted for. To address this, we fit a locally weighted 

polynomial regression (LOESS) function ℎ(𝑟𝑐,𝑎,𝑠,𝑡) to systematically estimate this residual variability by 

borrowing strength across time, age, and space patterns (the spatiotemporal component of ST-GPR). 

The time adjustment parameter, defined by 𝜆 , aims to borrow strength from neighbouring time points 

(ie, the exposure in this year is highly correlated with exposure in the previous year but less so further 

back in time). The age adjustment parameter, defined by ω, borrows strength from data in neighbouring 

age groups. The space adjustment parameter, defined by 𝜉, aims to borrow strength across the 

hierarchy of geographical locations. 

Let 𝑤𝑐,𝑎,𝑠,𝑡 be the final weight assigned to observation 𝑟𝑐,𝑎,𝑠,𝑡 with reference to a focal observation 

𝑟𝑐0,𝑎0,𝑠0,𝑡0
. We first generated a preliminary weight 𝑤𝑐,𝑎,𝑠,𝑡

′  for smoothing over time, which was based on 

the scaled distance along the time dimension of the two observations:  

𝑤𝑐,𝑎,𝑠,𝑡
′ =  (1 − (

|𝑡 − 𝑡0|

1 + max |𝑡 − 𝑡0|
)

𝜆

)

3

 

Next, we calculated the weight 𝑤’’𝑐,𝑎,𝑠,𝑡 to smooth over age, which is based on a distance along the age 

dimension of two observations. For a point between the age 𝑎 of the observation 𝑟𝑐,𝑎,𝑠,𝑡 and a focal 

observation 𝑟𝑐0,𝑎0,𝑠0,𝑡0
, the weight is defined as follows: 

𝑤𝑐,𝑎,𝑠,𝑡
′′ =  

1

𝑒𝜔|𝑎−𝑎0| 

Finally, these combined weights were multiplied and further adjusted to account for geographic 

patterns. 

Specifically, we defined a geospatial relationship by categorizing data based on the GBD location 

hierarchy. We adapted the weighting strategy used in previous studies estimating time series of global 

indicators to be more flexible with respect to estimating subnational locations and to borrow strength 

from all levels.3,4 A vector of spatial weights corresponding to each level of the location hierarchy was 

derived as [𝜉, 𝜉 ∗ (1 − 𝜉)𝑛1−1, . . . , 𝜉 ∗ (1 − 𝜉)𝑛𝑖−1, (1 − 𝜉)𝑛𝑖], where the vector is expanded to include 

the number, ni, levels in the location hierarchy between the location being estimated and global, which 
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recieves a pre-rescaling weight of (1 − 𝜉)𝑛𝑖 . For example, estimating a country would use the following 

weighting scheme:  

 Country data: 𝜉 

 Regional data not from the country being estimated: 𝜉 ∗ (1 −  𝜉)  

 Data from other regions in the same super-region: 𝜉 ∗ (1 − 𝜉)2 

 Global data from other super-regions: (1 − 𝜉)3 

A full derivation of weights for each category follow, assuming the location being estimated was a 

country, follows: 

1) If the observation 𝑟𝑐,𝑡 belongs to the same country 𝑐0 of the focal observation 𝑟𝑐0,𝑡0
: 

𝑤𝑐,𝑎,𝑠,𝑡 =  
𝜉(𝑤𝑐,𝑎,𝑠,𝑡

′ 𝑤𝑐,𝑎,𝑠,𝑡
′′ )

∑ (𝑤𝑐,𝑎,𝑠,𝑡
′ 𝑤𝑐,𝑎,𝑠,𝑡

′′ )𝑐=𝑐0

                    ∀𝑐 = 𝑐0 

2)  If the observation 𝑟𝑐,𝑡 belongs to a different country than the focal observation 𝑟𝑐0,𝑡0
, but both 

belong to the same region R: 

𝑤𝑐,𝑎,𝑠,𝑡 =  
𝜉 ∗ (1 −  𝜉) (𝑤𝑐,𝑎,𝑠,𝑡

′ 𝑤𝑐,𝑎,𝑠,𝑡
′′ )

∑ (𝑤𝑐,𝑎,𝑠,𝑡
′ 𝑤𝑐,𝑎,𝑠,𝑡

′′ )𝑐≠𝑐0

                 ∀𝑐 ≠ 𝑐0 ∩  𝑅[𝑐] = 𝑅[𝑐0]   

 

3)  If the observation 𝑟𝑐,𝑡  belongs to the same super-region SR but to a both different country 𝑐0 

and region 𝑅[𝑐0] than the focal observation 𝑟𝑐0,𝑡0
: 

𝑤𝑐,𝑎,𝑠,𝑡 =  
𝜉 ∗ (1 −  𝜉)2 (𝑤𝑐,𝑎,𝑠,𝑡

′ 𝑤𝑐,𝑎,𝑠,𝑡
′′ )

∑ (𝑤𝑐,𝑎,𝑠,𝑡
′ 𝑤𝑐,𝑎,𝑠,𝑡

′′ )𝑐≠𝑐0

                 ∀𝑐 ≠ 𝑐0 ∩  𝑅[𝑐] ≠ 𝑅[𝑐0] ∩  𝑆𝑅[𝑐] = 𝑆𝑅[𝑐0]   

4)  If the observation 𝑟𝑐,𝑡  is from a different super-region than the focal observation 𝑟𝑐0,𝑡0
(ie, all 

other data currently not receiving a weight): 

𝑤𝑐,𝑎,𝑠,𝑡 =  
(1 −  𝜉)3 (𝑤𝑐,𝑎,𝑠,𝑡

′ 𝑤𝑐,𝑎,𝑠,𝑡
′′ )

∑ (𝑤𝑐,𝑎,𝑠,𝑡
′ 𝑤𝑐,𝑎,𝑠,𝑡

′′ )𝑐≠𝑐0

                 ∀𝑐 ≠ 𝑐0 ∩  𝑅[𝑐] ≠ 𝑅[𝑐0] ∩  𝑆𝑅[𝑐] ≠ 𝑆𝑅[𝑐0]   

 

To allow additional flexibility and specificity in weighting schemes, we allowed for two different 𝜉 to be 

defined. The higher 𝜉 was applied when at least one age-sex group in the country of estimation had at 

least five unique data points. The lower 𝜉 was applied when estimating data-scarce countries. 

Observations could be downweighted by a factor of 0.1, usually because they were not geographically 

representative at the unit of estimation. Details of reasons for downweighting can be found in risk-

specific modelling summaries. The final weights were then normalised such that the sum of weights 

across age, time, and geographic hierarchy for a reference group was 1.  

Estimating error variance 
𝜎𝑝 

2  represents the error variance in normal or transformed space including sampling variance of the 

estimates and predication error from any crosswalks performed. First, variance was systematically 
imputed if the data extraction did not include any measure of uncertainty. When some sample sizes for 
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data were available, missing sample sizes were imputed as the 5th percentile of available sample sizes. 

Missing variances were then calculated as 𝜎𝑝 
2 =

𝑝∗(1−𝑝)

𝑛
 for proportions and using the global coefficient 

of variation for continuous exposures. When sample sizes were entirely missing and could not be 
imputed, the 95th percentile of available variances at the most granular geographic level (ie, first 
country, then region, etc.) were used to impute missing variances. For proportions where p*n or (1-p)*n 
is < 20, variance was replaced using the Wilson Interval Score method. 

Next, if the exposure was modelled as a log transformation, the error variance was transformed into log-
space using the delta method approximation as follows,  

𝜎𝑝 
2 ≅  

𝜎𝑝′   
2

𝑝𝑐,𝑎,𝑠,𝑡
2  

where 𝜎𝑝′   
2 represents the error variance in normal space. If the exposure was modelled as a logit 

transformation, the error variance was transformed into logit-space using the delta method 
approximation as follows, 

𝜎𝑝 
2 ≅  

𝜎𝑝′   
2

(𝑝𝑐,𝑎,𝑠,𝑡 ∗ (1 − 𝑝𝑐,𝑎,𝑠,𝑡))2
 

Finally, prior to GPR, an approximation of non-sampling variance was added to the error variance. 
Calculations of non-sampling variance were performed on normal-space variances, and before GPR 
variances were again transformed using the delta method approximation, if necessary. Non-sampling 
variance was calculated as the variance of inverse-variance weighted residuals from ST at a given 
location level hierarchy. If there were fewer than five data points at a given level of the location 
hierarchy the non-sampling variance was replaced with that of the next-highest geography level with 
more than five data points. 

Estimating the covariance function 
The final input into GPR is the covariance function, which defines the shape and distribution of the 

trends. Here, we have chosen the Matern-Euclidian covariance function, which offers the flexibility to 

model a wide spectrum of trends with varying degrees of smoothness. The function is defined as 

follows:  

𝑀(𝑡, 𝑡′) = 𝜎2
21−𝑣

Γ(v)
 (

𝑑(𝑡, 𝑡′)√2𝑣

𝑙
)

𝑣

𝐾𝑣 (
𝑑(𝑡, 𝑡′)√2𝑣

𝑙
) 

where 𝑑(∙)is a distance function; 𝜎2, v, 𝑙, and 𝐾𝑣 are hyperparameters of the covariance function –

specifically 𝜎2 is the marginal variance, v is the smoothness parameter that defines the differentiability 

of the function, 𝑙 is the length scale, which roughly defines the distance between which two points 

become uncorrelated, and 𝐾𝑣 is the Bessel function. Based on previous applications of ST-GPR, we 

approximated 𝜎2 by 𝑀𝐴𝐷𝑁(𝑟𝑐,𝑡
′ ), which is the normalised absolute deviation of the residuals from the 

smoothing step for each country, region, or super-region depending on the data coverage at a given 

location hierarchy level. Here, we have used the parameter specifications 𝑣 = 2 and 𝑙 = 20. 
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Prediction using GPR 
Based on the specifications stated above, we integrated over 𝑔𝑐,𝑡(𝑡∗) to predict the full time series of 

mean SBP for country 𝑐, age a, sex s, and the prediction time 𝑡∗:  

𝑙𝑜𝑔(𝑝𝑐,𝑎,𝑠(𝑡∗)) ~ 𝑁 (𝑚𝑐,𝑎,𝑠,𝑡(𝑡∗), 𝜎𝑝
2𝐼 + 𝐶𝑜𝑣 (𝑔𝑐,𝑎,𝑠,𝑡(𝑡∗))) 

Random draws of 1,000 samples were obtained from the distributions above for every country for a 

given indicator. The final estimated mean for each country was the mean of the draws. In addition, 95% 

uncertainty intervals were calculated by taking the 2.5th and 97.5th percentile of the sample distribution. 

The entire modelling process was performed in log space and back-transformed to obtain final estimates 

in the original scale. The linear modelling process was implemented using the lmer4 package in R, and 

the ST-GPR analysis was implemented through the PyMC2 package in Python.  

Subnational scaling and aggregation 
To ensure consistency of the estimates between countries and their respective subnational locations, 

national estimates were either created by population-weighted aggregation or subnational estimates 

were adjusted by population-weighted scaling to the national estimates, depending on the data 

coverage of a given country compared to that of its subnational locations. For example, if there was 

better data coverage at the national level, relative to its corresponding subnational locations, for a given 

country and risk across age, sex, and time, estimates were raked to the national level. Conversely, if 

there was better data coverage at the subnational level, estimates for its parent country were created 

through population-weighted aggregation. 

 

References 
1) Rasmussen CE, Williams CKI. Gaussian Processes for Machine Learning. MIT Press, 2006. 
2) Vasudevan S, Ramos F, Nettleton E, Durrant-Whyte H. Gaussian process modeling of large-scale 

terrain. J Field Robot 2009; 26: 812–40. 
3) Ng M, Freeman MK, Fleming TD, et al. Smoking prevalence and cigarette consumption in 187 

countries, 1980-2012. JAMA 2014; 311: 183–92. 
4) Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and 

obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of 
Disease Study 2013. Lancet Lond Engl 2014; 384: 766–81. 

 

  

14
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Input data 
Sources used to estimate chronic respiratory disease mortality included vital registration, verbal autopsy, 

and surveillance data from the cause of death (COD) database. Our outlier criteria excluded data points 

that (1) were implausibly high or low, (2) substantially conflicted with established age or temporal 

patterns, or (3) significantly conflicted with other data sources conducted from the same locations or 

locations with similar characteristics (ie, Socio-demographic Index). 

For GBD 2015, there were two significant changes in the data preparation process that affect chronic 

respiratory diseases and its children causes. First, the algorithm package that redistributes heart-failure-

related garbage codes has been updated to take into account the “side” of the heart failure – with right 

heart failure denoting an underlying respiratory disease. Second, verbal autopsy data are no longer used 

to inform children causes as they are thought to be unreliable below this cause level. Practically, this has 

a larger influence on the uncorrected children models than the parent Chronic Respiratory Diseases 

model discussed here. 
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Modelling strategy  
The standard CODEm modelling approach was applied to estimate deaths due to chronic respiratory 

diseases. Chronic respiratory diseases served as the parent cause to chronic obstructive pulmonary 

disease, pneumoconiosis (including silicosis, asbestosis, coal worker’s pneumoconiosis, other 

pneumoconiosis), asthma, interstitial lung disease and pulmonary sarcoidosis, and other chronic 

respiratory diseases. Functionally, this means the death estimates for chronic respiratory diseases serve 

as an envelope into which the children causes are squeezed by the CodCorrect algorithm. This approach 

allows us to use a broader range of data – specifically verbal autopsy data – which cannot be accurately 

mapped to a cause further down in the hierarchy.  

 

Separate models were conducted for male and female mortality, and the age range for both models was 

0 to 80+ years. The same covariates from GBD 2013 were used, with the addition of the Socio-

demographic Index (SDI) covariate. Although all covariates in this model received updates for GBD 2015, 

cumulative cigarettes, smoking prevalence, and health systems access received the larger overhauls. The 

updates to the smoking-based covariates were particularly helpful in developing these models. Beyond 

changes in the underlying covariates, there were no substantial deviations from the GBD 2013 approach.  
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Fatal chronic obstructive pulmonary disease estimation process 
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Input data 
Data used to estimate chronic obstructive pulmonary disease (COPD) mortality included vital registration 

and surveillance data from the cause of death (COD) database. Our outlier criteria excluded data points 

that (1) were implausibly high or low, (2) substantially conflicted with established age or temporal 

patterns, or (3) significantly conflicted with other data sources conducted from the same locations or 

locations with similar characteristics (ie, Socio-demographic Index). The main consequences of this 

protocol are the mapping of state-level data from India MCCD ICD10 to the chronic respiratory parent 

due to implausibly high values and the outliering of some Thailand vital registration data from the late 

1990s that implied an unreasonable peak of COPD during the covered time frame. 

Notable differences in the data processing strategy relative to GBD 2013 include the following: 1) Verbal 

autopsy data have been excluded from this model and mapped to the chronic respiratory disease parent 

cause as we no longer believe that verbal autopsy accurately captures deaths due to specific respiratory 

diseases, and 2) the heart failure redistribution package has been updated to account for the “side” of 

the heart. As a result, the amount of heart failure being attributed to chronic respiratory diseases is now 

largely based on proportions of left and right heart failure (with right heart failure signifying an underlying 

respiratory condition). In general, this has reduced the level of COPD deaths – all else being equal. 

Modelling strategy  
The standard CODEm modelling approach was applied to estimate deaths due to COPD. Separate models 

were conducted for male and female mortality, and the age range for both models was 28 days to 80+ 

years. The mortality estimates from the COPD models were ultimately fit into the chronic respiratory 

diseases envelope. 
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While the core covariates have remained unchanged, covariates relating to population density and 

proportion of population living between 500 meters and 1,500 meters of elevation have been removed 

because they increased model run time without substantially contributing to the model results. 

Conversely, 10-year cumulative cigarette consumption has been added to the model to better capture 

any smoking-related lag effects on COPD, along with the Socio-demographic Index (SDI) covariate.   
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Fatal asthma estimation process 
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Input data 
Data used to estimate asthma mortality included vital registration and surveillance data from the cause of 

death (COD) database. Verbal autopsy data were not included and were instead mapped to the parent 

model (chronic respiratory diseases). Our outlier criteria excluded data points that (1) were implausibly 

high or low relative to global or regional patterns, (2) substantially conflicted with established age or 

temporal patterns, or (3) significantly conflicted with other data sources conducted from the same 

locations or locations with similar characteristics (ie, Socio-demographic Index). 

Modelling strategy  
The standard CODEm modelling approach was applied to estimate deaths due to asthma. Separate 

models were conducted for male and female mortality, and the age range for both models was 1–80+ 

years. The mortality estimates from the asthma models were ultimately fit into the chronic respiratory 

diseases envelope.  

Notable differences between the GBD 2013 strategy and this iteration are across-the-board updates in 

smoking-based covariates, the removal of elevation and population density covariates due to lack of 

informative contributions, and the inclusion of the Socio-demographic Index (SDI) covariate and the SEV-

scalar (disease-specific values that reflect the combined effect of all GBD risks) for asthma.  
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Non-fatal chronic obstructive pulmonary disease (COPD) estimation process 

 

Input data and methodological summary 
 

Case definition 
COPD is defined as in the GOLD classification: a measurement of <0.7 FEV1/FVC (1 second of forceful 

exhalation/total forced expiration) on spirometry after bronchodilation. It should be noted that this a 

change from GBD 2013 where the “Lower Limit of Normal (LLN),” ie, relative to an age- and sex-specific 

norm for the FEV1/FVC ratio, was the reference. We made this decision because the severity grading of 

COPD follows the GOLD class definition rather than the LLN concept. The definitions of the severity 

classes in the GOLD classification are provided below.  

GOLD class FEV1 Score 

I: Mild >=80% of normal 

II: Moderate 50-79% of normal 

IV: Severe <50% of normal 
 

ICD-10 codes associated with COPD include J40, J41, J42, J43, J44, and J47. The corresponding ICD-9 

codes are 490–492, 494, and 496. 

Input data 
For GBD 2015, we updated the systematic review from previous iterations. The full search term was: 
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(chronic obstructive pulmonary disease[Title/Abstract] AND (prevalence[Title/Abstract] or incidence 
[Title/Abstract] or mortality [Title/Abstract] or death [Title/Abstract]) Filters: Publication date from 
2013/01/01 to 2015/12/31; Humans 
 
The search period was between 1/1/2013 and 5/13/2015. Twenty-one new sources were extracted. 
Studies excluding smokers were excluded from the review.  
 
