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Materials and Methods 
 
Animal Care 

Established zebrafish husbandry protocols were adhered to and all protocols were 
performed in accordance with Canadian Council on Animal Care (CCAC) guidelines and 
the guidelines of the Princeton University Institutional Animal Care and Use Committee 
(IACUC). Wild-type zebrafish from the AB, WIK, PWT, and TL strains were used. 
Mutant ptk7 (hsc9), c21orf59TS (kur, tm304), ccdc40 (lok, t0237b), and ccdc151 (fld, 
ts272) lines have been described previously(8, 20, 21, 24). The dyx1c1pr13 line was 
generated by CRISPR/Cas9-mediated mutagenesis. Embryos obtained from natural 
matings were grown at 28oC unless otherwise indicated (31). Scoliotic fish tested 
negative for the presence of potential pathogens that might induce spinal defects, 
including Mycobacterium and Pseudoloma. 
 
Molecular Cloning 

For RNA expression constructs, full-length ORFs of ccd151, dyx1c1 and ccdc40 
were amplified from 24 hpf zebrafish cDNA generated by SuperScript IV following 
manufacturers instructions. Amplified products were cloned via Gateway technology 
(Life Technologies) into pDONR221 and subsequently shuttled into pCS2+ as expression 
vectors. For mRNA production, vectors were linearized with NotI and in vitro transcribed 
using mMessage mMachine SP6 kit (Ambion). 
 
Transgenesis 

-5.2foxj1a was amplified from zebrafish genomic DNA using GoTaq Long PCR 
Master Mix (Promega) using primers: forward 5’-
GGGGACAACTTTGTATAGAAAAGTTGTAGCTGTATCCCATCTAGACTTTATCT
-3’ and reverse 5’- 

GGGGACTGCTTTTTTGTACAAACTTGCAAATCCTAACAGGCAGAAACATTTA-
3’.  The PCR product was gel purified followed by BP recombination into pDONRP4P1r 
(Invitrogen) to generate p5E-foxJ1aP. Entry plasmids were shuttled into standard Tol2 kit 
Gateway-compatible vectors (32) via LR recombination to generate final transgenes. 
Embryos were injected at the one cell stage with 25 pg plasmid and 25 pg Tol2 
transposase RNA and screened at 72 hpf for transgenesis marker expression. Embryos 
showing strong fluorescence were sorted, grown to adulthood and individuals were 
crossed to wild-type AB to generate independent stable F1 lines. Imaging of GFP reporter 
line was performed on an Axio Zoom.V16 (Zeiss). 
 
CRISPR/Cas9 mutagenesis 

Single guide RNAs (sgRNAs) with the dyx1c1 targeting sequencing 5’-
GGAGAGGAATTCAGAAGAGGA-3’, and Cas9 RNA were generated as previously 
described (33). 100 pg of sgRNA and 150 pg of Cas9 RNA were injected into the single 
cell of the 1-cell stage embryo. Potential mosaic fish were raised, intercrossed, and 
resulting embryos were screened for curved body axis at 1-3 dpf. Non-phenotypic 
siblings were raised and outcrossed to generate homogeneous founder lines that were 
sequenced (Genewiz, Inc.) for dyx1c1 indels. 
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Morpholino oligonucleotide (MO) knock-down and mRNA rescue injection 
Antisense MOs (GeneTools LLC) targeting dyx1c1 or ccdc151 were injected into 

the yolk of the 1-cell staged embryo. For dyx1c1, 2 ng of an AUG MO were injected 
whilst 8 ng of AUG MO targeting ccdc151 were used(21, 22). For rescue injections, 
mRNA for zebrafish dyx1c1 (500 pg), ccdc40 (100 pg), and ccdc151 (50 pg) was 
generated using mMESSAGE mMACHINE kits (Ambion) from full-length cloned 
cDNA and injected into the single cell of the 1-cell staged embryos. 
 
Bone preparation 

Zebrafish adults were fixed in 4% paraformaldehyde (PFA) in PBS for 4 days at 
4°C then washed twice for 2 hours in PBS with 0.1% Tween-20. Alizarin Red and Alcian 
Blue staining was performed as previously described (4) and scales were removed 
manually with forceps. 
 
