DeSUMOylation of Gli1 by SENP1 attenuates Sonic hedgehog signaling

Huaize liu*, Sen Yan*, Jie Ding, Ting-ting Yu[¶] and Steven Y. Cheng[¶]

Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China

* These two authors contributed equally.

¶ Correspondence should be addressed to <u>sycheng@njmu.edu.cn</u> and <u>tingting@njmu.edu.cn</u>

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY FIGURE LEGENDS

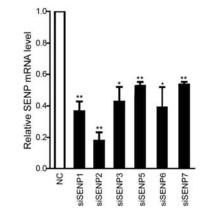

Figure S1 Knockdown efficiency of each SENP. Data are presented as means \pm SD of three independent experiments. Student T test was used for statistical analysis, * P<0.05, **P<0.01.

Figure S2 Proximity Ligation Assay of different mutant towards the 3 potential SUMO modifying sites. (A) Proximity Ligation Assay (PLA), a method through which we can detect the conjunction between the substrate protein and the modifier, SUMO1. The red signal requires a quite closely distance of two proteins identified by two kinds of antibodies respectively. We transfected 8 kinds of different lysine-mutant Gli1 which tagged by HA into SENP1^{-/-} MEFs, and detected the red signal with anti-HA and anti-SUMO1 antibodies to ensure the presence and localization of SUMO1modified Gli1. Except for the HA-Gli1 with full of modification and HA-Gli1-3KR without any modification at all, the other 6 mutants showed an indistinctive limited modification, indicating that all the three lysine residues could be modified and there is no dominant one. The PLA signals are quantified in (B).

Figure S3 Gli1 Ubiquitination also happens on the 3 SUMOylation lysine residues. (A) Western analysis and (B) quantification of ubiquitinated HA-Gli1 or HA-Gli1-3KR. HEK293T cells were transfected with HIS-ubiquitin, and HA-Gli1 or HA-Gli1-3KR. The cells were treated with MG132 (20µM) for 6 hours prior to harvesting for immunoprecipitation using anti-HA antibodies. Student T test was used for statistical analysis, ** P<0.01.

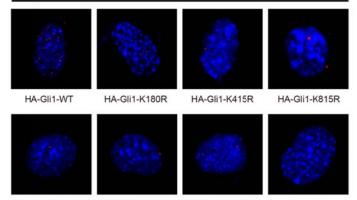
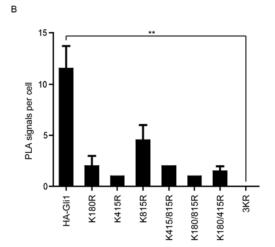
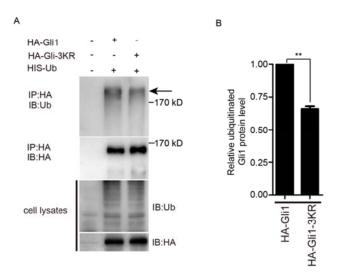

Figure S4 HA-Gli1 and HA-Gli1-3KR show different cellular localization. (A) Immunofluorescence assay shows the localization of different Gli1. HA-Gli1 or HA-Gli1-3KR is transfected into SENP1^{-/-} or SENP1^{WT} MEFs. MEFs are treated with conditional medium for 24 hours before fixation. (B) western shows the expression of exogenous Gli1 in SENP1^{-/-} and SENP1^{WT} MEFs are same. Tubulin as a loading control.

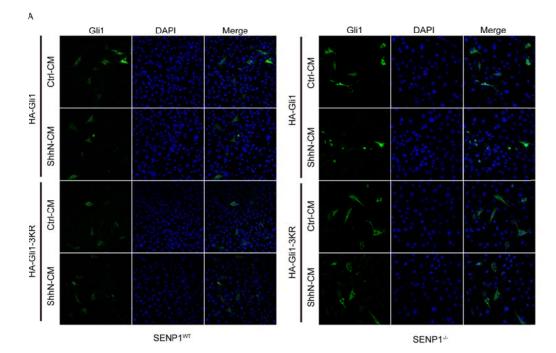
Figure S5 Nuclear localization of different Gli1 mutants. Immunofluorescence assay shows the localization of different Gli1 mutants. HA-Gli1 or HA-Gli1-3KR is transfected into SENP1^{-/-} MEFs and then treated with ShhN-conditional medium for 24 hours before fixation. Two groups are treated with LMB during the last 6 hours.