In addition, we searched for survey data with spirometry measurements in GHDx, GBD’s health data 

repository. We systematically extracted all spirometry data from the National Health and Nutrition 

Examination Study series in the United States for which we had only used some published studies in 

previous GBD studies. The Study of Aging and Global Health (SAGE) series was also examined but 

ultimately excluded as the spirometry data had implausible FEV1/FVC values (eg, over 1). 

Furthermore, claims data for the United States were included. Additional information on the claims data 

collection and pre-corrections are provided elsewhere. Briefly, we determined US national and state-level 

estimates of COPD prevalence from a database of individual-level ICD-coded health service encounters. 

Persons with any claim associated with COPD were marked as a prevalent case for that year. 

Studies that provided non-standard cutoffs of COPD prevalence (eg, not 0.7) were crosswalked before the 

main analysis step to match the 0.7 FEV1/FVC case definition. 

A table describing the density and distribution of the available data informing the COPD estimation 

process is provided below. 

 Proportion by GOLD class Prevalence Incidence 

Studies 15 73 5 

Countries or 
subnational 
locations 

28 116 5 

Regions 15 15 4 
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COPD prevalence input data, males, 2015 

 

 

COPD prevalence input data, subnational view, males, 2015 

 

 

COPD GOLD class input data, 2015 
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Modelling strategy  
As described above, the estimation of COPD burden occurs in three main steps. The first is the estimation 
of prevalence and incidence using a DisMoD-MR 2.1 model. The second is the separate estimation of the 
proportions by three GOLD class groupings in DisMoD-MR 2.1. The third is the combination of these two 
processes to derive prevalence by severity. 
 
Step 1: Main COPD model 
Prior settings include remission of 0 and an incidence ceiling of 0.001 before age 20. The latter was 
necessary to avoid a kick-up of estimates in childhood at an age range with few or no primary data. 
 
Claims data for 2000 and 2010 were adjusted via study covariates to account for systematically low 

estimates relative to the 2012 claims data. Implicit in this adjustment is the assumption that variation 

between years of claims data is a function of data collection inconsistencies. 

Similar to other causes, we include estimates of cause-specific mortality rate (CSMR) and derived 
estimates of excess mortality rate (EMR) by dividing every prevalence data point by the CSMR value for 
the corresponding location, age, and sex-year. We did not estimate EMR for data points with an age 
range greater than 20 years. 
 
To assist estimation, each model includes a series of country-level covariates that describe 

spatiotemporal patterns. Where available, we use the COPD standardised exposure variable (SEV), which 

aggregates multiple risk factors into a single variable. We also use the log of LDI on EMR to capture 

country-level variation of EMR, assuming a negative coefficient (ie, lower mortality with rising GDP).  

Step 2: GOLD class models 
The GOLD class models use data from surveys that specified prevalence by GOLD class after expressing 
the values as a proportion of all COPD cases. We use fixed effects from the SEV scalar and the log of LDI 
per capita to assist estimation. 
 
Table of model coefficients for COPD and GOLD class models 

Cause Variable name Measure Beta Exponentiated 

COPD LDI (I$ per capita) excess mortality 
rate 

-0.5 
 

0.61 
(0.61–0 .61) 

COPD Log age-
standardised SEV 
scalar: COPD 

prevalence 0.76 2.13 
(2.12–2.16) 

COPD Claims data 2010 prevalence -0.071 
 

0.93 
(0.90–0.96) 

COPD Claims data 2000 prevalence -0.12 
 

0.89 
(0.86–0.92) 

COPD Diagnosed COPD prevalence 0.13 
 

1.14 
(1.02–1.31) 

GOLD I proportion Socio-demographic 
Index 

proportion 0.89 
 

2.44 
(0.35–7.00) 

GOLD I proportion Log age-
standardised SEV 
scalar: COPD 

proportion -0.18 
 

0.8349 
(0.53–1.29) 
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GOLD II proportion Socio-demographic 
Index 

proportion -0.50 
 

0.6062 
(0.16–2.38) 

GOLD II proportion Log age-
standardised SEV 
scalar: COPD 

proportion -0.09 
 

0.91 
(0.59–1.6) 

GOLD III+IV proportion Socio-demographic 
Index 

proportion -0.65 
 

0.5247 
(0.15–3.9) 

GOLD III+IV proportion Log age-
standardised SEV 
scalar: COPD 

proportion 0.001 
 

1.001 
(-0.45–2.16) 

 

Severity 
The three GOLD class groupings reflect a grading based on a physiological measurement rather than a 

direct measurement of disease severity. In order to map the epidemiological findings by GOLD class into 

the three COPD health states for which we have disability weights (DW), we used the 2001–2011 Medical 

Expenditure Panel Survey (MEPS) data from the United States. Specifically, we convert the GOLD class 

designations estimated for the USA in 2005 (the midpoint of MEPS years of analyses) into GBD 

classifications of asymptomatic, mild, moderate, and severe COPD.  

The table below shows the three health states of COPD and the corresponding lay descriptions and 

disability weights. The graph shows the average proportion by GOLD Class (after scaling to 100%) across 

all ages for USA in 2005. We also show the proportion of MEPS respondents reporting any health service 

contact in the past year for COPD with a DW value attributable to COPD of 0, mild range (0 to midpoint 

between DWs for mild and moderate), moderate range (midpoint of DW values mild and moderate to 

midpoint of DW values for moderate and severe), and severe range (midpoint between DW values 

moderate and severe or higher). The DW value for COPD was derived from a regression with indicator 

variables for all health states reported by MEPS respondents and their reported overall level of disability 

derived from a conversion of SF-12 answers to GBD DW values. This analysis gave the severity distribution 

for each GBD cause reported in MEPS after correcting for any comorbid causes individual respondents 

reported during a year. 

Health state Lay description DW (95% CI) 

Mild COPD This person has cough and shortness of breath after 
heavy physical activity, but is able to walk long 
distances and climb stairs. 

0.019 
(0.011–
0.033) 

Moderate COPD This person has cough, wheezing, and shortness of 
breath, even after light physical activity. The person 
feels tired and can walk only short distances or climb 
only a few stairs. 

0.225 
(0.153–0.31) 

Severe COPD This person has cough, wheezing, and shortness of 
breath all the time. The person has great difficulty 
walking even short distances or climbing any stairs, 
feels tired when at rest, and is anxious. 

0.408 
(0.273–
0.556) 
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Non-fatal asthma estimation process 
 

 

 

Case definition 
Asthma is a chronic lung disease marked by spasms in the bronchi usually resulting from an allergic 

reaction or hypersensitivity and causing difficulty in breathing. We define asthma as a doctor’s diagnosis 

and wheezing in the past year. The relevant ICD-10 codes are J45 and J46. ICD-9 code is 493. 

Input data 
Model inputs 

For GBD 2015, we did not undertake a full systematic review of the literature on asthma. Instead, certain 

studies were re-extracted to ensure accuracy and several survey series for which we have individual 

records in our GHDx repository were added to the dataset. Data additions and re-analysis include the 

WHO Study on Global Aging and Adult Health series, the WHO World Health Survey series, and the 

Belgian Health Interview Survey. Surveys carried out as part of the International Study of Asthma and 

Allergies in Childhood (ISAAC) collaboration are the most important source of prevalence data in children. 
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The following table provides a description of the data density and distribution by geography and 

epidemiological measure (including the claims data discussed below). 

 Prevalence Incidence Mortality risk 

Studies 267 7 7 

Countries/subnational 
locations 

248 5 3 

Regions 21 1 1 

 

In addition to literature and survey data, we use claims data from the United States from 2000, 2010, and 

2012. Information on the source and preparation of these data are provided in detail elsewhere. Briefly, 

we determined US national and state-level estimates of asthma prevalence from a database of individual-

level ICD-coded health service encounters for three years. Persons with any claim associated with asthma 

were marked as a prevalent case for that year. Aggregated estimates were then adjusted using a noise-

reduction algorithm. These corrected data were then used in the modelling process. 

Asthma prevalence input data, males, 2015 

 

 

Asthma prevalence input data, subnational view, males, 2015 
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Modelling strategy  
We use DisMod MR 2.1 as the main modelling tool for asthma. Prior settings include a maximum 
remission of 0.3 (reflecting the upper bound of the highest observed data) and no incidence between the 
ages of 0 and 0.5 year as a diagnosis cannot be made in young infants. 
 
Data points from the ISAAC studies were reported for both sexes combined. We sex-split before 
modelling using the ratios derived from the 2012 US claims data (1).  
 
Data that describe wheezing but do not report presence/absence of an accompanying diagnosis in the 
last year were crosswalked to the reference category. As the table below shows, studies that only report 
wheezing are systematically higher than reference data points and are adjusted down – dividing by the 
exponentiated coefficient). 
 
To account for country-level differences in excess mortality as a function of available medical care we use 
log LDI as a covariate and assume a negative coefficient. The effect size is shown below. 
 
Claims data for 2000 and 2010 are adjusted via study covariates to account for systematically lower 

estimates relative to the 2012 claims data. Implicit in this adjustment is the assumption that variation 

between years of claims data is a function of data collection inconsistencies. 

Similar to other causes, we include estimates of cause-specific mortality rate (CSMR) and excess mortality 
rate (EMR) derived as a matched value for each prevalence data point dividing CSMR by prevalence. We 
restrict these EMR calculations to data points of 20-year age span or less. 
 
To assist estimation, the model includes a series of country-level covariates that describe spatiotemporal 

patterns. Specifically, we use log LDI and the asthma standardised exposure variable (SEV), a scalar that 

combines exposure of all GBD risks that influence asthma. A full covariate list, including the study-level 

covariates described above, is presented in the following table with their associated effects: 

Variable name Measure Beta Exponentiated 

Wheezing prevalence 0.13 
 

1.14 
(1.08–1.22) 

Claims data 2000 prevalence -0.51 
 

0.60 
(0.59–0.61) 

Claims data 2010 prevalence -0.08 
 

0.92 
(0.91–0.94) 

Log LDI (I$ per capita) prevalence -0.004 
 

0.9938 
(0.9737–1.007) 

Log SEV scalar: asthma prevalence 1.202 
 

3.33 
(2.97–3.49) 

Log LDI (I$ per capita) excess mortality rate -0.42 
 

0.65 
(0.64–0 .67) 

 

Severity split inputs 
Lay descriptions and disability weights for the asthma health states are shown in table below. The 

distribution between the three health states is derived from an analysis of the US Medical Expenditure 

27



Panel Surveys (MEPS). Briefly, MEPS is an ongoing survey of health service encounters with the main 

objective to collect data on health expenditure. Panels are recruited every year and followed up for a 

period of two years. Diagnostic information provided by respondents on the reasons for any health care 

contact is coded into three-digit ICD-9 codes by professional coders. 

Twice over the two-year follow-up period respondents are asked to fill in SF-12. From convenience 

samples asking respondents to fill in SF-12 for 60 of the GBD health states, IHME has created a mapping 

from SF-12 scores to GBD disability weights (DW). We perform a regression with indicator variables for all 

GBD causes that we can identify from the ICD codes in MEPS to derive for each individual with a diagnosis 

the amount of disability that can be attributed to that condition after controlling for any comorbid 

conditions. Anyone with a diagnosis of asthma in whom the disability assigned to asthma is negative or 

zero we assume is asymptomatic (at the time of asking SF-12 question relating to their health status in 

the past four weeks). Non-zero values we bin into the three health states assuming a split between these 

at the midpoint between DW values. The table below gives the proportions in MEPS in each of the health 

states and an asymptomatic state. 

Severity level Lay description DW (95% CI) Severity 
distribution 

Asymptomatic   30.2% 
(29.2–31.3) 

Controlled This person has wheezing and cough once a 
month, which does not cause difficulty with 
daily activities. 

0.015 
(0.007–0.026) 
 

20.5% 
(13.7–28.6) 

Partially controlled This person has wheezing and cough once a 
week, which causes some difficulty with daily 
activities. 
 

0.036 
(0.022–0.055) 
 

22.3% 
(16.6–28.1) 

Uncontrolled This person has wheezing, cough, and 
shortness of breath more than twice a week, 
which causes difficulty with daily activities 
and sometimes wakes the person at night. 

0.133 
(0.086–0.192) 

26.9% 
(21.4–35.1) 
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Smoking risk factor estimation process 
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Location-level 
covariate: Tobacco 
Consumption Per 

Capita

Age and Sex Splitting

            (CLC – NLC)    x N*
LC

  SIR = --------------    -------
      (S*

LC – N*
LC) x NLC

Smoking Impact 
Ratio Exposures by 
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Input data & methodological summary  

 

Exposure 

Case definition 
We used the Smoking Impact Ratio (SIR) for modelling burden attributable to smoking for cancers, 

chronic obstructive pulmonary disease (COPD), interstitial lung disease, other chronic respiratory 

diseases, and pneumoconiosis. SIR is the population lung cancer mortality in excess of lung cancer 

mortality among never-smokers, relative to excess lung-cancer mortality observed in a known reference 

group of smokers. Currently, SIR is adjusted to account for differences in baseline never-smoker lung 

cancer mortality across geography, age, and sex, but not for differences across time. 

We used 5-year lagged smoking prevalence for modelling burden attributable to smoking for 

cardiovascular diseases, TB, diabetes, lower respiratory infections, asthma, cataracts, macular 

degeneration, fractures, rheumatoid arthritis, and peptic ulcer disease. Smoking is a dichotomous 

exposure defined as current daily use of smoked tobacco. 

A full list of outcomes included in GBD 2015 and their exposure definition is available in the table below. 

Outcome Exposure 

Atrial fibrillation and flutter 5-year lagged smoking prevalence 

Aortic aneurysm 5-year lagged smoking prevalence 

Hypertensive heart disease 5-year lagged smoking prevalence 

Ischaemic heart disease 5-year lagged smoking prevalence 

Other cardiovascular and circulatory diseases 5-year lagged smoking prevalence 
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Peripheral vascular disease 5-year lagged smoking prevalence 

Haemorrhagic stroke 5-year lagged smoking prevalence 

Ischaemic stroke 5-year lagged smoking prevalence 

Diabetes 5-year lagged smoking prevalence 

Lower respiratory infections 5-year lagged smoking prevalence 

Asthma 5-year lagged smoking prevalence 

Tuberculosis 5-year lagged smoking prevalence 

Peptic ulcer disease* 5-year lagged smoking prevalence 

Rheumatoid arthritis* 5-year lagged smoking prevalence 

Cataract* 5-year lagged smoking prevalence 

Macular degeneration* 5-year lagged smoking prevalence 

Hip fracture* 5-year lagged smoking prevalence 

Non-hip fracture* 5-year lagged smoking prevalence 

Bladder cancer Smoking Impact Ratio (SIR) 

Colon and rectum cancer Smoking Impact Ratio (SIR) 

Oesophageal cancer Smoking Impact Ratio (SIR) 

Kidney cancer Smoking Impact Ratio (SIR) 

Leukaemia Smoking Impact Ratio (SIR) 

Liver cancer Smoking Impact Ratio (SIR) 

Tracheal, bronchus, and lung cancer Smoking Impact Ratio (SIR) 

Lip and oral cavity cancer Smoking Impact Ratio (SIR) 

Nasopharynx cancer Smoking Impact Ratio (SIR) 

Pancreatic cancer Smoking Impact Ratio (SIR) 

Stomach cancer Smoking Impact Ratio (SIR) 

Larynx cancer* Smoking Impact Ratio (SIR) 

Chronic obstructive pulmonary disease Smoking Impact Ratio (SIR) 

Interstitial lung disease and pulmonary sarcoidosis Smoking Impact Ratio (SIR) 

Other chronic respiratory diseases Smoking Impact Ratio (SIR) 

Pneumoconiosis Smoking Impact Ratio (SIR) 

* New outcome in GBD 2015 

 

Input data 
Consistent with GBD 2013, we used nationally representative survey data to estimate smoking 

prevalence. Survey and report data identified in the Global Health Data Exchange (GHDx), the WHO 

InfoBase, and the International Smoking Statistics (ISS) Database. 

Inclusion criteria 

 Nationally representative 

 Report current use of any of the following frequency-type combinations: 

o Daily use of smoked tobacco 

o Any use (both daily and occasional) of smoked tobacco  

o Daily use of cigarettes 

o Any use (both daily and occasional) of cigarettes 

o Daily use of any tobacco (both smoked and smokeless) 

o Any use (both daily and occasional) of any tobacco (both smoked and smokeless) 

o Daily use of any tobacco excluding cigarettes 
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 Report data within the time period of January 1, 1980 – December 31, 2015 for any geography 

estimated in the GBD framework 

 Smoking prevalence reported among individuals ages 10+ 

Global Health Data Exchange (GHDx) 

Sources were identified through a systematic search of the GHDx. 

 Search Terms (Keywords): Tobacco Use 

 Time Period: January 1, 1980 – December 31, 2015 

 Data Type: Survey OR Report 

 Search Date: February 16, 2016 

Out of 3,912 sources identified in the GHDx, 2,818 sources were included. 

WHO InfoBase and International Smoking Statistics (ISS) Database 

An effort was made to replace database-derived estimates used in GBD 2013 with original extractions 

from primary data sources. In GBD 2013, [851] sources were derived from the WHO InfoBase or the ISS 

Database. In GBD 2015, we replaced [257] sources with extractions from primary data sources and 

continued to use [594] sources from the WHO InfoBase (n=[281]) and the ISS Databse (n=[313]). 

Outliers 

Throughout the modelling process, data were assessed for bias and outliers were flagged. A data point 

was flagged as a candidate outlier if it was not consistent with the majority of other data points in a 

country with respect to level, age-pattern, sex-pattern, or temporal trend. In data-scarce countries, data 

points were also compared to data from other countries in a region. Candidate outliers were scrutinised 

for potential sources of bias and were ultimately excluded if the point or source was deemed to not be 

representative. 

Modelling strategy 
Data extraction 
When possible, we extracted individual smoking status for all available frequency-type categories (listed 

above) from person-level microdata and collapsed these data to produce prevalence estimates in the 

standard GBD 5-year age-sex groups. If microdata were unavailable we extracted the most granular age-

sex groups available from survey reports. Any available measures of uncertainty were extracted, including 

standard error, confidence or uncertainty intervals, and sample size. 