µCT 

Adult zebrafish were fixed in 10% neutral-buffered formalin (Sigma) overnight at 
4°C.  Fixed specimens were mounted in 1% low-melt agarose (Sigma) in a plastic vial. 
Samples were scanned for 1 h using SkyScan1172 high resolution Micro-CT scanner 
(Bruker micro-CT, Belgium) with the X-ray power at 45 kVp and 218 mA. All three-
dimensional Micro-CT data sets were reconstructed with 18 µm isotropic resolution. 
Images were then analyzed using Amira software (TGS Inc., Berlin, Germany). 
 
Scanning Electron Microscopy (SEM) 

Adults were decapitated and brains were removed from the skull and surrounding 
tissue. Isolated whole brains were sliced in the sagittal plane along the midline and fixed 
in 2% glutaraldehyde in 0.1M sodium cacodylate buffer (pH 7.3) overnight at 4°C. 
Samples were then rinsed in 0.1M sodium cacodylate buffer with 0.2M sucrose (pH 7.3) 
and gradually dehydrated in an ethanol gradient. The samples were critical point dried in 
a Bal-tec CPD030 critical point dryer, mounted on aluminum stubs, gold coated in a 
Denton Desk II sputter coater and imaged on an FEI XL30 SEM (Philips). 
 
Calcein staining 

Zebrafish larvae were incubated in 0.15% Calcein (Sigma) for 10 minutes, rinsed 
and then washed twice for 5 minutes in system water. Larvae were immobilized in 
0.005% Tricaine (Sigma), mounted in 0.8% low melting temperature agarose and imaged 
using a Leica M205FA microscope with a DFC365 FX camera attachment (Leica 
Microsystems). 
 
Ventricle flow analysis 

Whole mount adult brains were prepared fresh by dissection and washed several 
times with PBS before incubating in pre-warmed high glucose DMEM (Life 
Technologies). Brains were mounted in 1% low melt agarose prepared in DMEM and 
dissected using glass capillary needles to reveal the floorplate region of the 
rhombencephalic ventricle. A solution of 2.5% glycerol/0.2% red microspheres (1 µm, 
Polysciences) was loaded into a glass micropipette and the bead solution was deposited 
into the anterior region of the dissection.  Movement of beads was captured using an 
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ORCA-Flash 4.0 camera (Hamamatsu).  Trajectories of bead movement was tracked over 
50 frames (10 seconds) using ‘Temporal-Color Coder’ plugin for Fiji (Kota Miura, 
EMBL, Heidelberg). Speeds of individual beads were measured using Imaris software 
(Bitplane). Means and standard error mean of bead speeds were determined using 
GraphPad Prism (GraphPad Software). Means between groups were compared using 
using a two-tailed t-test. 
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Fig. S1. foxj1a enhancer element drives expression specifically in motile ciliated cell lineages. 
(A-D) Tg(foxj1a::eGFP) transgenic embryos demonstrate faithful reporter expression in known 
motile ciliated cell lineages. Earliest GFP expression is detected during somitogenesis (A) in 
Kupffer’s vesicle (asterisk) and olfactory pits (arrowhead). By 28 hpf (B) expression is observed 
within brain ventricles (empty arrowhead), pronephric ducts (dotted arrow) and neural tube floor 
plate (solid arrow). Transgene expression persists after organogenesis at 60hpf (C and C’) and is 
maintained in motile ciliated tissues throughout adolescence (17 dpf) (D). (E) Schematic of 
Tg(foxj1a::ptk7) rescue transgene. Scale bars: 500 µm (A-C and D) and 250 µm (C’) 
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Fig. S2. Spinal curves develop during late larval stages in cilia motility mutants. (A) Lateral 
view of larval c21orf59TS (rescued by temperature shift) and dyx1c1pr13 mutants (rescued by RNA 
injection) exhibiting spinal curves (asterisks). Inset shows top view of c21orf59TS mutant. (B) 
Quantification of length of curve onset for c21orf59TS and dyx1c1pr13 mutants illustrating the 
distribution data. Both mutants exhibited curves no earlier than 4.5-5 mm. Scale bar: 1 cm (A). 
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...GGAGCGGGAGAGGATTCAGAAGAGGAAGGATGAAGAGTG...