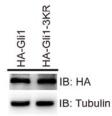

sFig.1

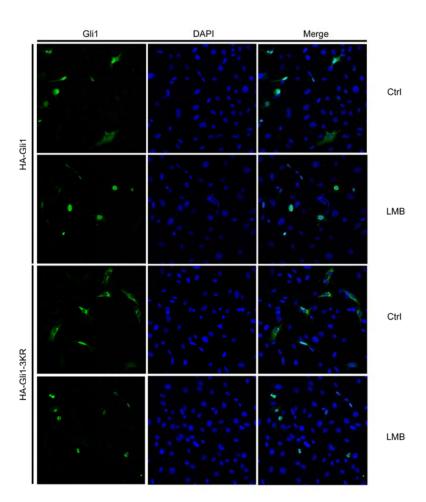
SENP1-/-ShhN-CM PLA: anti-HA/SUMO1


HA-Gli1-K415/815R HA-Gli1-K180/815R HA-Gli1-K180/415R

HA-Gli1-3KR




А


sFig.3

sFig.4

sFig.5

sTable 1

gene	organism	Forward strain	Reverse strain
SENP1	Mus musculus	GCAUUUCGCCUGACCAUUATT	UAAUGGUCAGGCGAAAUGCTT
	Mus musculus	GGAAGUGACUGUGGGAUGUTT	ACAUCCCACAGUCACUUCCTT
SENP2	Mus musculus	GGACAAACCUAUCACAUUUTT	AAAUGUGAUAGGUUUGUCCTT
	Mus musculus	GGUAAUAAAUCUCCUAAUGTT	CAUUAGGAGAUUUAUUACCTT
SENP3	Mus musculus	ACGAAUUCCUUCAAACGUATT	UACGUUUGAAGGAAUUCGUTT
	Mus musculus	GCACUGAUGAGGUAGUAGATT	UCUACUACCUCAUCAGUGCTT
SENP5	Mus musculus	GUACAGAGCUGAUUCAUGATT	UCAUGAAUCAGCUCUGUACTT
	Mus musculus	GAGGAAAGGAAUCCACUUATT	UAAGUGGAUUCCUUUCCUCTT
SENP6	Mus musculus	GAAAGUGACCCUCGUUAUATT	UAUAACGAGGGUCACUUUCTT
	Mus musculus	GGACAAAUCUGCUCAGUGUTT	ACACUGAGCAGAUUUGUCCTT
SENP7	Mus musculus	CAAAGUACCGAGUCGAAUATT	UAUUCGACUCGGUACUUUGTT
	Mus musculus	GAUAAUGAUCUACGUACUATT	UAGUACGUAGAUCAUUAUCTT

sTable 2

gene	organisms	5'-primer	3'-primer
HPRT	Mus musculus	TACAGGCCAGACTTTGTTGG	AACTTGCGCTCATCTTAGGC
Gli1	Mus musculus	GGTCTCGGGGTCTCAAACTG	TGTAGTGCTGAGCAGGTGTG
SENP1	Mus musculus	ACCTTTGTGGGCAAGTCCAA	GGACTTGGGGCAGGCTTAAT
SENP2	Mus musculus	CAGAAGAAGTGTCTGCCCGA	AAGAGGTCTTCCGTTCTTCTG
SENP3	Mus musculus	ATGTGTGCAGCATTGGAGACCA	AGGGATGAGGCTGCCATAAGTT
SENP5	Mus musculus	TGACCAGCAGAATGGCTGTGTT	TCATCGCTGACAGCACTTGT
SENP6	Mus musculus	TCAGGCAGAGGTGGTCTTTGAA	TTGCGCGCAGTTTCCTTTGA
SENP7	Mus musculus	AAGTCAGTGTCTCAGCCCTCAA	TTACTCCCAAGCCTCCCTTAGT
β-actin	Homo sapiens	CATCGAGCACGGCATCGTCA	TAGCACAGCCTGGATAGCAAC
Gli1	Homo sapiens	AGCTAGAGTCCAGAGGTTCAA	TAGACAGAGGTTGGGAGGTAAG
SENP1	Homo sapiens	TACGACTCCATGGGTGGGAT	GCTGAGGAATCTCCTGGCTT
SENP2	Homo sapiens	TTCCCATTCCAGCTGACCAC	CCAGAACCTGTCAGTTCACAA