Data preparation: crosswalking 

Regressions to crosswalk other frequency-type categories to the gold-standard definition of daily use of 

smoked tobacco were estimated in the form:  

pdaily−smoked,k = β1pi,k +  ϵk 

where pdaily-smoked,k is the prevalence of daily smoking reported in survey k, and pi,k is the prevalence of an 

alternative frequency-type combination i also reported in survey k. Consistent with previous GBD smoking 

crosswalks, the intercept was omitted from the regression. The estimated regression coefficient β1 was 

used to crosswalk alternative frequency-type categories to the gold-standard daily smoking definition in 
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sources only providing the alternative category. Predication error at the data-point level was used to 

propagate uncertainty and was calculated using the following equation:  

PEk =  σϵ
2 + Xk

2var(β̂) 

Compared to the separate frequency and type crosswalks used in GBD 2013, the combined frequency-type 

crosswalk used in GBD 2015 represents an improvement because patterns in frequency that may vary by 

type and patterns in type that may vary by frequency are captured. 

Data preparation: age and sex splitting 

Report data provided in age groups wider than the standard GBD 5-year age groups or as both sexes 

combined were split using the approach used in Ng et al. Briefly, age-sex patterns were identified using 

sources with data on multiple age-sex groups and these patterns were applied to split aggregated report 

data. Uncertainty in the age-sex split was propagated by multiplying the standard error of the data 

(including the predication error of the crosswalk) by the square root of the number of splits performed. 

Modelling: Linear Model 

After data preparation, the dataset consisted of prevalence estimates of daily smoked tobacco use in 
standard GBD country-year-age-sex groups. The mean function used in ST-GPR was estimated using the 
following hierarchical mixed-effects linear regression, run separately by sex: 

logit(pc,a,t) =  β0 + β1CPCc,t + ∑ βkIA[a]

16

k=2

+ αs + αr + αc + ϵc,a,t 

where CPCc,t is the annual tobacco consumption per capita covariate, IA[a] is a dummy variable indicating 
specific age group A that the prevalence point pc,a,t is capturing, and αs, αr, and αc are super-region-, 
region-, and country-specific random effects.  

Modelling: spatiotemporal Gaussian process regression (ST-GPR) 

The estimated mean function was then propagated through the ST-GPR framework to obtain 1,000 draws 
of smoking prevalence estimates for each location, year, age, and sex. Parameter selection for the ST-GPR 
hyper-parameters were selected through out-of-sample cross-validation using the strategy described 
elsewhere in this appendix. 
 

Smoking Impact Ratio estimation 

We have made no substantive changes in the SIR estimation strategy from GBD 2013. The only change in 

input data for estimating never-smoker lung-cancer mortality was to update data from the China 

Kadoorie Biobank prospective cohort to include follow-up through 2014. Country-year-age-sex-specific 

lung cancer mortality rates are derived from GBD 2015 Cause of Death estimation and detailed in that 

capstone’s appendix. The formula for calculating SIR is: 

 

𝑆𝐼𝑅 =  
𝐶𝐿𝐶 − 𝑁𝐿𝐶

𝑆𝐿𝐶
∗ − 𝑁𝐿𝐶

∗  ×   
𝑁𝐿𝐶

∗

𝑁𝐿𝐶
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CLC: age-sex-specific lung cancer mortality rate in the population of interest  
NLC: age-sex-specific lung cancer mortality rate of never-smokers in the population of interest 
S*

LC: age-sex-specific lung cancer mortality rate for life-long smokers in a reference population 
N*

LC: age-sex-specific lung cancer mortality rate for never smokers in the reference population  
 

Theoretical minimum-risk exposure level 

The theoretical minimum-risk exposure level is that no one in the population smokes tobacco; that is, the 

smoking impact ratio is zero and smoking prevalence is zero. 

 

Relative risk 
We have made no substantive updates to relative risks for outcomes included in GBD 2013. The following 

outcomes using 5-year lagged smoking prevalence as the exposure were added in GBD 2015: peptic ulcer 

disease, rheumatoid arthritis, cataracts, macular degeneration, hip fracture, and non-hip fracture. Larynx 

cancer was the only new outcome added using SIR as the exposure. Relative risks for rheumatoid arthritis, 

cataracts, and macular degeneration were derived from recent published meta-analyses. We performed 

out own meta-analyses of prospective cohort studies to derive relative risks for peptic ulcer disease, hip 

fracture, and non-hip fracture. We used Kontis and colleagues’ re-analysis of CPS-II smokers for the 

relative risk of larynx cancer. 
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Ambient particulate matter risk factor estimation process 
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Input data & modelling strategy 

Exposure 

Definition 
Exposure to ambient air pollution is defined as the population-weighted annual average mass 

concentration of particles with an aerodynamic diameter less than 2.5 micrometers (PM2.5) in a cubic 

meter of air. This measurement is reported in µg/m3. 

Input data 
The data to estimate exposure to ambient air pollution is drawn from estimates of annual concentration 

of PM2.5 – generated using satellite observations of aerosols in the atmosphere. To correct for bias in the 

satellite modelling approach, a spatially varying flexible framework is used to combine modelled 

concentrations with observations from ground-level monitoring of particles in more than 75 countries. All 

input data for GBD 2015 were updated as follows: 

Updated PM2.5 ground measurement database 

For the GBD 2015 update we updated the database of annual average PM measurements to include more 

recent data and to incorporate additional locations where measurement data have become available. To 

facilitate this we collaborated with WHO and contributed to their recently released WHO Air Pollution in 

Cities database. We then used disaggregated (monitor-specific values and not the city averages that are 

reported by WHO) measurements from this database with additional site-specific information (eg, all 

monitors in a city, monitor geo coordinates, monitor site type) such as that included in the GBD 2013 

database. In total, measurements of concentrations of PM10 and PM2.5 were retrieved from 6,003 ground 

monitors with the majority contributing measurements from 2014 (as there is a lag in reporting 

measurements, few data from 2015 were available). Where data were not available for 2014 (2,760 

monitors), data were used from 2015 (18 monitors), 2013 (2,155), 2012 (564), 2011 (60), 2010 (375), 
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2009 (49), 2008 (21) and 2006 (1). For locations with only PM10 measurements, PM2.5 measurements 

were estimated from PM10. This was done by a locally derived conversion factor (PM2.5/PM10 ratio) 

estimated as population-weighted averages of location-specific conversion factors for the country. 

Location-specific conversion factors were estimated as the mean ratio of PM2.5 to PM10 of stations for the 

same year. If national conversion factors were not available, regional ones were used, which were 

obtained by averaging country-specific conversion factors. 

Updated satellite-based estimates 

The updated satellite-based estimates are described in detail in van Donkelaar and colleagues, 20161.  

These estimates (~11 x 11 km resolution at the equator) combine aerosol optical depth retrievals from 

multiple satellites with the GEOS Chem chemical transport model and land use information.  

Updated population data  

A comprehensive set of population data on a high-resolution grid was obtained from the Gridded 

Population of the World (GPW v4) database. These data are provided on a 0.0417o×0.0417o resolution. To 

aggregate these estimates of population to each 0.1o×0.1o grid cell, the central 3 × 3 population cells 

were summed. As this accounted for a resolution higher than necessary, the same was done four other 

times, offset by one cell in a North, South, East, and West direction. The average of five quantities was 

used as the aggregated population estimate for each cell. Estimates of population for 2000, 2005, 2010, 

2015, and 2020 were extracted from GPW version 4, and estimates for 1990 and 1995 were extracted 

from GPW version 3 as described previously for GBD 20133.  

Modelling strategy 

The methodology used to estimate the burden of ambient particulate matter pollution has seen 

significant changes since GBD 2013. 

 

The GBD 2010 and GBD 2013 estimates both used a single global function to calibrate the mean of the 

chemical transport model and satellite-based estimates to available ground measurements. In both 

instances the approach taken was recognised at the time to be a compromise between what could be 

easily implemented under tight timeframes and one that most efficiently utilised all of the data sources. 

In particular, the GBD 2013 exposure estimates were known to underestimate ground measurements in 

specific locations (see discussion in Brauer and colleagues, 20152) such that it would be desirable to allow 

measurements to make a larger contribution to the final estimates where they were available. Therefore, 

for GBD 2015 we implemented a Bayesian hierarchical modelling approach using Integrated Nested 

Laplace Approximations (INLA) in which the satellite-based estimates, ground measurements, and land 

use information are combined in a spatially varying flexible framework. Formal external evaluation using 

ground measurements was conducted and shown to lead to improved predictions of ground 

measurements in all super-regions compared to GBD 2013 estimates and an alternative geographically 

weighted regression approach. Further, based on the external evaluation analyses, addition of the TM5 

chemical transport model estimates of PM2.5 annual average did not improve the estimates and these 

were therefore not included.  
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Bayesian hierarchical models (BHM) provide an extremely useful and flexible framework in which to 

model complex relationships and dependencies in data. Uncertainty can also be propagated through the 

model, allowing uncertainty arising from different components, both data sources and models, to be 

propagated through the models into estimates of uncertainty associated with the final estimates. In the 

hierarchical modelling approach coefficients associated with satellite-based estimates were estimated for 

each country. Where data were insufficient within a country, information can be “borrowed” from a 

higher aggregation (region) and if enough information is still not available, from an even higher level 

(super-region). Individual country-level estimates were therefore based on a combination of information 

from the country, its region, and its super-region.   

All modelling was performed on the log-scale with the unit of measurement being a grid cell. The model 

was constructed with the inclusion of all variables assessed statistically, based on model fit (DIC, a 

measure of the relative quality of a model and closely related to that of AIC but for Bayesian models) and 

predictive ability. The hierarchical structure was applied to the intercept and slope terms with all 

modelling on the log scale. The model was of the form 

 

log(𝑃𝑀2.5𝑖) =  𝛽0 +  𝛽1 log 𝑆𝐴𝑇𝑖 + 𝑜𝑡ℎ𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 + 𝜀𝑖  

 
where i denotes the grid cell. The following sets of variables were considering in developing the models: 
 
Continuous explanatory variables: 

o (SAT) Estimate of PM2.5 (in μgm-3) for 2014 from satellite remote sensing on the log-scale 
o (CTM) Estimate of PM2.5 (in μgm-3) for 2014 from chemical transport models on the log-

scale 
o Estimate of population for 2014 on the log-scale.  
o (SNAOC) Estimate of the sum of sulfate, nitrate, ammonium, and organic carbon as 

estimated from GEOS Chem  
o (DST) Estimate of compositional concentrations for mineral dust from GEOS Chem 
o (EDxDU) The log of the elevation difference between the elevation at the ground 

measurement location and the mean elevation within the GEOS Chem simulation grid cell 
multiplied by the inverse distance to the nearest urban land surface 
 

Discrete explanatory variables: 

o Binary variable indicating whether exact location of ground measurement is known 
o Binary variable indicating whether exact type of ground monitor is known 
o Binary variable indicating whether ground measurement is PM2.5 or converted from PM10 

 
Random effects: 

o Grid cell random effects on the intercept to allow for multiple ground monitors in a grid 
cell 

o Country-region-super-region hierarchical random effects for the intercept 
o Country-region-super-region hierarchical random effects for the satellite remote sensing 

term 
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o Country-region-super-region hierarchical random effects for the coefficient associated 
with the difference between estimates from CTM and SAT 

o Country-region-super-region hierarchical random effects for the coefficient log(POP) 
o Country-level random effects for intercept, satellite, and difference between CTM and 

SAT are independent and identically distributed 
o Country-level random effects for population uses a neighbourhood structure allowing 

specific borrowing of information from neighbouring countries 
o All region random effects are assumed to be independent and identically distributed 
o All super-region random effects are assumed to be independent and identically 

distributed 
 

Interactions: 

o Interactions between the binary variables and the effects of log(SAT) and log(CTM/SAT) 
 

Due to both the complexity of the models and the size of the data, notably the number of spatial 

predictions that are required in this setting, recently developed techniques that perform “approximate” 

Bayesian inference based on integrated nested Laplace approximations (INLA) have been developed as a 

computationally attractive alternative to Markov Chain Monte Carlo methods. Computation was 

performed using the R interface to the INLA computational engine (R-INLA) with the size of the task of 

fitting the models and performing predictions for each of the ca. 1.4 million grid cells requiring the use of 

a high-performance computing cluster (HPC) with high memory nodes. As in GBD 2010 and GBD 2013 the 

spatial model was built combining the different data sources for a single year (2014, corresponds to the 

most recent measurement data). The spatially varying functions from this model were then applied to the 

satellite-based estimates from all other years – in other words, assuming that the spatial relationship 

between the different data sources does not change over time. This is undoubtedly a simplification but to 

do otherwise would require assembling multi-year measurement databases, which is not feasible given 

current data availability and computational constraints. As the spatial model was built using the most 

recently available (2014) measurement and satellite-based estimates, 2015 estimates were based on 

extrapolation. Instead of extrapolating using an exponential model based on a one-year trend as in GBD 

2013, splines based on a five-year trend (2010–2014) were fit and applied to the 2014 grid-cell values to 

estimate levels for 2015. This reduced the likelihood of 2015 estimates being overly influenced by 

meteorological events in a specific year and to better represent the duration of exposure relevant to the 

epidemiologic studies included in the integrated exposure-response functions.  

Model evaluation 

Model evaluation and comparison was performed by fitting models on a training set and predicting 

exposures at locations for which measurements were known (the validation set). The selection of the 

training (20%) and validation (80%) set consisted of taking a random sample of the total number of sites 

measuring PM2.5 (or having a value converted from PM10 measurements). Sampling was performed using 

sampling probabilities based on the cross-tabulation of PM2.5 categories (0–24.9, 25–49.9, 50–74.9, 75–

99.9, 100+ µg/m3) and super-regions. The resulting holdout evaluation dataset was a sample of 20% of 

the sites that have the same distribution over PM2.5 categories and super-regions as the entire set of 

sites.  
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This process was used to generate multiple training and validation set combinations, allowing for example 

cross-validation to be performed. In the evaluation, 25 sets of training/validation data were used. The 

following models were considered in the evaluation phase: 

(A) The GBD 2013 model, using a simple linear regression with a fused estimate of SAT and CTM 
together with interactions with three binary variables representing whether the measurement 
was converted from PM10 and whether the exact site type and location is known 

(B) A hierarchical model with SAT, the TM5 CTM estimates, population, and the three binary 
variables described above 

(C) A hierarchical model with SAT, population, SNAOC, DST, EDxDU, population, and the three binary 
variables 

o Estimate of population for 2014 on the log-scale 
o Estimate of the sum of sulfate, nitrate, ammonium, and organic carbon as estimated 

from GEOS Chem 
o Estimate of compositional concentrations for mineral dust from GEOS Chem 
o The log of the elevation difference between the elevation at the ground measurement 

location and the mean elevation within the GEOS Chem simulation grid cell multiplied by 
the inverse distance to the nearest urban land surface 

 

For each training/evaluation set combination, model fit and prediction accuracy were evaluated for each 

of the 25 training/evaluation set combinations with the following metrics: 

Model fit  

 R2 

 DIC  

Predictive accuracy 

 R2 arising from a linear regression of predicted versus actual measurements at each location  

 RMSE – root mean squared error  

 WRMSE – weighted (by population) root mean squared error  

 MSE – mean square error 

 MAE – mean absolute error 
 
This evaluation indicated the final model improved predictions of ground measurements in all super-
regions compared to GBD 2013 estimates (median global R2 [population-weighted RMSE] 0.82 (12.1 
µg/m3), 0.60 [13.5 µg/m3] for GBD 2015 and GBD 2013, respectively).  
 
Figure 1 shows the RMSE (median from the 25 runs) for each of the three models, by super-region. The 

accuracy of the prediction varies between super-regions, with lower errors being observed in areas where 

there are more monitoring sites. In each of the super-regions, the largest errors are seen for model A 

which are considerably higher than those for models B and C, with model C showing a small improvement 

over B (except in super-region 5, North Africa/Middle East).  

Figure 2 shows scatter plots of the observed and predicted measurements using the three models for 

each super-region. The predicted measurements are the median values over those obtained from the 25 

training sets. Predictions from the two Bayesian hierarchical models (B&C) match the observed values 

more closely than the linear model (A), with much less spread around a straight line (with slope one and 

zero intercept, shown in red). In Central Europe and sub-Saharan Africa it is noticeable that, in addition to 
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reduced spread, models B and C are much better at predicting higher values. The same patterns of results 

in predictive ability were seen when looking at regions and individual countries. In all cases, model C 

performed better than model B, with both being considerably better than model A.  

 

Figure 1: Comparison of RMSE from three models by super-region. Dots denote the median of the 
distribution from 25 training/evaluation sets and the vertical lines the range of values. Super-regions are 
1: High-income, 2: Central Europe, Eastern Europe, Central Asia, 3: Latin America and Caribbean, 4: 
Southeast Asia, East Asia, and Oceania, 5: North Africa/Middle East, 6: Sub-Saharan Africa, 7: South Asia.  
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Figure 2: Comparison of observed and predicted measurements using three different models, by super-
region. The red line has slope one and intercept zero.  

Overall, the best model in terms of model fit and predictive ability was one with the following 

components: 

o Estimates of PM2.5 (in μgm-3) from satellite remote sensing (SAT), population, and 
information on the GEOS Chem simulated chemical composition, elevation, and distance 
to urban land use (SNAOC, DST, and EDxDU). 

o Binary variables indicating whether exact location and type of ground measurement is 
known, and whether the measurement was PM2.5 or converted from PM10. 

o Interactions between the binary variables and the effects of estimates from satellite 
remote sensing. 

o Grid cell random effects on the intercept to allow for multiple ground monitors in a grid 
cell.  

o Country-region-super-region hierarchical random effects for intercepts, satellite remote 
sensing, and population terms.  

o Country-level random effects for population using a neighbourhood structure allowing 
specific borrowing of information from neighbouring countries.  
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Theoretical minimum-risk exposure level 
The TMREL for ambient PM is estimated using a uniform distribution between the minimum and fifth 
percentile of exposure observed in the studies used to generate the GBD estimates. This estimate was 
updated for GBD 2015 as new studies were added to the analysis and studies used previously were 
updated through continued follow-up. The newer estimates included several large studies that included 
exposure at lower levels of PM2.5. As a result, the TMREL for GBD 2015 was ~U(2.4, 5.9), lower than GBD 
2013’s distribution ~U(5.9, 8.7), which had the effect, all things being equal, of increasing the estimated 
attributable burden relative to the GBD 2013 estimates. 
 