...GGAGCGGGAGAGGATTCAGAAG-A---GGAAGGATGAAGAGTG...
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Fig. S3. Generation of dyx1c1 mutants via CRISPR/Cas9. (A) Segment of the zebrafish dyx1c1 
sequence showing single guide RNA target sequence and the protospacer adjacent motif (PAM). 
CRISPR/Cas9-mediated mutagenesis induced an indel that caused a frame shift mutation. The line 
harboring this mutation was designated dyx1c1pr13

. (B) Schematic of the wild-type (WT) and 
Dyx1c1

pr13
 protein. After the frame shift at R146, 32 out-of-frame amino acids are incorporated 

before a premature termination codon truncates the protein. (C-D’) dyx1c1pr13 mutants at 3 dpf 
exhibited ventral body curvature (D) and kidney cysts, marked by an asterisk (D’), which were not 
present in sibling (sib) controls (C-C’). The arrow highlights pericardial edema, which was 
occasionally present in dyx1c1pr13 mutants (D’). (E and F) Lateral views of otic vesicles showing 
two otoliths in sib controls but abnormal numbers and positioning in dyx1c1pr13 mutants 
(p=8.2 10

-7
, chi-squared test). Scale bars: 1 mm (C and D), 0.2 mm (C’ and D’), and 0.05 mm (E 

and F).  
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Fig. S4. dyx1c1pr13  mutants exhibit late-onset spinal curves. (A and B) Intercrosses between 
dyx1c1pr13 heterozygotes produced phenotypically normal siblings (sib) (A) and mutant embryos 
exhibiting cilia motility-associated abnormalities including ventral axis curvature at 3 dpf (B). (C 
and D) Injection of wild-type dyx1c1 RNA at the 1-cell stage (D) fully rescued the embryonic 
phenotypes of dyx1c1pr13 mutants (C). (E and F) dyx1c1pr13 mutants rescued by RNA injection and 
then raised to sexual maturity exhibited late-onset spinal curves (F) whereas sib controls did not 
(E). Scale bars: 1 mm (A), and 1 cm (E). 
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Fig. S5. Knock-down of cilia motility genes during embryonic development does not cause 
late-onset spinal curves. (A-C) The first 5 days of embryonic development in sibling (sib) 

controls (A), dyx1c1pr13 mutants (B), and embryos injected at the 1-cell stage with dyx1c1 antisense 

morpholino oligonucleotides (MO) to knock-down Dyx1c1 expression (C). Whilst both mutants 

and morphants exhibited early ventral axis curvature, morphants were able to recover from this 

defect by 5 dpf likely owing to reduced effectiveness of the MO as the embryo enlarges. Mutants, 

by contrast, cannot recover from ventral axis curvature. (D-G) Lateral views of uninjected control 

(uninj.) and dyx1c1 morphants at sexual maturity with Alizarin Red and Alcian Blue staining (F-

G) showing an absence of spinal curves in morphants that had exhibited ventral axis curvature as 

embryos. (H and I) Whereas ccdc151 mutants exhibit ventral axis curvature throughout embryonic 

stages (H), transient knock-down of ccdc151 by MO resulted in ventral axis curvature which 

recovered by 5 dpf (I). (J) Alizarin Red and Alcian Blue staining revealed an absence of spinal 

curves in ccdc151 morphants. Scale bars: 1 mm (A,B,C), and 1 cm (D,F,J). 
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Movie S1: Microsphere bead flow and CSF dynamics within the ptk7/+ 
rhombencephalic ventricle. 50 frames = 10 seconds. 

Movie S2: Microsphere bead flow and CSF dynamics within the ptk7 mutant 
rhombencephalic ventricle. 50 frames = 10 seconds. 

Movie S3: foxj1a enhancer element drives gene expression within the midline of the 
brain and spinal cord. Three-dimensonal reconstruction of a z-series through the trunk 
and neural tube of a 48hpf Tg(foxj1a::eGFP) embryo revealing eGFP fluorescence in the 
dorsal roof plate and ventral floor plate. 

Movie S4: Microsphere bead flow and CSF dynamics within ptk7 + Tg(foxj1a::ptk7) 
zebrafish rhombencephalic ventricle. 50 frames = 10 seconds. 

Movie S5: Microsphere bead flow and CSF dynamics within the c21orf59TS mutant 
rhombencephalic ventricle. Live imaging movie showing flow of fluorescent 
microspheres in 10 seconds. Tissue was maintained at 30°C for the duration of the 
dissection and imaging. 

Movie S6: Rescued c21orf59TS mutant zebrafish model idiopathic scoliosis. Three-
dimensional microCT reconstruction (18 µm isotrophic resolution) of an adult c21orf59TS 
mutant zebrafish, which was raised through the first 5 days of embryonic development at 
permissive temperatures (25°C) before being shifted to a restrictive temperature of 30°C. 
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