Relative risk 
Relative risks are generated using integrated exposure-response functions (IER) that are fit to available 

epidemiologic data using a Bayesian MCMC approach and a modified power function. The IER are 

estimated based on published relative risks for long-term exposure to ambient PM2.5, household air 

pollution, secondhand smoking, and active (cigarette) smoking. The concentration of particulate matter 

for each type of exposure is estimated based on literature values and used to map the relative risks to a 

curve generated for the entire range of exposure from these sources. The input data for this curve-fitting 

process has been updated since GBD 2013, adding new studies that estimate exposure at finer spatial 

scales, including studies of within-city exposure that focus on traffic-related air pollution. In addition, 

changes were made to the curve-fitting process. In order to account for differences in study design, 

temporal patterns of exposure and other differences among the studies of the different sources of PM2.5, 

a source-specific heterogeneity parameter was added to the IER. This resulted in much wider, and, in our 

view, more realistic, uncertainty intervals for the burden estimates, by propagating through the entire 

process the current uncertainty regarding the mechanisms and magnitude of health impacts of exposure 

to PM2.5 from diverse sources. 
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IER functional form 

 

We also modified the way in which age-specific IER for IHD and stroke were estimated. In accordance 

with previously published work on other cardiovascular risk factors, the impact of air pollution on 

cardiovascular health is known to vary with age. To account for this phenomenon, age-specific RRs were 

based on a log-linear model of RR as a function of age, where the intercept (RR=1) is forced to age 110. In 

GBD 2010 and GBD 2013 the age for a relative risk estimate from a given study was estimated as the 

median age at death or disease incidence in that study. However, this may not accurately represent the 

age distribution of the entire study population, so we re-estimated this variable as the mean age at 

enrollment plus half of the average follow-up time to better represent the average age of the study 

population during the period of follow-up. When compared to GBD 2013, this change produced RRs that 

were generally lower for younger age groups, given that median age at event tends to produce a higher 

anchor age than average age during follow-up. 

The relative risks are generated on the grid level based on estimated exposure, and then applied to 

generate PAFs. These PAFs are aggregated using the grid-level population to create population-weighted 

national estimates of attributable burden, using the following formula: 

PM2.5 aggregation formula 

𝑃𝐴𝐹𝐴,   𝐶,   𝐿  =  
∑  ((𝑅𝑅𝐴,   𝐶 − 1)  ∗  𝑃𝑜𝑝𝑖)

∑( 𝑅𝑅𝐴,   𝐶  ∗  𝑃𝑜𝑝𝑖)
 

A = age group, C = cause, L = location, i = grid, 𝑅𝑅𝐴,   𝐶 = grid-level RR based on 𝑃𝑀2.5 and given 

age/cause IER curve 
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Household air pollution risk factor estimation process 
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Input data & methodological summary 
 

Exposure 

Case definition 
Exposure to household air pollution from solid fuels (HAP) is defined as the proportion of households 
using solid cooking fuels. The definition of solid fuel in our analysis includes coal, wood, charcoal, dung, 
and agricultural residues.  
 

Input data 
Data were extracted from the standard multi-country survey series such as Demographic and Health 

Surveys (DHS), Living Standards Measurement Surveys (LSMS), Multiple Indicator Cluster Surveys (MICS), 

and World Health Surveys (WHS), as well as country-specific survey series such as Kenya Welfare 

Monitoring Survey and South Africa General Household Survey. To fill the gaps of data in surveys and 

censuses, we also downloaded and updated HAP estimates from WHO Energy Database and extracted 

from literature through systematic review done at IHME. Each nationally or subnationally representative 

data point provided an estimate for the percentage of households using solid cooking fuels. Estimates for 

the usage of solid fuels for non-cooking purpose were excluded, ie, primary fuels for lighting. The 

database, with estimates from 1980 to 2015, contained 685 studies from 150 countries. Updates to 

systematic reviews are performed on an ongoing schedule across all GBD causes and risk factors; an 

update for household air pollution will be performed in the next one to two iterations. 
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Modelling strategy  
Household air pollution was modelled at household level using a three-step modelling strategy ST-GPR 

that uses linear regression, spatiotemporal regression, and Gaussian Process Regression (GPR). The first 

step is a mixed-effect linear regression of logit-transformed proportion of households using solid cooking 

fuels. The linear model contains maternal education and proportion of population living in urban areas as 

covariates and has nested random effect by country, GBD region, and GBD super-region, respectively.  

The full ST-GPR process is specified elsewhere in this appendix. 

Compared with GBD 2013, we have made changes in terms of the covariates utilised in the linear model. 

A variety of combinations of socioeconomic and environmental covariates in different transformation 

format were tested by running mixed-effect models with exposure data. The final list of covariates 

included in the exposure model are maternal education and the proportion of population living in urban 

area. 

Theoretical minimum-risk exposure level 
For outcomes where we extracted RR based on direct epidemiological evidence, ie, COPD, lung cancer, 

and cataract, TMREL was defined such that no households would report using solid fuel as their primary 

cooking fuel. For outcomes that utilise evidence based on the Integrated Exposure Response (IER), the 

TMREL is defined as uniform distribution between 33.3 and 41.9 μg/m3. TMREL for household air 

pollution did not change from GBD 2013. 

Relative risks 
The disease-outcomes paired with household air pollution have not changed since GBD 2013. The list of 

outcomes paired with household air pollution has not changed since GBD 2013, which included lower 

respiratory infections (LRI), stroke, ischemic heart disease (IHD), chronic obstructive pulmonary disease 

(COPD), lung cancer, and cataract. The relative risks of all outcomes except cataract were generated by 

using the integrated exposure-response functions (IER). The relative risks for cataract were extracted 

from a meta-analysis paper (1). The IER curves are updated to reflect the newly updated data and 

utilization of a new method that is specified elsewhere.  

PM2.5 mapping value  

The relative risk estimates describing the association of HAP with outcomes including ischemic heart 

disease (IHD), cardiovascular disease (CVD), and lower respiratory infections (LRI) were derived from the 

IER curves. This is done by first estimating the crosswalk values that map household use of solid fuel to 

PM2.5 exposure because the IER curve measures exposure using PM2.5. This step of the analysis relied on 

67 studies conducted in 16 countries to generate the PM2.5 mapping values, which remain the same 

sources as GBD 2013. The PM2.5 exposure was then cross-walked to men, women, and children by 

generating the ratio of personal exposure to average 24-hour kitchen PM2.5 concentration based on a 

study after the literature review in GBD 2013. 
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Occupational risk factor estimation process  
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Input data and methodological summary  

Exposure 

Case definition 
The following definitions were used for occupational risk factor exposures. All exposures were estimated 

only for ages 15+ 

Occupational asbestos Cumulative exposure to occupational asbestos 
using mesothelioma death rate as an analogue 
 

Occupational asthmagens Proportion of working population exposed to 
asthmagens based on distribution of the 
population in seven occupational groups 

Occupational carcinogens (arsenic, acid, benzene, 
beryllium, cadmium, chromium, diesel, 
formaldehyde, nickel, polycyclic aromatic 
hydrocarbons, secondhand smoke, silica, 
trichloroethylene) 
 

Proportion of working population ever exposed 
to carcinogens in high- or low-exposure groups, 
based on distribution of the population in nine 
economic activity groups 

Occupational injuries Proportion of fatal injuries attributed to 
occupational work in nine economic activities, 
based on fatal injury rates in those economic 
activities 

Occupational ergonomic factors Proportion of working population exposed to 
lower back pain, based on distribution of the 
population in seven occupational groups 
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Occupational noise Proportion of working population exposed to 85+ 
decibels of noise, based on distribution in nine 
economic activities 

Occupational particulates Proportion of working population exposed based 
on distribution in nine economic activities 

 

Estimates of the proportion of population involved in economic activities and occupations were coded 

into the following categories: 

Economic activities Occupations 

Agriculture, hunting, forestry, and fishing Agriculture, animal husbandry, forestry workers, 
fishermen, and hunters 

Mining and quarrying Production, transport equipment operators and 
laborers, and related workers 

Wholesale and retail trade, restaurants, and 
hotels 

Professional, technical, and related workers 

Manufacturing Sales workers 

Electricity, gas, and water Administrative and managerial workers 

Transport, storage, and communication Clerical and related workers 

Construction Service workers 

Financing, insurance, real estate, and business 
services 

 

Community, social, and personal services  
 

Input data 
Primary inputs were obtained from the ILO [1-4], using raw data on economic activity proportions, 

occupation proportions, fatal injury rates, and economically active population estimates. For different 

ISIC classifications, estimates were recoded to one of the nine economic activities or occupations. 

Subnational estimates for UK and China were added to the datasets for economic activities and 

occupations [5-6]. 

For occupational asbestos, primary inputs were obtained through GBD 2015 cause of death estimates 

and published studies. [7,13-14] 

Modelling strategy 
A spatiotemporal Gaussian process regression was used to generate estimates for all year/locations for 

the primary inputs. Parameters were chosen by maximizing out-of-sample cross-validation and 

minimizing RMSE. For economic activity and occupation proportions, estimates from ST-GPR were then 

re-scaled to sum to 1 across categories by dividing each estimate by the sum of all the estimates. 

The following sections describe the modelling approaches for each occupational risk’s prevalence 

exposure. 

 

 

48



Occupational carcinogens, occupational noise, occupational particulates 

Prevalence of exposure to these risks was determined using the following equation: 

 

𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑜𝑓 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑐,𝑦,𝑠,𝑎,𝑟,𝑙 =  ∑ 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝐸𝐴,𝑐,𝑦 ∗ 𝐸𝐴𝑃𝑐,𝑦,𝑠,𝑎 ∗ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑟𝑎𝑡𝑒𝐸𝐴,𝑟,𝑙,𝑑

𝐸𝐴

 

where: 

EAP = economically active population 
EA = economic activity 
a = age 
 

c = country 
d = duration 
l = level of exposure 
 

r = risk 
s = sex 
y =year 

 

Exposure rate was provided by expert group recommendations and literature [8-11] (see Table 1). 

Duration was only considered for occupational carcinogens, through application of occupational 

turnover factors [12]. 

 

 

Occupational ergonomic factors and asthmagens 

Prevalence of exposure to these risks was determined using the following equation: 

 

𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑜𝑓 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑐,𝑦,𝑠,𝑎,𝑟 =  ∑ 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑂𝐶𝐶,𝑐,𝑦 ∗ 𝐸𝐴𝑃𝑐,𝑦,𝑠,𝑎

𝐸𝐴

 

where: 

EAP = economically active population 
OCC = occupation 
 

c = country 
a = age 
 

r = risk 
s = sex 
y = year 
 

 

Occupational injuries 

Occupational injury counts were estimated using the following equation: 

 

𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑎𝑡𝑎𝑙 𝑖𝑛𝑗𝑢𝑟𝑖𝑒𝑠𝑐,𝑦,𝑎,𝑠

= ∑ 𝐼𝑛𝑗𝑢𝑟𝑦 𝑟𝑎𝑡𝑒𝐸𝐴,𝑐,𝑦,𝑠 ∗ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑐,𝑦,𝑎,𝑠 ∗ 𝐸𝐴𝑃𝑐,𝑦,𝑠,𝑎 ∗ 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝐸𝐴,𝑐,𝑦

𝐸𝐴

 

where: 

EAP = economically active population 
EA = economic activity 
 

c = country 
a = age 
 

y = year 
s = sex 
 

 

Occupational asbestos 

Prevalence of exposure to asbestos was estimated using the asbestos impact ratio (AIR), which is 

equivalent to the excess deaths due to mesothelioma observed in a population divided by excess deaths 

due to mesothelioma in a population heavily exposed to asbestos. Formally, this is defined using the 

following equation: 
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𝐴𝐼𝑅 =  
𝑀𝑜𝑟𝑡𝑐,𝑦,𝑠 − 𝑁𝑐,𝑦,𝑠 

𝑀𝑜𝑟𝑡𝑐,𝑦𝑠,
∗ − 𝑁𝑐,𝑦,𝑠

 

 

where: 

Mort = Mortality rate due to mesothelioma 
Mort* = Mortality rate due to mesothelioma in 
population highly exposed to asbestos 
N = Mortality rate due to mesothelioma in 
population not exposed to asbestos 
 

c = country 
y = year  
s = sex 

Mortality rate due to mesothelioma was estimated from GBD 2015 causes of death [7]. Mortality rate 

due to mesothelioma in population not exposed to asbestos was calculated using the model in Lin and 

colleagues [13], while the mortality rate due to high exposure to asbestos was estimated in Goodman 

and colleagues [14]. 

 

Theoretical minimum-risk exposure level 

For all occupational risks, with the exception of occupational asbestos, the theoretical minimum-risk 

exposure level was assumed to be no exposure to that risk. 

 

Relative risk 

 Relative risks were obtained for all occupational risks by conducting a systematic review of published 

meta-analysis.  

 

Population attributable fraction 
For all occupational risks, with the exception of injuries outlined below, PAFs were calculated using the 

prevalences estimated above, using the PAF formula.  

 

Occupational injuries PAF 

The PAF for occupational injuries was calculated using the following formula: 

𝑃𝐴𝐹𝑐,𝑦,𝑎,𝑠 =  
𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑎𝑡𝑎𝑙 𝑖𝑛𝑗𝑢𝑟𝑖𝑒𝑠𝑐,𝑦,𝑎,𝑠 − 𝑇𝑀𝑅𝐸𝐿

𝐹𝑎𝑡𝑎𝑙 𝑖𝑛𝑗𝑢𝑟𝑖𝑒𝑠𝑐,𝑦,𝑎,𝑠
 

where: 

c = country 
y = year 

a = age 
s = sex 

 

Fatal injuries total was obtained from GBD 2015 causes of death [7]. 
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Table 1 – Exposure rate by economic activity (per 100,000 workers) 

Risk factor 

Agriculture, 
hunting, 

forestry and 
fishing 

Mining and 
quarrying 

Manufacturing 
Electricity, 
gas, and 

water 
Construction 

Wholesale and 
retail trade 

and 
restaurants 
and hotels 

Transport, 
storage, and 

communication 

Financing, 
insurance, 
real estate, 

and business 
services 

Community, 
social, and 
personal 
services 

Arsenic 54 72 399 148 134 6 - 2 11 

Asbestos 1,248 10,248 589 1,702 5,203 292 684 16 286 

Benzene 59 197 308 91 75 1,037 520 41 2,330 

Beryllium - 55 207 70 4 2 11 - 3 

Cadmium - - 486 287 291 2 65 - 48 

Chromium VI - 346 2,061 409 237 17 369 - 227 

Diesel engine exhaust 646 21,970 1,192 3,359 5,816 485 13,432 - 920 

Secondhand smoke 2,082 163 5,249 6,172 4,830 9,278 6,965 4,584 3,633 

Formaldehyde 186 255 2,103 28 545 53 23 22 594 

Nickel - 2,025 1,663 352 47 7 3 - 43 

Polycyclic aromatic 
hydrocarbons 

- 1,021 1,650 3,066 1,328 106 905 - 388 

Silica 372 23,049 2,316 1,415 18,860 17 476 2 60 

Sulfuric acid - 366 1,488 928 577 264 255 81 189 

Noise, 90+ dB, high 
exposure 

26,100 57,200 23,300 27,400 36,200 100 18,000 400 15,900 

Noise, 85-90 dB, high 
exposure 

16,700 25,400 32,200 13,800 21,000 23,100 28,700 23,000 17,600 

Noise, 90+ dB, low 
exposure 

18,000 39,300 10,600 20,400 25,100 0 7,900 0 900 

Noise, 85-90 dB, low 
exposure 

14,400 29,400 24,500 12,300 19,400 1,800 20,200 3,100 13,100 

Particulates, developed, 
high exposure 

10,000 10,000 10,000 10,000 10,000 0 10,000 0 0 

Particulates, developed, 
low exposure 

5,000 7,000 7,000 5,000 7,000 500 5,000 500 500 

Particulates, developing, 
high exposure 

10,000 40,000 40,000 10,000 40,000 0 10,000 0 0 

Particulates, developing, 
low exposure 

70,000 40,000 40,000 70,000 40,000 10,000 70,000 10,000 10,000 
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Ozone risk factor estimation process 
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American Cancer Society study 
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minimum-5th percentile:

33.3-41.9 ug/m3

Published and unpublished 
literature
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risk exposure level
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attributable 
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cause, age, sex, 
and geography
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Population 
attributable 
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aggregate, cause, 
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and DALYs 

attributable to each 
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year, geography

Deaths, YLLs, YLDs, 
DALYs for each 

disease and injury 
by age, sex, year, 

geography

Calculate PAFs using 
exposure, relative risks, 

and TMREL

 

Input data and methodological summary 

Exposure 

Case definition 
For GBD 2015, exposure to ozone pollution is defined as the number of parts-per-billion (ppb) of ozone 

(O3).  

Input data 
Data for estimating ozone exposure is derived from the TM5-FASST chemical transport model, which 

generates a three-month running average of daily one-hour maximum ozone values at the 0.1° × 0.1° 

level for the years 1990, 2000, and 2010.1 

Modelling strategy 
The process for modelling ozone exposure has remained stable since GBD 2010 and GBD 2013. Natural 

cubic splines were used to interpolate for the years 1995, 2005, and 2011. Annualised rate of change was 

used to predict for the years 2013 and 2015. The uncertainty for exposure at the grid level was assumed 

to be ±6% of the estimated concentration, in accordance with previous work. Uncertainty for ozone was 

calculated by assuming a +/- 6% uncertainty interval around the estimation concentration. 

 

Theoretical minimum-risk exposure level 
The TMREL of ozone was defined based on the exposure distribution from American Cancer Society CPS-II 

study, which was the source of the GBD 2015 ozone mortality RR estimate. As with PM2.5, a uniform 
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distribution was drawn around the minimum and fifth percentile values experienced by the cohort. This 

value was not updated for GBD 2015, and continues to be defined as ~U(33.3, 41.9), in ppb.  

No other significant changes were made from GBD 2013 to GBD 2015. 

Relative risks 
The relative risk of ozone exposure for respiratory COPD was extracted from literature and was not 

updated for GBD 2015. The relative risk is applied linearly per 10 ppb of ozone exposure and is defined as 

1.029 (1.010–1048).2 
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Secondhand smoke risk factor estimation process 
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and DALYs 

attributable to each 
risk by age, sex, 
year, geography

Deaths, YLLs, YLDs, 
DALYs for each 

disease and injury 
by age, sex, year, 

geography

 
Input data and methodological summary  

 

Exposure 

Case definition 
We measure exposure to any tobacco smoke inside the home among non-smokers. Ex-smokers and 

occasional smokers are considered non-smokers for the purposes of this analysis. Exposure was evaluated 

for both children and adults. 

Input data 
We included surveys that had at least one question about smoking status and also asked about either 

exposure to tobacco smoke inside the home, whether or not the respondent lives with any smokers or 

whether their spouse smokes. For children we also used surveys that asked about parental smoking. 

Some main sources include Global Adult Tobacco Survey (GATS), Global Youth Tobacco Survey (GYTS), 

DHS, NHANES, BRFSS, Eurobarometer, etc.  

Updates to systematic reviews are performed on an ongoing schedule across all GBD causes and risk 

factors, an update for second-hand smoke will be performed in the next one to two iterations. 

Many new surveys were added for GBD 2015, which were identified and accessed using GHDx. We cross-

referenced with available sources used for smoking in order to evaluate whether these sources were also 

useful for secondhand smoke. Some of the big new survey series that were added included the National 

Adult Tobacco Survey and National Youth Tobacco survey series from the U.S., VIGITEL and Risk Factor 

Chronic Disease Surveillance data from Brazil, and the Chronic Disease Risk Factor Surveillance from 

China. All new Global Youth Tobacco Surveys (GYTS), Global Adult Tobacco Surveys (GATS), Global school-

based student health surveys (GSHS) and Eurobarometer were added as well, in addition to other one-off 

surveys that evaluated secondhand smoke in the household.  
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Modelling strategy  
We used the traditional PAF equation to estimate burden based on exposure and relative risks.  

Prevalence of secondhand smoke exposure among nonsmokers is modelled in Dismod-MR and all 

crosswalks/adjustments are done both within and outside of DisMod to account for alternative case 

definitions.  

In GBD 2015, a new modelling change we implemented was to crosswalk surveys asking about spousal 

smoking or parental smoking (depending on adults versus children) to our gold standard of any exposure 

to secondhand smoke in the household by anyone. A sizable group of the DHS surveys do not ask directly 

about smoke exposure in the household, and thus exposure is ascertained indirectly through looking at 

the smoking status of each partner in the couple’s module to see if there is a “mixed-status” relationship 

in which one partner is exposed to the other’s smoke.  

Another adjustment that we made prior to DisMod was for the act of smoking. In some surveys, such as 

the Global Youth Tobacco Survey, the survey only asks whether their parent smokes, not whether the 

child being interviewed is actively exposed to smoke on a regular basis (which we define as at least once a 

week). Thus, in addition to adjusting for spouse/parent versus anybody, we also adjusted for whether the 

survey asked the person whether they were directly exposed to smoke or just whether people smoked 

who lived in their home. The two-by-two table below helps illustrate the different potential combinations 

of alternate definitions that we adjusted for.  

 

  Spouse/parent Anybody 

Act of smoking A B 

Non-act C D 

 

We used a mixed effects regression to crosswalk these alternative definitions, with interactions between 

anybody smoking and sex, fixed effects on act of smoking, and nested random effects at the super-region, 

region, and country levels. Previously, this crosswalk was done in DisMod.  

Once we had crosswalked these alternative definitions, we modelled secondhand smoke prevalence as a 

single parameter prevalence model in DisMod-MR. Another modelling change that we made in GBD 2015 

was to run separate models for male and female secondhand smoke exposure, with children included in 

the female model. This decision was made because the sex effect being estimated with the combined 

gender model was underestimating the sizably higher impact of secondhand smoke on women as 

compared to men. Thus, we decided to model them separately.  

 

In the female model, we used with age mesh points at 0 5 10 15 18 20 30 40 50 60 80 & 100, while in the 

male model we used age mesh points at 0 15 18 20 30 40 50 60 80 & 100. The difference in age mesh 

points was due to the fact that all children were modelled as female due to similar rates of exposure, 

while the male model was limited to adult males greater than 15.  

We use the age-standardised smoking prevalence among females as a country-level covariate in the male 

model, and the age-standardised smoking prevalence among males as a country-level covariate in the 

female model. This was a modelling change from GBD 2013, in which we only had one secondhand smoke 
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model and used the age-standardised smoking prevalence rate among men. In addition, we used one 

study-level fixed effects to account for the different case definitions in our dataset: 

 Study-level fixed effects on integrand value (x-cov) 

o Prevalence figure includes exposure to tobacco smoke outdoors as well as indoors 

 Study-level fixed effects on integrand variance (z-cov) 

o Study asked about exposure to secondhand smoke at home and/or work (rather than 

exposure inside the home only) 

o Study was not nationally representative  

All raw input CSA data points had a measure of uncertainty going into DisMod – standard error, 

confidence interval, or effective sample size – and the uncertainty around final estimates also takes into 

account uncertainty from study-level covariate fixed effects on variance, as well as geographic random 

effects.  

 

Theoretical minimum-risk exposure level 
The theoretical minimum-risk exposure level for secondhand smoke is zero exposure among non-smokers 

to secondhand smoke in the home.  

Relative risks 
For children under 5 years of age, we estimate the burden of lower respiratory infections (LRI) and otitis 

media attributable to secondhand smoke exposure. For adults greater or equal to 25 years of age we 

estimate the burden of lung cancer, ischemic heart disease, cerebrovascular disease, and lower 

respiratory infections (LRI) attributable to secondhand smoke exposure. For GBD 2010 all of these pooled 

relative risks came from published meta-analyses, but for GBD 2015 we used country-specific relative 

risks that were created using integrated exposure response curves (IER). The relative risk for otitis media 

still comes from a published meta-analysis, as opposed to the IER approach.  
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Appendix Table 2. GATHER checklist of information that should be included in reports of global health estimates, with description of 

compliance and location of information for GBD 2015 paper on COPD and asthma 

# GATHER checklist item Description of compliance Reference 

Objectives and funding 

1 Define the indicators, populations, and time periods for which 
estimates were made. 

Narrative provided in paper and 
appendix describing indicators, 
definitions, and populations. 

Manuscript; methods appendix, Section 
1. GBD Overview 

2 List the funding sources for the work. Funding sources listed in paper. Funding of GBD by Bill & Melinda Gates 
Foundation acknowledged  

Data Inputs 

For all data inputs from multiple sources that are synthesised as part of the study: 

3 Describe how the data were identified and how the data were 
accessed.  

Narrative description of data-seeking 
methodology provided. 

 Main text, methods 

 Appendix, description of methods of 
estimating fatal and non-fatal 
outcomes of COPD and asthma 

4 Specify the inclusion and exclusion criteria. Identify all ad-hoc 
exclusions. 

Narrative about inclusion and exclusion 
criteria provided. 

 Main text, methods 

 Appendix, description of methods of 
estimating fatal and non-fatal 
outcomes of COPD and asthma  

5 Provide information on all included data sources and their 
main characteristics. For each data source used, report 
reference information or contact name/institution, population 
represented, data collection method, year(s) of data 
collection, sex and age range, diagnostic criteria or 
measurement method, and sample size, as relevant.  

Interactive, online data source tool that 
provides metadata for data sources by 
component, geography, cause, risk, or 
impairment has been developed. 

http://ghdx.healthdata.org/gbd-
2015/data-input-sources    

6 Identify and describe any categories of input data that have 
potentially important biases (e.g., based on characteristics 
listed in item 5). 

Summary of known biases by cause 
included in appendix. 

 Main text, methods, and discussion 

 Appendix, description of methods of 
estimating fatal and non-fatal 
outcomes of COPD and asthma 

For data inputs that contribute to the analysis but were not synthesised as part of the study: 

7 Describe and give sources for any other data inputs.  Included in online data source tool. http://ghdx.healthdata.org/gbd-
2015/data-input-sources    

For all data inputs: 
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8 Provide all data inputs in a file format from which data can be 
efficiently extracted (eg, a spreadsheet as opposed to a PDF), 
including all relevant meta-data listed in item 5. For any data 
inputs that cannot be shared due to ethical or legal reasons, 
such as third-party ownership, provide a contact name or the 
name of the institution that retains the right to the data. 

Downloads of input data available 
through online tools, including data 
visualization tools and data query tools. 
Input data not available in tools will be 
made available upon request.  

Online data tools  
http://ghdx.healthdata.org/gbd-
2015/data-input-sources   
http://www.healthdata.org/results/dat
a-visualizations; 
http://ghdx.healthdata.org/; 
http://ghdx.healthdata.org/gbd-data-
tool  

Data analysis 

9 Provide a conceptual overview of the data analysis method. A 
diagram may be helpful.  

Flow diagrams and narrative of 
methodological processes have been 
provided. 

 Main text, methods 

 Appendix description of methods of 
estimating fatal and non-fatal 
outcomes of COPD and asthma  

10 Provide a detailed description of all steps of the analysis, 
including mathematical formulae. This description should 
cover, as relevant, data cleaning, data pre-processing, data 
adjustments and weighting of data sources, and mathematical 
or statistical model(s).  

Flow diagrams and narrative of 
methodological processes have been 
provided. 

 Main text, methods 

 Appendix description of methods of 
estimating fatal and non-fatal 
outcomes of COPD and asthma 

11 Describe how candidate models were evaluated and how the 
final model(s) were selected. 

Provided in the methodological write-
ups.  

 Appendix description of methods of 
estimating fatal and non-fatal 
outcomes of COPD and asthma 

12 Provide the results of an evaluation of model performance, if 
done, as well as the results of any relevant sensitivity analysis. 

Provided in the methodological write-
ups.  

Appendix description of methods of 
estimating fatal and non-fatal 
outcomes of COPD and asthma 

13 Describe methods for calculating uncertainty of the estimates. 
State which sources of uncertainty were, and were not, 
accounted for in the uncertainty analysis. 

Provided in the methodological write-
ups.  

 Main text, methods 

 Appendix description of methods of 
estimating fatal and non-fatal 
outcomes of COPD and asthma 

14 State how analytic or statistical source code used to generate 
estimates can be accessed. 

Access statement provided. http://ghdx.healthdata.org/gbd-2015-
code  

Results and Discussion 

15 Provide published estimates in a file format from which data 
can be efficiently extracted. 

GBD 2015 results are available through 
online data visualization tools, the 

Online data tools 
http://www.healthdata.org/results/dat
a-visualizations; 
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Global Health Data Exchange, and the 
online data query tool  

http://ghdx.healthdata.org/; 
http://ghdx.healthdata.org/gbd-data-
tool 
  

16 Report a quantitative measure of the uncertainty of the 
estimates (eg, uncertainty intervals). 

Uncertainty intervals are provided with 
all results. 

Main text and online data tools (to go 
live with GBD 2015 at publication) 
http://www.healthdata.org/results/dat
a-visualizations; 
http://ghdx.healthdata.org/; 
http://ghdx.healthdata.org/gbd-data-
tool 
  

17 Interpret results in light of existing evidence. If updating a 
previous set of estimates, describe the reasons for changes in 
estimates. 

Discussion of methodological changes 
between GBD rounds provided in the 
narrative of the paper. 

Main text, discussion 
 

18 Discuss limitations of the estimates. Include a discussion of 
any modelling assumptions or data limitations that affect 
interpretation of the estimates. 

Discussion of limitations provided in 
the narrative of the main paper as well 
as in the methodological write-ups in 
the appendix. 

 Main text, discussion  

 Appendix description of methods of 
estimating fatal and non-fatal 
outcomes of COPD and asthma 
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DALYs
Change in DALY numbers 

from 1990 to 2015 (percent)

Change in DALYs from 1990 

to 2015, age-standardised rates 

(percent)

DALYs
Change in DALY numbers 

from 1990 to 2015 (percent)

Change in DALYs from 1990 

to 2015, age-standardised rates 

(percent)

Global
63,850,433

(61,215,316 to 66,288,554)

-1.0

(-7.1 to 6.2)

-43.7

(-47.0 to -39.8)

26,168,785

(20,501,407 to 32,582,992)

-14.6

(-26.0 to 2.1)

-42.8

(-52.0 to -29.5)

High-income
7,178,960

(6,860,198 to 7,523,479)

26.9

(23.8 to 31.6)

-20.1

(-22.1 to -17.0)

2,987,889

(2,050,480 to 4,023,604)

-18.6

(-22.6 to -15.2)

-31.2

(-34.7 to -28.3)

High-income North 

America

3,207,917

(3,055,194 to 3,350,917)

50.3

(45.9 to 55.0)

-3.6

(-6.3 to -0.6)

886,295

(616,105 to 1,190,056)

4.9

(-3.1 to 12.6)

-19.6

(-26.2 to -13.3)

Canada
175,370

(162,732 to 190,729)

36.7

(26.7 to 48.5)

-24.0

(-29.4 to -17.7)

93,562

(62,626 to 128,549)

4.5

(-4.6 to 14.9)

-19.2

(-26.8 to -11.1)

Greenland
416

(380 to 461)

11.1

(-0.4 to 23.7)

-35.8

(-42.3 to -28.5)

169

(119 to 224)

-20.8

(-28.4 to -14.1)

-33.5

(-41.7 to -26.9)

United States
3,031,070

(2,885,010 to 3,170,315)

51.1

(46.6 to 56.2)

-1.8

(-4.7 to 1.3)

792,258

(553,055 to 1,063,564)

4.9

(-3.4 to 13.4)

-19.6

(-26.5 to -12.9)

Australasia
147,393

(138,813 to 158,093)

9.5

(3.2 to 17.8)

-39.5

(-43.1 to -34.9)

128,635

(85,844 to 180,364)

-12.4

(-19.1 to -6.1)

-37.1

(-42.1 to -32.1)

Australia
118,336

(110,837 to 127,702)

7.9

(0.7 to 17.4)

-41.1

(-45.0 to -36.1)

106,989

(71,805 to 150,340)

-11.2

(-18.6 to -3.9)

-36.9

(-42.4 to -31.4)

New Zealand
29,057

(27,312 to 30,953)

16.6

(9.4 to 25.0)

-32.2

(-36.3 to -27.5)

21,647

(14,367 to 30,038)

-18.0

(-25.3 to -10.2)

-37.5

(-43.4 to -31.0)

High-income Asia 

Pacific

726,460

(674,245 to 790,533)

29.2

(22.8 to 39.5)

-36.6

(-40.0 to -31.8)

400,646

(279,419 to 540,325)

-44.3

(-48.9 to -40.1)

-53.4

(-58.1 to -49.2)

Brunei
1,883

(1,736 to 2,021)

47.7

(33.9 to 64.5)

-36.1

(-42.0 to -28.0)

1,657

(1,230 to 2,165)

25.3

(13.4 to 36.5)

-28.4

(-37.1 to -20.6)

Japan
535,770

(495,537 to 587,585)

23.2

(16.4 to 33.8)

-37.0

(-40.3 to -32.5)

267,851

(182,286 to 368,598)

-46.5

(-51.2 to -41.8)

-52.7

(-57.0 to -48.2)

Singapore
9,900

(9,156 to 10,581)

-27.1

(-32.2 to -21.2)

-72.2

(-74.2 to -69.9)

8,924

(6,080 to 12,099)

-30.1

(-39.6 to -22.0)

-55.8

(-62.4 to -50.2)

South Korea
178,907

(164,112 to 193,727)

59.2

(45.1 to 75.3)

-37.3

(-43.1 to -30.2)

122,214

(89,178 to 160,396)

-40.3

(-46.8 to -34.1)

-65.3

(-71.3 to -59.6)

Western Europe
2,725,245

(2,600,747 to 2,867,656)

5.9

(2.6 to 10.3)

-29.0

(-31.2 to -25.9)

1,348,291

(909,929 to 1,838,168)

-22.8

(-26.8 to -19.6)

-30.0

(-33.9 to -26.8)

Andorra
395

(338 to 461)

72.8

(46.8 to 104.0)

-20.3

(-31.4 to -7.4)

235

(155 to 327)

28.1

(16.3 to 40.0)

-18.8

(-26.6 to -11.1)

Austria
47,670

(44,506 to 51,123)

24.3

(16.6 to 32.4)

-11.7

(-16.9 to -6.1)

25,268

(16,785 to 34,868)

-27.0

(-35.0 to -20.3)

-32.1

(-39.8 to -24.9)

Belgium
91,554

(85,839 to 97,385)

6.1

(-0.6 to 13.6)

-23.8

(-28.6 to -18.5)

28,987

(19,894 to 39,533)

-35.4

(-40.3 to -30.5)

-42.2

(-46.8 to -37.7)

Cyprus
2,863

(2,629 to 3,116)

-12.5

(-21.4 to -2.4)

-52.0

(-56.8 to -46.4)

3,432

(2,404 to 4,659)

-3.8

(-11.7 to 4.0)

-31.0

(-36.9 to -25.3)

Denmark
58,476

(55,013 to 62,188)

12.5

(5.7 to 20.1)

-15.1

(-20.3 to -9.6)

15,597

(10,510 to 21,566)

-20.9

(-30.8 to -10.2)

-27.9

(-36.8 to -17.4)

Finland
25,050

(22,760 to 27,720)

10.8

(2.6 to 20.3)

-27.8

(-33.0 to -21.8)

21,232

(14,163 to 29,057)

3.6

(-6.5 to 15.0)

-8.2

(-18.9 to 1.7)

France
199,264

(183,435 to 216,245)

-17.5

(-23.8 to -10.9)

-46.4

(-50.3 to -42.3)

201,242

(135,844 to 279,186)

-26.2

(-31.9 to -20.6)

-35.9

(-41.5 to -30.5)

Germany
639,550

(602,240 to 678,297)

8.8

(2.5 to 15.4)

-25.0

(-29.3 to -20.4)

224,765

(154,757 to 306,679)

-41.4

(-47.2 to -36.7)

-44.5

(-49.9 to -39.4)

Greece
88,653

(82,805 to 95,107)

55.5

(46.2 to 64.6)

-1.3

(-6.8 to 3.9)

26,463

(17,478 to 36,407)

2.4

(-5.4 to 11.7)

-1.5

(-9.2 to 9.4)

Iceland
1,300

(1,194 to 1,412)

21.4

(13.2 to 29.8)

-26.0

(-30.9 to -20.9)

942

(622 to 1,292)

-6.7

(-13.7 to 1.0)

-27.2

(-33.2 to -21.1)

Ireland
23,077

(21,081 to 25,465)

-17.7

(-26.3 to -7.7)

-45.8

(-51.4 to -39.3)

18,024

(11,981 to 25,385)

-20.2

(-26.7 to -14.1)

-38.5

(-43.6 to -33.5)

Israel
24,457

(22,661 to 26,229)

42.1

(31.8 to 51.8)

-36.4

(-41.0 to -31.8)

22,185

(15,124 to 30,656)

12.6

(3.9 to 22.4)

-38.1

(-43.3 to -32.5)

Italy
333,073

(309,587 to 358,588)

6.8

(-1.2 to 16.6)

-35.0

(-39.5 to -29.2)

108,372

(71,741 to 150,467)

-30.6

(-39.3 to -23.5)

-33.6

(-43.0 to -25.3)

Luxembourg
2,730

(2,528 to 2,921)

1.9

(-5.1 to 8.9)

-35.4

(-39.7 to -31.0)

2,182

(1,476 to 3,003)

-4.4

(-12.7 to 3.3)

-33.5

(-39.5 to -28.0)

Malta
1,780

(1,634 to 1,948)

24.4

(14.1 to 36.8)

-35.9

(-41.3 to -29.5)

1,458

(963 to 2,019)

-11.4

(-20.2 to -2.5)

-24.6

(-32.6 to -16.4)

Netherlands
138,162

(129,168 to 148,032)

29.2

(21.0 to 38.3)

-14.9

(-20.1 to -9.0)

53,059

(34,741 to 73,952)

-2.3

(-9.1 to 5.9)

-14.3

(-20.3 to -7.0)

Norway
35,016

(32,722 to 37,513)

67.9

(56.6 to 80.2)

31.6

(23.2 to 40.9)

15,049

(10,218 to 20,678)

-29.9

(-37.5 to -22.1)

-39.1

(-45.5 to -31.3)

Portugal
66,726

(62,689 to 71,251)

1.2

(-5.0 to 8.2)

-34.8

(-38.8 to -30.2)

38,931

(25,937 to 53,847)

-21.8

(-29.1 to -14.2)

-26.1

(-33.7 to -17.3)

Spain
288,908

(270,702 to 308,065)

3.9

(-2.9 to 11.9)

-39.7

(-43.6 to -35.1)

153,197

(104,073 to 209,254)

-0.4

(-7.4 to 6.4)

-18.0

(-24.3 to -11.2)

Sweden
68,114

(62,490 to 74,107)

30.2

(23.2 to 37.6)

0.6

(-4.5 to 5.9)

26,620

(17,965 to 36,843)

-25.2

(-31.0 to -19.8)

-30.3

(-35.8 to -24.4)

Switzerland
37,351

(34,420 to 40,468)

4.7

(-2.9 to 13.2)

-30.1

(-35.2 to -24.7)

22,759

(14,997 to 31,673)

-13.5

(-23.3 to -2.8)

-27.3

(-35.8 to -18.2)

United Kingdom
548,554

(520,273 to 588,796)

-2.2

(-6.7 to 5.5)

-24.6

(-28.1 to -18.7)

336,960

(226,342 to 467,528)

-14.5

(-18.0 to -11.6)

-21.9

(-24.9 to -19.4)

Appendix Table 3. DALYs caused by COPD and asthma in 2015 and percent change in all-age numbers and age-standardised rates between 1990 and 2015, by location

COPD Asthma
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COPD Asthma

England
447,608

(423,936 to 480,199)

-3.9

(-8.5 to 3.7)

-25.9

(-29.4 to -20.0)

271,853

(182,230 to 377,480)

-15.9

(-19.2 to -13.0)

-23.8

(-26.7 to -21.4)

Northern Ireland
14,703

(13,494 to 16,337)

15.6

(6.0 to 28.6)

-19.7

(-26.4 to -10.7)

8,156

(5,466 to 11,316)

-12.9

(-18.9 to -7.1)

-23.2

(-28.2 to -18.0)

Scotland
55,298

(51,528 to 59,784)

6.0

(-2.0 to 15.9)

-17.6

(-23.5 to -9.9)

34,201

(22,892 to 47,275)

-9.0

(-15.8 to -1.9)

-10.8

(-17.8 to -3.7)

Wales
30,945

(28,657 to 33,603)

3.0

(-5.2 to 13.7)

-19.3

(-25.6 to -11.3)

22,751

(15,261 to 31,905)

-5.5

(-11.1 to 0.5)

-9.2

(-15.1 to -3.1)

Southern Latin America
371,945

(353,118 to 391,691)

49.3

(41.4 to 57.8)

-10.6

(-15.3 to -5.5)

224,021

(152,853 to 305,997)

6.0

(-1.3 to 12.2)

-19.6

(-25.6 to -14.2)

Argentina
273,890

(258,275 to 289,737)

51.9

(42.3 to 61.5)

-2.6

(-8.7 to 3.5)

148,977

(102,022 to 202,719)

0.7

(-6.6 to 8.5)

-22.8

(-28.7 to -16.5)

Chile
69,386

(63,069 to 78,244)

38.3

(24.9 to 56.1)

-34.2

(-40.6 to -26.1)

61,203

(40,902 to 84,460)

33.1

(17.0 to 48.7)

-5.7

(-17.7 to 4.6)

Uruguay
28,643

(27,066 to 30,242)

54.1

(43.3 to 66.4)

14.9

(6.9 to 24.2)

13,830

(9,878 to 18,443)

-20.9

(-27.9 to -14.7)

-29.1

(-35.8 to -23.2)

Central Europe, Eastern 

Europe, and Central Asia

2,235,951

(2,138,230 to 2,324,989)

-25.6

(-28.6 to -23.0)

-42.7

(-45.0 to -40.9)

910,592

(655,937 to 1,197,029)

-43.4

(-48.5 to -38.6)

-45.0

(-50.9 to -39.7)

Eastern Europe
1,171,686

(1,106,306 to 1,235,865)

-34.0

(-38.0 to -30.5)

-47.1

(-50.1 to -44.4)

444,733

(317,326 to 582,638)

-56.2

(-61.3 to -51.2)

-54.4

(-60.1 to -49.1)

Belarus
68,958

(63,214 to 74,961)

-39.8

(-45.4 to -33.7)

-50.7

(-55.2 to -45.9)

27,615

(20,100 to 36,382)

-44.9

(-52.9 to -37.6)

-42.4

(-51.0 to -34.3)

Estonia
3,854

(3,554 to 4,189)

-34.2

(-39.8 to -28.5)

-44.4

(-49.1 to -39.7)

3,427

(2,440 to 4,584)

-47.9

(-54.6 to -41.8)

-40.9

(-49.0 to -33.5)

Latvia
6,642

(6,131 to 7,235)

-48.7

(-53.8 to -43.5)

-52.7

(-57.4 to -48.0)

5,321

(3,699 to 7,146)

-57.0

(-62.8 to -51.6)

-47.7

(-55.0 to -40.2)

Lithuania
14,280

(13,354 to 15,257)

-48.4

(-51.9 to -44.7)

-56.9

(-59.7 to -53.6)

6,403

(4,353 to 8,697)

-43.5

(-50.2 to -37.8)

-34.5

(-42.6 to -27.4)

Moldova
20,163

(18,969 to 21,409)

-48.9

(-52.3 to -45.1)

-56.6

(-59.4 to -53.6)

7,357

(5,077 to 10,088)

-40.5

(-47.6 to -33.3)

-36.9

(-45.2 to -28.7)

Russia
759,408

(706,800 to 813,347)

-24.6

(-30.3 to -19.3)

-41.9

(-45.9 to -38.0)

256,622

(181,742 to 341,235)

-56.9

(-61.8 to -51.7)

-56.3

(-61.9 to -50.4)

Ukraine
298,382

(274,576 to 323,798)

-47.3

(-52.7 to -41.8)

-53.3

(-57.7 to -48.4)

137,989

(96,977 to 181,771)

-57.7

(-64.9 to -50.0)

-52.4

(-60.6 to -44.6)

Central Europe
647,610

(621,777 to 672,773)

-18.0

(-20.7 to -15.2)

-40.0

(-41.9 to -37.9)

234,117

(163,257 to 317,640)

-34.3

(-39.9 to -29.2)

-31.9

(-38.5 to -25.9)

Albania
9,269

(8,307 to 10,261)

-25.8

(-35.9 to -15.3)

-54.3

(-59.7 to -48.2)

6,619

(5,020 to 8,468)

-22.3

(-30.6 to -13.1)

-29.9

(-39.3 to -21.6)

Bosnia and 

Herzegovina

17,007

(15,296 to 18,806)

-17.6

(-27.0 to -6.9)

-49.2

(-54.9 to -42.7)

6,108

(4,325 to 8,150)

-16.4

(-26.4 to -6.0)

-13.1

(-25.9 to -1.4)

Bulgaria
54,124

(51,033 to 57,307)

-8.5

(-14.5 to -2.2)

-20.2

(-25.5 to -15.0)

12,984

(8,787 to 17,859)

-31.5

(-39.0 to -24.2)

-13.6

(-23.0 to -3.9)

Croatia
26,014

(24,468 to 27,664)

22.1

(13.9 to 30.9)

-7.5

(-13.5 to -1.1)

8,382

(5,833 to 11,458)

-36.3

(-43.0 to -30.6)

-28.6

(-36.2 to -21.5)

Czech Republic
51,221

(47,927 to 55,058)

-5.2

(-11.8 to 2.6)

-32.4

(-36.9 to -26.8)

15,968

(10,965 to 21,607)

-34.6

(-40.7 to -29.2)

-35.3

(-41.7 to -29.9)

Hungary
85,505

(80,852 to 90,407)

-11.6

(-16.9 to -5.7)

-27.8

(-31.9 to -23.0)

17,044

(11,823 to 22,896)

-37.8

(-43.3 to -32.4)

-35.2

(-41.3 to -28.8)

Macedonia
7,671

(7,080 to 8,282)

-7.7

(-15.5 to 0.8)

-42.3

(-47.2 to -36.8)

4,776

(3,463 to 6,333)

-15.6

(-24.4 to -6.8)

-29.4

(-38.4 to -21.1)

Montenegro
1,078

(941 to 1,224)

31.5

(13.7 to 52.5)

-12.2

(-23.8 to 2.1)

994

(662 to 1,372)

9.1

(-0.4 to 19.7)

3.9

(-4.5 to 13.3)

Poland
199,135

(187,543 to 210,887)

-13.2

(-19.1 to -7.1)

-41.0

(-44.8 to -37.0)

86,256

(59,157 to 117,697)

-38.9

(-46.8 to -30.6)

-40.8

(-49.3 to -32.2)

Romania
119,465

(109,349 to 128,144)

-44.2

(-48.5 to -39.8)

-55.2

(-58.7 to -51.6)

40,924

(28,043 to 55,471)

-33.3

(-40.0 to -27.5)

-22.8

(-31.3 to -14.7)

Serbia
50,527

(47,436 to 53,640)

10.7

(1.4 to 20.8)

-21.8

(-28.0 to -14.8)

22,144

(15,885 to 29,213)

-32.4

(-37.2 to -27.4)

-33.4

(-38.4 to -28.3)

Slovakia
17,961

(16,688 to 19,240)

6.3

(-1.4 to 14.8)

-24.2

(-29.7 to -18.3)

8,929

(6,035 to 12,079)

-14.1

(-22.9 to -5.4)

-17.0

(-25.6 to -8.0)

Slovenia
8,633

(7,993 to 9,331)

-16.6

(-22.8 to -9.5)

-50.5

(-54.1 to -46.4)

2,989

(2,019 to 4,010)

-29.1

(-36.0 to -22.5)

-32.0

(-39.7 to -25.4)

Central Asia
416,655

(396,832 to 437,552)

-5.8

(-10.8 to -0.5)

-36.4

(-39.6 to -33.0)

231,742

(171,921 to 301,714)

-2.3

(-11.1 to 5.1)

-29.6

(-37.5 to -23.1)

Armenia
17,957

(16,441 to 19,606)

-24.0

(-30.8 to -16.8)

-46.2

(-51.0 to -41.1)

5,641

(3,850 to 7,675)

-17.0

(-23.6 to -10.2)

-11.6

(-18.9 to -5.1)

Azerbaijan
37,777

(33,912 to 42,303)

-7.0

(-17.1 to 4.3)

-51.6

(-56.8 to -46.1)

20,603

(14,279 to 28,099)

15.5

(1.1 to 30.0)

-26.7

(-38.0 to -15.7)

Georgia
30,212

(27,829 to 32,813)

36.0

(22.6 to 51.2)

43.1

(28.5 to 58.1)

9,520

(6,933 to 12,539)

-46.3

(-52.5 to -38.5)

-26.8

(-36.0 to -15.3)

Kazakhstan
132,678

(121,929 to 143,977)

1.6

(-7.8 to 12.8)

-18.7

(-25.9 to -10.1)

50,927

(39,064 to 65,469)

-24.0

(-32.6 to -15.1)

-34.2

(-43.1 to -25.4)

Kyrgyzstan
37,894

(35,220 to 40,603)

-31.1

(-36.9 to -24.7)

-48.3

(-52.6 to -43.8)

12,740

(8,837 to 17,391)

1.7

(-12.6 to 14.1)

-28.9

(-40.2 to -19.5)

Mongolia
7,963

(7,223 to 8,824)

-32.0

(-50.6 to -10.2)

-46.2

(-55.4 to -36.0)

7,241

(5,331 to 9,471)

-4.0

(-17.5 to 8.1)

-34.9

(-45.0 to -24.8)

62



DALYs
Change in DALY numbers 

from 1990 to 2015 (percent)

Change in DALYs from 1990 

to 2015, age-standardised rates 

(percent)

DALYs
Change in DALY numbers 

from 1990 to 2015 (percent)

Change in DALYs from 1990 

to 2015, age-standardised rates 

(percent)

COPD Asthma

Tajikistan
30,854

(27,505 to 34,352)

-18.0

(-28.1 to -6.6)

-49.9

(-55.9 to -43.1)

18,530

(13,027 to 24,889)

24.5

(7.1 to 41.2)

-25.5

(-38.4 to -13.2)

Turkmenistan
14,794

(13,318 to 16,017)

-31.3

(-37.2 to -24.9)

-64.0

(-66.9 to -60.7)

11,899

(8,037 to 16,117)

-16.3

(-27.7 to -4.4)

-47.7

(-56.5 to -38.9)

Uzbekistan
106,527

(96,928 to 116,377)

7.3

(-4.1 to 20.2)

-43.1

(-49.5 to -36.2)

94,640

(71,354 to 121,039)

20.2

(7.5 to 33.3)

-31.9

(-41.0 to -23.1)

Latin America and 

Caribbean

2,485,103

(2,380,326 to 2,605,007)

31.9

(26.0 to 37.8)

-29.8

(-32.1 to -27.0)

2,161,934

(1,491,815 to 2,932,877)

-5.5

(-11.0 to -0.7)

-27.9

(-32.7 to -24.1)

Central Latin America
892,126

(850,400 to 934,854)

25.4

(18.7 to 31.8)

-23.5

(-26.2 to -20.6)

773,568

(536,001 to 1,056,451)

-9.1

(-15.6 to -3.8)

-35.3

(-41.0 to -31.0)

Colombia
208,166

(195,866 to 221,371)

45.2

(35.0 to 56.4)

-20.0

(-24.9 to -14.7)

179,002

(118,827 to 251,648)

10.3

(0.3 to 20.5)

-15.8

(-25.0 to -7.1)

Costa Rica
14,825

(13,709 to 15,878)

88.6

(69.0 to 109.5)

-21.9

(-28.2 to -14.8)

17,513

(11,821 to 24,142)

17.9

(-10.5 to 35.2)

-16.6

(-35.1 to -5.4)

El Salvador
15,281

(13,950 to 16,707)

-56.6

(-67.8 to -39.5)

-59.4

(-66.6 to -50.4)

24,164

(16,509 to 33,187)

-51.2

(-59.7 to -42.8)

-51.9

(-59.4 to -44.2)

Guatemala
32,035

(28,532 to 35,492)

-68.4

(-75.2 to -59.1)

-63.8

(-70.2 to -55.9)

57,693

(40,797 to 78,705)

-22.6

(-37.1 to -8.2)

-51.8

(-60.1 to -43.3)

Honduras
33,111

(26,804 to 40,800)

23.0

(-34.4 to 98.7)

-7.3

(-31.2 to 21.1)

49,535

(36,046 to 65,431)

-27.4

(-42.0 to -10.9)

-41.1

(-51.2 to -31.0)

Mexico
469,304

(443,468 to 493,320)

38.3

(32.4 to 44.7)

-20.1

(-23.4 to -16.9)

306,625

(212,416 to 419,730)

-7.7

(-12.3 to -3.7)

-38.1

(-43.1 to -34.3)

Nicaragua
13,904

(12,654 to 15,150)

53.6

(1.0 to 120.2)

14.0

(-5.3 to 33.0)

19,259

(13,447 to 26,259)

-32.2

(-42.6 to -21.5)

-41.6

(-49.2 to -34.2)

Panama
11,687

(10,415 to 13,115)

28.7

(7.2 to 53.5)

-31.6

(-40.0 to -21.9)

18,470

(12,762 to 25,248)

12.6

(0.7 to 26.3)

-19.8

(-28.2 to -11.2)

Venezuela
93,813

(84,709 to 103,644)

140.3

(115.4 to 167.5)

4.1

(-6.3 to 15.2)

101,307

(69,696 to 140,888)

-3.2

(-12.9 to 6.6)

-32.6

(-38.8 to -26.3)

Andean Latin America
135,913

(124,252 to 150,430)

-29.4

(-44.7 to -13.3)

-49.6

(-56.9 to -42.3)

190,735

(126,609 to 267,865)

-24.5

(-37.0 to -14.4)

-39.9

(-49.5 to -32.3)

Bolivia
30,602

(25,928 to 36,580)

1.4

(-18.1 to 26.3)

-48.2

(-58.4 to -35.4)

34,647

(22,804 to 48,872)

23.7

(7.7 to 38.4)

-20.3

(-32.7 to -8.9)

Ecuador
39,210

(35,616 to 43,464)

-38.9

(-52.6 to -18.7)

-54.1

(-61.4 to -45.1)

42,019

(27,548 to 59,408)

-31.7

(-43.6 to -20.1)

-47.3

(-55.6 to -39.2)

Peru
66,102

(58,187 to 74,334)

-32.7

(-52.9 to -6.5)

-47.4

(-58.5 to -34.9)

114,069

(75,313 to 160,832)

-30.1

(-43.6 to -18.5)

-40.6

(-51.4 to -31.9)

Caribbean
184,299

(169,828 to 204,311)

36.6

(5.1 to 65.7)

-9.1

(-23.1 to 4.2)

265,706

(192,315 to 351,780)

-11.3

(-21.5 to -1.9)

-26.6

(-34.8 to -19.0)

Antigua and Barbuda
118

(104 to 132)

22.1

(7.1 to 36.6)

-21.5

(-31.5 to -11.6)

378

(253 to 522)

24.5

(10.7 to 38.3)

-13.3

(-23.2 to -3.6)

The Bahamas
765

(678 to 858)

27.4

(11.5 to 46.3)

-45.0

(-51.3 to -37.8)

1,747

(1,209 to 2,368)

3.7

(-7.3 to 14.2)

-26.8

(-34.7 to -19.4)

Barbados
586

(528 to 657)

7.7

(-3.8 to 22.0)

-28.7

(-36.3 to -19.5)

1,289

(921 to 1,725)

-14.6

(-21.6 to -7.5)

-20.9

(-28.2 to -13.0)

Belize
998

(895 to 1,102)

54.4

(29.6 to 81.9)

-7.8

(-18.9 to 4.8)

1,864

(1,282 to 2,583)

37.9

(21.8 to 53.8)

-20.1

(-28.9 to -11.9)

Bermuda
114

(102 to 127)

-23.6

(-32.0 to -13.3)

-51.3

(-56.6 to -45.1)

275

(183 to 387)

-11.1

(-21.7 to 0.4)

-24.8

(-34.0 to -15.2)

Cuba
65,176

(60,674 to 69,752)

102.0

(88.5 to 117.2)

20.9

(13.1 to 30.2)

49,718

(34,776 to 66,670)

-4.1

(-10.9 to 5.9)

-7.0

(-13.5 to 2.6)

Dominica
220

(194 to 253)

22.1

(3.6 to 44.1)

-9.1

(-23.0 to 7.2)

410

(293 to 545)

-11.3

(-19.7 to -2.6)

-12.3

(-21.4 to -3.4)

Dominican Republic
21,733

(19,934 to 23,738)

42.9

(3.5 to 81.2)

-17.2

(-32.6 to -3.4)

55,163

(39,039 to 74,619)

-2.6

(-13.3 to 8.1)

-28.7

(-36.4 to -21.4)

Grenada
315

(288 to 345)

-18.4

(-27.6 to -8.5)

-30.3

(-37.4 to -22.0)

523

(365 to 712)

-9.2

(-18.1 to -1.0)

-11.2

(-20.2 to -3.5)

Guyana
1,888

(1,657 to 2,126)

-2.0

(-17.8 to 13.7)

-21.6

(-31.9 to -10.7)

4,351

(3,158 to 5,855)

-17.5

(-24.9 to -10.2)

-21.2

(-28.1 to -14.3)

Haiti
48,631

(36,294 to 66,520)

-8.5

(-47.5 to 50.5)

-25.5

(-46.8 to 3.3)

96,968

(71,792 to 128,825)

-18.1

(-37.2 to 4.3)

-41.9

(-53.5 to -26.3)

Jamaica
10,000

(8,823 to 11,218)

63.0

(41.6 to 85.6)

12.7

(-1.8 to 28.1)

14,687

(10,359 to 19,783)

-2.5

(-12.7 to 7.7)

-9.9

(-18.8 to -1.0)

Puerto Rico
18,862

(17,396 to 20,712)

42.8

(31.7 to 55.1)

-6.0

(-13.2 to 2.1)

16,184

(11,183 to 21,851)

-22.9

(-30.8 to -14.1)

-23.2

(-32.1 to -13.8)

Saint Lucia
694

(626 to 763)

9.8

(-5.5 to 24.7)

-32.9

(-40.8 to -24.2)

995

(706 to 1,337)

-12.6

(-20.7 to -4.4)

-29.1

(-36.5 to -22.1)

Saint Vincent and the 

Grenadines

258

(234 to 283)

0.1

(-13.8 to 15.9)

-18.6

(-28.3 to -7.8)

556

(397 to 751)

-19.4

(-26.4 to -12.4)

-13.5

(-21.5 to -6.5)

Suriname
1,394

(1,235 to 1,587)

5.1

(-12.6 to 24.3)

-35.0

(-43.9 to -24.8)

2,804

(1,947 to 3,799)

-5.7

(-15.3 to 3.3)

-26.2

(-34.0 to -19.5)

Trinidad and Tobago
3,476

(3,112 to 3,874)

13.6

(-0.8 to 28.6)

-29.5

(-38.3 to -20.5)

7,559

(5,332 to 10,321)

-23.6

(-29.0 to -18.1)

-27.7

(-34.2 to -22.1)

Virgin Islands, U.S.
363

(328 to 402)

59.5

(41.7 to 78.9)

-22.8

(-30.7 to -13.9)

518

(364 to 692)

-18.4

(-26.3 to -10.3)

-20.8

(-29.9 to -13.4)

Tropical Latin America
1,272,765

(1,206,016 to 1,345,092)

50.7

(43.0 to 58.9)

-35.6

(-38.9 to -32.1)

931,925

(635,954 to 1,271,815)

5.3

(-0.4 to 11.0)

-16.0

(-19.3 to -12.5)
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COPD Asthma

Brazil
1,252,840

(1,187,098 to 1,324,957)

50.3

(42.8 to 58.6)

-36.1

(-39.4 to -32.5)

910,480

(621,210 to 1,241,327)

5.0

(-0.8 to 10.7)

-15.9

(-19.3 to -12.4)

Paraguay
19,926

(17,368 to 22,879)

73.1

(38.9 to 114.5)

-4.0

(-20.6 to 14.2)

21,445

(14,609 to 29,965)

22.8

(4.6 to 35.6)

-13.9

(-24.2 to -6.1)

Southeast Asia, East Asia, 

and Oceania

20,206,079

(19,085,645 to 21,369,813)

-32.8

(-37.8 to -27.2)

-66.3

(-68.8 to -63.6)

5,807,258

(4,655,499 to 7,135,602)

-7.4

(-17.6 to 3.1)

-35.2

(-44.5 to -26.1)

East Asia
15,974,705

(15,049,247 to 16,989,072)

-41.2

(-46.1 to -35.7)

-70.9

(-73.2 to -68.3)

1,918,723

(1,396,238 to 2,490,197)

-31.0

(-40.3 to -23.9)

-47.4

(-55.9 to -40.4)

China
15,389,017

(14,480,887 to 16,349,490)

-42.7

(-47.5 to -37.3)

-71.5

(-73.9 to -69.0)

1,797,438

(1,299,396 to 2,335,122)

-32.8

(-42.1 to -25.7)

-48.5

(-57.1 to -41.4)

North Korea
463,380

(347,829 to 590,756)

89.9

(39.9 to 163.3)

-13.7

(-35.6 to 19.8)

70,130

(46,799 to 103,143)

13.7

(-9.0 to 44.4)

-21.4

(-39.7 to -0.1)

Taiwan (province of China)
122,309

(107,685 to 139,161)

149.5

(122.6 to 179.6)

6.7

(-4.5 to 19.6)

51,155

(36,505 to 68,072)

11.5

(2.5 to 21.0)

-12.4

(-19.6 to -4.9)

Southeast Asia
4,022,869

(3,660,623 to 4,399,803)

44.6

(20.4 to 68.8)

-17.5

(-28.0 to -5.2)

3,731,148

(3,090,111 to 4,498,360)

10.0

(-4.3 to 26.9)

-31.9

(-42.7 to -19.6)

Cambodia
96,483

(79,440 to 116,284)

13.4

(-35.1 to 101.8)

-18.6

(-44.6 to 26.8)

111,582

(86,118 to 138,273)

-12.3

(-35.4 to 23.6)

-50.2

(-64.0 to -24.5)

Indonesia
1,460,134

(1,231,751 to 1,702,772)

21.4

(-13.1 to 61.3)

-27.4

(-42.9 to -7.8)

1,407,277

(1,123,754 to 1,726,919)

0.1

(-20.8 to 26.2)

-38.7

(-52.8 to -20.9)

Laos
46,405

(36,045 to 63,101)

-17.0

(-54.7 to 56.9)

-27.4

(-52.6 to 20.5)

58,787

(45,366 to 73,199)

-24.1

(-46.1 to 14.0)

-52.6

(-65.9 to -26.7)

Malaysia
138,017

(120,909 to 154,909)

90.8

(67.3 to 117.4)

-22.4

(-33.1 to -10.4)

116,433

(89,595 to 147,538)

43.6

(29.9 to 57.3)

-25.4

(-34.2 to -17.0)

Maldives
1,329

(1,167 to 1,496)

-45.6

(-63.8 to -18.4)

-64.9

(-71.4 to -55.2)

1,202

(872 to 1,596)

-37.3

(-56.7 to -9.3)

-58.9

(-69.0 to -46.0)

Mauritius
6,368

(5,845 to 6,900)

12.5

(4.4 to 22.1)

-45.7

(-49.8 to -41.1)

7,454

(6,075 to 9,028)

-4.9

(-13.1 to 3.9)

-42.4

(-48.9 to -36.1)

Myanmar
515,742

(378,116 to 672,662)

26.6

(-11.4 to 90.0)

-18.1

(-42.7 to 23.8)

443,165

(321,779 to 586,951)

-5.7

(-33.0 to 34.7)

-35.8

(-56.7 to -2.4)

Philippines
642,348

(591,718 to 695,030)

112.4

(86.4 to 142.1)

20.2

(8.0 to 35.3)

686,634

(551,371 to 848,366)

34.7

(21.1 to 51.1)

-22.7

(-31.4 to -13.7)

Sri Lanka
110,319

(94,230 to 127,932)

83.9

(56.1 to 114.4)

17.8

(-0.3 to 37.6)

167,349

(134,991 to 202,549)

22.8

(6.9 to 40.5)

-14.1

(-25.2 to -2.2)

Seychelles
495

(442 to 546)

21.4

(9.0 to 35.4)

-28.8

(-36.2 to -20.4)

410

(316 to 515)

11.1

(-0.5 to 23.2)

-23.5

(-32.9 to -14.7)

Thailand
474,367

(407,013 to 544,437)

104.7

(73.9 to 137.4)

-2.6

(-17.2 to 12.9)

354,122

(272,918 to 440,945)

45.6

(28.2 to 70.7)

10.0

(-1.1 to 24.0)

Timor-Leste
6,188

(4,567 to 8,766)

-4.5

(-53.5 to 129.9)

-26.4

(-54.1 to 26.7)

7,708

(5,846 to 9,913)

-17.8

(-48.9 to 42.0)

-51.9

(-67.3 to -21.9)

Vietnam
516,950

(430,085 to 603,334)

50.1

(17.3 to 96.6)

-14.9

(-32.9 to 9.6)

363,196

(281,924 to 461,807)

14.9

(-10.1 to 45.7)

-28.3

(-46.1 to -4.5)

Oceania
208,506

(148,923 to 288,571)

48.4

(3.4 to 117.0)

-25.4

(-46.4 to 7.6)

157,388

(117,550 to 212,539)

52.8

(14.2 to 105.2)

-23.1

(-43.5 to 6.6)

American Samoa
428

(377 to 489)

16.0

(-1.0 to 36.1)

-36.5

(-45.4 to -26.2)

424

(305 to 567)

67.9

(46.9 to 87.8)

-13.4

(-25.9 to -0.9)

Federated States of 

Micronesia

730

(529 to 1,090)

-25.7

(-49.2 to 12.8)

-41.5

(-59.7 to -9.3)

666

(480 to 917)

-9.8

(-29.5 to 15.2)

-27.6

(-46.6 to 1.4)

Fiji
4,714

(4,087 to 5,450)

32.9

(8.5 to 62.9)

-24.5

(-37.8 to -7.2)

10,116

(8,346 to 12,128)

15.5

(-2.7 to 35.6)

-27.8

(-40.0 to -13.6)

Guam
1,231

(1,106 to 1,378)

65.0

(44.2 to 87.6)

-18.2

(-28.0 to -7.6)

844

(602 to 1,120)

64.5

(53.6 to 76.2)

8.5

(-0.1 to 15.8)

Kiribati
712

(595 to 861)

6.6

(-21.3 to 41.5)

-33.7

(-46.3 to -16.9)

1,440

(1,169 to 1,732)

24.4

(3.8 to 47.5)

-24.1

(-36.8 to -9.4)

Marshall Islands
502

(405 to 604)

18.8

(-9.0 to 50.5)

-32.9

(-45.4 to -17.4)

462

(345 to 594)

40.9

(17.6 to 65.8)

-18.6

(-35.3 to 0.4)

Northern Mariana 

Islands

380

(338 to 430)

56.2

(34.1 to 82.8)

-40.0

(-48.0 to -30.3)

405

(281 to 542)

125.7

(101.7 to 148.4)

-21.5

(-32.5 to -11.5)

Papua New Guinea
167,558

(114,428 to 239,800)

51.8

(0.8 to 131.6)

-26.1

(-49.0 to 11.6)

120,758

(86,285 to 167,937)

59.6

(12.6 to 126.7)

-24.7

(-47.6 to 11.3)

Samoa
973

(786 to 1,161)

-25.4

(-41.4 to -6.8)

-49.2

(-60.2 to -36.6)

985

(722 to 1,304)

-2.7

(-19.7 to 14.6)

-31.9

(-45.8 to -15.9)

Solomon Islands
6,215

(4,320 to 9,028)

34.5

(-8.6 to 111.8)

-36.3

(-56.2 to -1.3)

4,632

(3,234 to 6,348)

57.6

(14.1 to 112.6)

-26.2

(-49.4 to 7.6)

Tonga
725

(626 to 845)

-6.8

(-22.5 to 13.2)

-30.7

(-42.7 to -15.8)

717

(511 to 931)

13.9

(-0.8 to 28.7)

-10.6

(-25.1 to 3.3)

Vanuatu
2,713

(2,006 to 3,753)

3.6

(-33.3 to 66.7)

-50.1

(-67.4 to -21.4)

2,088

(1,499 to 2,805)

79.6

(28.8 to 152.6)

-9.3

(-39.9 to 37.4)

North Africa and Middle 

East

1,885,767

(1,726,137 to 2,047,890)

0.6

(-11.4 to 17.5)

-40.9

(-45.9 to -34.0)

2,132,523

(1,619,890 to 2,748,566)

15.1

(2.9 to 27.9)

-32.2

(-40.6 to -23.7)

North Africa and 

Middle East

1,885,767

(1,726,137 to 2,047,890)

0.6

(-11.4 to 17.5)

-40.9

(-45.9 to -34.0)

2,132,523

(1,619,890 to 2,748,566)

15.1

(2.9 to 27.9)

-32.2

(-40.6 to -23.7)

Afghanistan
225,295

(163,556 to 293,197)

176.5

(90.8 to 327.0)

8.8

(-23.6 to 66.6)

266,353

(200,434 to 339,266)

97.8

(48.2 to 173.2)

-30.6

(-49.9 to 1.0)

Algeria
60,856

(53,739 to 68,798)

40.4

(14.9 to 69.0)

-33.8

(-44.4 to -21.1)

133,923

(96,426 to 177,272)

37.3

(23.6 to 50.4)

-20.5

(-30.4 to -11.3)

64



DALYs
Change in DALY numbers 

from 1990 to 2015 (percent)

Change in DALYs from 1990 

to 2015, age-standardised rates 

(percent)

DALYs
Change in DALY numbers 

from 1990 to 2015 (percent)

Change in DALYs from 1990 

to 2015, age-standardised rates 

(percent)

COPD Asthma

Bahrain
1,985

(1,712 to 2,257)

19.9

(0.3 to 43.3)

-57.5

(-64.2 to -50.0)

3,486

(2,416 to 4,751)

105.9

(81.6 to 129.1)

-32.2

(-41.2 to -24.1)

Egypt
329,370

(305,686 to 358,820)

-45.2

(-54.7 to -19.0)

-56.1

(-61.1 to -44.3)

282,077

(200,919 to 380,319)

0.9

(-14.3 to 16.0)

-32.7

(-42.3 to -22.3)

Iran
253,619

(212,532 to 297,629)

27.1

(-8.3 to 72.7)

-16.6

(-34.5 to 4.4)

274,162

(206,284 to 348,408)

0.3

(-14.6 to 16.8)

-34.5

(-44.5 to -22.8)

Iraq
47,418

(36,502 to 59,305)

83.0

(30.7 to 148.3)

-5.6

(-34.2 to 29.0)

113,995

(80,893 to 153,424)

79.8

(56.0 to 103.6)

-12.4

(-27.0 to 3.1)

Jordan
9,134

(7,908 to 10,392)

17.5

(-4.3 to 42.2)

-54.2

(-63.4 to -43.7)

25,171

(17,240 to 34,428)

84.7

(64.5 to 104.5)

-22.7

(-33.5 to -13.7)

Kuwait
2,573

(2,239 to 2,980)

105.6

(79.9 to 132.8)

-7.1

(-19.6 to 6.6)

10,609

(6,987 to 14,644)

43.1

(29.3 to 57.1)

-22.7

(-30.8 to -15.7)

Lebanon
14,415

(11,401 to 17,515)

33.6

(2.9 to 68.1)

-49.0

(-61.2 to -34.7)

22,565

(15,705 to 30,483)

54.2

(32.7 to 74.8)

-30.3

(-41.6 to -20.0)

Libya
16,271

(14,066 to 18,660)

40.1

(13.6 to 69.5)

-20.6

(-35.3 to -4.2)

21,246

(15,296 to 28,070)

12.8

(-3.7 to 28.5)

-21.2

(-31.8 to -10.7)

Morocco
78,972

(64,508 to 99,207)

61.4

(16.7 to 125.9)

-11.6

(-36.7 to 24.0)

144,468

(111,241 to 184,491)

0.2

(-17.3 to 23.2)

-38.7

(-51.6 to -22.6)

Palestine
7,318

(6,032 to 8,790)

103.8

(56.9 to 163.9)

-18.7

(-39.5 to 6.7)

14,664

(10,275 to 19,943)

105.6

(83.7 to 127.6)

-13.3

(-26.7 to -0.8)

Oman
5,473

(4,705 to 6,277)

107.5

(58.7 to 160.2)

-13.1

(-32.3 to 10.1)

10,221

(6,983 to 13,965)

96.2

(74.6 to 122.1)

-5.5

(-15.6 to 5.6)

Qatar
1,787

(1,505 to 2,119)

190.1

(142.8 to 238.9)

-34.8

(-46.8 to -21.0)

3,653

(2,411 to 5,017)

291.6

(251.6 to 330.6)

-4.6

(-12.6 to 3.5)

Saudi Arabia
31,046

(27,857 to 34,451)

79.3

(60.3 to 102.3)

-24.4

(-33.2 to -13.5)

82,921

(57,907 to 111,862)

48.5

(35.3 to 61.3)

-20.9

(-28.4 to -14.4)

Sudan
190,964

(134,885 to 263,128)

67.8

(13.0 to 146.3)

-9.9

(-37.9 to 28.4)

212,943

(151,134 to 286,632)

7.2

(-21.8 to 44.0)

-47.6

(-61.1 to -27.6)

Syria
28,085

(24,206 to 32,390)

-28.1

(-52.3 to 8.5)

-47.7

(-59.7 to -31.9)

90,274

(69,943 to 115,584)

-18.0

(-34.4 to 1.7)

-49.2

(-57.9 to -38.9)

Tunisia
37,914

(30,778 to 46,102)

21.2

(-5.5 to 54.8)

-40.4

(-53.8 to -23.0)

43,397

(32,011 to 56,453)

-0.8

(-15.5 to 13.8)

-34.1

(-45.0 to -23.9)

Turkey
388,003

(355,673 to 426,469)

-27.2

(-42.7 to -11.0)

-57.2

(-64.0 to -49.4)

213,948

(151,528 to 286,639)

-19.7

(-34.9 to -2.6)

-41.1

(-51.6 to -29.7)

United Arab Emirates
34,767

(25,331 to 46,621)

297.2

(166.0 to 471.8)

-38.6

(-55.6 to -12.2)

32,805

(23,888 to 42,919)

252.0

(179.4 to 335.4)

-36.3

(-48.1 to -23.2)

Yemen
118,744

(74,827 to 181,921)

29.6

(-23.7 to 124.3)

-29.6

(-58.9 to 26.2)

127,564

(90,238 to 176,823)

20.5

(-17.1 to 70.6)

-43.3

(-62.4 to -16.8)

South Asia
26,960,854

(25,334,541 to 28,511,629)

35.4

(15.8 to 59.5)

-29.0

(-39.4 to -16.5)

7,453,917

(6,049,252 to 8,967,827)

-35.3

(-50.9 to -1.3)

-64.3

(-74.5 to -38.3)

South Asia
26,960,854

(25,334,541 to 28,511,629)

35.4

(15.8 to 59.5)

-29.0

(-39.4 to -16.5)

7,453,917

(6,049,252 to 8,967,827)

-35.3

(-50.9 to -1.3)

-64.3

(-74.5 to -38.3)

Bangladesh
1,579,294

(1,374,227 to 1,829,318)

20.4

(-11.2 to 74.0)

-32.1

(-49.8 to -4.4)

796,233

(612,113 to 993,582)

-39.7

(-55.6 to -5.0)

-65.6

(-75.7 to -38.0)

Bhutan
7,469

(6,030 to 9,041)

-10.3

(-36.0 to 25.9)

-44.9

(-58.1 to -28.2)

3,002

(2,187 to 3,891)

-31.7

(-54.9 to -1.5)

-50.8

(-65.8 to -30.7)

India
23,363,904

(21,832,725 to 24,891,843)

34.0

(14.9 to 57.4)

-30.4

(-40.1 to -18.6)

5,635,384

(4,596,138 to 6,759,944)

-39.4

(-55.0 to -5.4)

-66.6

(-76.4 to -41.4)

Nepal
373,300

(302,597 to 458,721)

48.0

(2.2 to 121.0)

-14.2

(-39.6 to 24.8)

169,932

(124,218 to 220,914)

-21.4

(-47.9 to 28.5)

-55.0

(-72.5 to -17.2)

Pakistan
1,636,887

(1,407,817 to 1,921,491)

81.1

(33.7 to 140.7)

1.7

(-19.0 to 28.4)

849,365

(639,064 to 1,097,087)

24.9

(-5.3 to 61.8)

-31.1

(-48.8 to -5.6)

Sub-Saharan Africa
2,897,718

(2,599,236 to 3,228,864)

41.1

(23.9 to 61.9)

-25.4

(-34.2 to -14.4)

4,714,673

(3,699,646 to 5,914,317)

37.4

(21.6 to 53.1)

-32.2

(-40.3 to -22.6)

Southern sub-Saharan 

Africa

508,747

(465,366 to 558,398)

35.9

(23.3 to 51.4)

-22.7

(-30.0 to -13.4)

485,667

(387,533 to 606,688)

11.6

(2.9 to 22.3)

-25.3

(-32.7 to -16.4)

Botswana
14,741

(7,686 to 35,910)

72.6

(-29.4 to 358.8)

-22.9

(-69.0 to 103.0)

16,216

(9,400 to 34,076)

45.6

(-20.3 to 194.5)

-17.7

(-61.5 to 90.7)

Lesotho
21,255

(13,574 to 30,268)

74.0

(8.4 to 171.4)

31.9

(-18.9 to 107.8)

22,485

(15,520 to 31,248)

48.1

(3.7 to 113.4)

17.3

(-25.5 to 81.8)

Namibia
12,112

(8,382 to 17,474)

23.4

(-15.1 to 80.9)

-35.4

(-56.4 to -4.8)

15,008

(10,617 to 20,204)

22.1

(-1.0 to 52.2)

-35.2

(-51.1 to -14.1)

South Africa
397,475

(366,246 to 430,305)

31.5

(19.3 to 44.9)

-27.0

(-33.9 to -19.2)

331,109

(263,984 to 415,264)

0.0

(-8.2 to 8.3)

-31.9

(-38.8 to -24.6)

Swaziland
10,535

(6,259 to 15,828)

69.4

(-4.0 to 171.6)

-6.8

(-48.0 to 52.0)

12,297

(8,358 to 17,309)

54.4

(13.8 to 114.1)

3.0

(-33.7 to 59.2)

Zimbabwe
52,629

(37,837 to 72,051)

49.2

(3.5 to 108.7)

1.8

(-32.2 to 46.2)

88,552

(63,561 to 117,156)

54.7

(26.8 to 95.7)

7.6

(-20.9 to 49.4)

Western sub-Saharan 

Africa

798,640

(682,146 to 932,871)

30.3

(3.9 to 63.3)

-32.2

(-45.9 to -14.5)

1,565,132

(1,212,360 to 1,989,966)

39.6

(17.1 to 62.2)

-34.4

(-46.9 to -20.7)

Benin
32,509

(19,832 to 51,175)

80.0

(8.0 to 192.8)

-15.5

(-50.2 to 36.7)

49,682

(34,641 to 68,997)

82.4

(33.2 to 155.4)

-16.6

(-44.0 to 25.0)

Burkina Faso
33,218

(23,171 to 47,644)

47.9

(-5.1 to 132.5)

-14.1

(-45.5 to 33.2)

65,919

(47,374 to 87,290)

54.3

(16.4 to 98.6)

-24.5

(-46.1 to 8.3)

Cameroon
62,337

(40,458 to 94,880)

40.4

(-11.4 to 122.2)

-25.4

(-54.1 to 17.4)

101,907

(70,234 to 137,886)

55.3

(19.4 to 101.2)

-23.5

(-46.0 to 7.3)
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COPD Asthma

Cape Verde
1,141

(967 to 1,367)

-38.2

(-50.6 to -24.0)

-64.8

(-71.9 to -55.9)

1,677

(1,271 to 2,134)

-20.3

(-33.8 to -7.4)

-55.9

(-64.3 to -47.2)

Chad
31,722

(19,383 to 48,915)

119.6

(21.1 to 292.9)

3.0

(-44.4 to 92.8)

71,498

(48,132 to 101,314)

100.5

(40.0 to 176.2)

-21.1

(-51.1 to 22.5)

Cote d'Ivoire
71,504

(46,681 to 106,802)

37.1

(-12.3 to 116.5)

-29.6

(-55.6 to 11.1)

111,043

(80,312 to 150,421)

41.1

(7.9 to 83.4)

-29.0

(-49.2 to -1.0)

The Gambia
3,579

(2,615 to 4,765)

16.4

(-31.1 to 104.8)

-42.5

(-66.3 to 3.6)

6,923

(4,959 to 9,065)

68.3

(22.4 to 125.5)

-25.5

(-50.8 to 13.4)

Ghana
62,477

(39,896 to 94,740)

60.8

(-7.3 to 185.8)

-24.1

(-56.4 to 35.3)

91,376

(63,211 to 126,002)

51.6

(9.1 to 119.7)

-23.7

(-49.5 to 20.7)

Guinea
41,905

(28,575 to 59,946)

89.6

(25.2 to 193.2)

-3.3

(-37.4 to 48.6)

66,418

(48,077 to 88,823)

62.5

(26.1 to 107.4)

-22.7

(-44.3 to 4.8)

Guinea-Bissau
7,475

(3,458 to 18,030)

22.8

(-57.2 to 247.0)

-28.4

(-76.5 to 105.2)

11,565

(6,584 to 23,279)

57.4

(-22.4 to 240.8)

-13.4

(-63.1 to 118.1)

Liberia
8,507

(6,146 to 11,934)

45.1

(-9.5 to 130.9)

-16.2

(-44.2 to 25.2)

15,571

(11,445 to 20,488)

51.7

(17.6 to 95.6)

-20.8

(-41.5 to 7.7)

Mali
53,406

(36,219 to 79,111)

26.0

(-19.1 to 99.0)

-21.9

(-49.1 to 21.0)

85,302

(60,223 to 117,292)

32.2

(-9.5 to 93.0)

-32.2

(-56.0 to 5.5)

Mauritania
6,653

(4,555 to 9,490)

13.2

(-28.9 to 80.5)

-48.7

(-67.7 to -16.5)

16,228

(11,619 to 21,723)

26.5

(-3.0 to 59.7)

-48.4

(-63.6 to -28.5)

Niger
43,146

(29,753 to 60,987)

91.4

(14.7 to 238.3)

-21.9

(-52.6 to 40.8)

86,380

(62,640 to 114,059)

68.5

(25.4 to 127.3)

-36.7

(-57.9 to -4.1)

Nigeria
262,068

(187,195 to 366,732)

1.0

(-33.7 to 60.8)

-47.1

(-65.2 to -15.6)

655,915

(462,331 to 894,035)

24.3

(-7.3 to 61.7)

-43.5

(-60.3 to -20.4)

Sao Tome and 

Principe

1,318

(805 to 1,988)

28.2

(-19.2 to 93.3)

-1.9

(-40.6 to 48.5)

1,075

(754 to 1,476)

29.0

(-5.3 to 75.5)

-9.7

(-38.7 to 32.2)

Senegal
36,101

(22,903 to 55,877)

50.7

(-8.6 to 142.1)

-23.5

(-54.0 to 21.5)

59,656

(41,284 to 83,959)

40.7

(2.7 to 95.4)

-32.0

(-55.1 to 2.1)

Sierra Leone
19,830

(13,185 to 28,656)

32.6

(-17.3 to 117.0)

-10.9

(-45.8 to 47.2)

31,863

(22,904 to 42,384)

37.2

(-1.7 to 88.9)

-14.4

(-43.2 to 28.3)

Togo
19,721

(13,259 to 27,656)

47.6

(-4.8 to 121.8)

-24.2

(-50.7 to 15.8)

35,112

(25,534 to 46,564)

50.7

(18.6 to 89.3)

-26.2

(-45.7 to 1.5)

Eastern sub-Saharan 

Africa

1,065,419

(906,695 to 1,250,429)

38.4

(16.6 to 66.3)

-25.9

(-38.3 to -11.6)

1,793,733

(1,391,074 to 2,264,531)

30.5

(12.7 to 49.4)

-37.4

(-47.5 to -25.8)

Burundi
38,509

(26,184 to 55,926)

-17.2

(-47.7 to 33.5)

-53.6

(-71.9 to -23.6)

60,533

(43,650 to 81,809)

-6.3

(-34.2 to 32.7)

-56.0

(-71.4 to -31.4)

Comoros
1,980

(1,421 to 2,791)

-5.0

(-41.7 to 53.0)

-43.8

(-64.7 to -10.6)

3,588

(2,551 to 4,877)

9.4

(-19.2 to 42.9)

-43.6

(-61.8 to -20.9)

Djibouti
2,808

(1,687 to 4,650)

41.3

(-23.3 to 154.9)

-19.4

(-55.5 to 48.3)

4,406

(2,967 to 6,304)

21.0

(-11.8 to 73.4)

-19.6

(-45.3 to 23.7)

Eritrea
16,766

(10,144 to 26,389)

23.0

(-31.3 to 116.9)

-29.2

(-60.8 to 24.0)

28,613

(19,444 to 40,949)

10.4

(-24.3 to 63.2)

-35.9

(-60.6 to 5.4)

Ethiopia
233,383

(158,142 to 347,698)

12.3

(-27.0 to 74.0)

-42.4

(-62.9 to -9.3)

410,688

(292,188 to 553,900)

2.2

(-25.1 to 38.1)

-54.9

(-68.4 to -35.6)

Kenya
98,293

(85,248 to 113,027)

88.3

(64.8 to 113.8)

-8.1

(-20.3 to 4.9)

157,871

(118,272 to 203,919)

57.0

(44.8 to 69.3)

-20.7

(-29.6 to -11.9)

Madagascar
135,109

(91,132 to 191,435)

48.1

(-2.8 to 124.5)

-15.8

(-43.8 to 22.3)

212,223

(149,005 to 289,772)

52.4

(12.8 to 107.8)

-20.3

(-44.1 to 12.0)

Malawi
42,111

(30,406 to 60,186)

34.7

(-13.3 to 108.7)

-20.4

(-45.9 to 21.2)

72,522

(51,760 to 96,667)

38.3

(5.1 to 77.6)

-24.0

(-43.1 to 2.4)

Mozambique
78,780

(52,720 to 112,393)

87.2

(7.8 to 199.8)

8.0

(-33.4 to 62.6)

128,816

(91,742 to 174,836)

72.1

(30.7 to 121.9)

-14.6

(-41.8 to 21.3)

Rwanda
36,110

(25,356 to 53,249)

-6.9

(-38.7 to 51.7)

-43.7

(-63.4 to -8.5)

62,410

(44,955 to 84,665)

-17.9

(-38.1 to 7.2)

-54.5

(-66.8 to -34.8)

Somalia
36,279

(18,446 to 68,206)

14.4

(-45.9 to 162.7)

-14.2

(-63.1 to 116.4)

79,036

(46,536 to 144,914)

14.2

(-37.3 to 113.5)

-24.6

(-65.6 to 76.6)

South Sudan
50,065

(25,919 to 101,836)

62.8

(-30.8 to 281.8)

-15.1

(-66.4 to 120.0)

75,006

(44,762 to 131,315)

46.7

(-16.0 to 168.7)

-26.4

(-65.0 to 62.5)

Tanzania
127,306

(87,332 to 190,630)

75.2

(14.4 to 170.7)

-15.0

(-44.2 to 33.3)

227,278

(160,158 to 304,434)

67.0

(34.2 to 108.0)

-21.4

(-42.2 to 7.2)

Uganda
109,027

(73,627 to 153,859)

36.3

(-12.2 to 110.0)

-26.5

(-53.5 to 13.5)

192,132

(135,517 to 255,836)

46.9

(11.1 to 88.0)

-35.4

(-54.8 to -9.1)

Zambia
58,121

(41,698 to 78,419)

118.3

(44.2 to 220.3)

26.5

(-16.7 to 84.5)

77,425

(56,796 to 102,087)

76.1

(40.1 to 121.2)

2.1

(-23.7 to 39.4)

Central sub-Saharan 

Africa

524,912

(393,633 to 693,446)

77.2

(24.0 to 152.9)

-7.8

(-36.7 to 33.4)

870,140

(650,408 to 1,136,882)

74.0

(34.0 to 123.1)

-16.9

(-38.6 to 13.0)

Angola
114,458

(61,923 to 236,761)

43.2

(-35.1 to 244.2)

-26.1

(-70.1 to 100.1)

200,833

(127,228 to 314,309)

41.0

(-16.6 to 136.2)

-35.0

(-67.0 to 36.2)

Central African 

Republic

37,183

(22,173 to 55,352)

41.3

(-17.8 to 123.5)

-9.0

(-48.8 to 46.0)

53,039

(34,229 to 76,744)

59.1

(8.3 to 129.8)

2.3

(-36.1 to 55.2)

Congo (Brazzaville) 22,433

(15,249 to 32,818)

23.5

(-19.4 to 86.5)

-35.3

(-58.6 to -1.2)

29,602

(20,789 to 40,110)

44.5

(10.2 to 87.1)

-29.1

(-50.0 to -0.9)

Democratic Republic 

of the Congo

339,561

(235,953 to 464,669)

110.9

(31.0 to 230.6)

7.9

(-33.8 to 77.8)

569,690

(419,370 to 769,783)

95.7

(40.8 to 163.9)

-9.2

(-38.4 to 33.7)

Equatorial Guinea
4,040

(2,301 to 8,771)

17.2

(-45.8 to 227.1)

-41.0

(-73.5 to 70.9)

6,091

(4,004 to 9,516)

29.5

(-25.7 to 138.0)

-48.6

(-72.7 to 11.3)
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COPD Asthma

Gabon
7,237

(5,285 to 10,181)

-1.8

(-31.4 to 47.8)

-38.1

(-57.4 to -5.8)

10,886

(7,893 to 14,537)

34.8

(11.3 to 63.9)

-25.1

(-40.1 to -4.3)
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