Supplementary Information

Amyloid precursor protein drives down-regulation of mitochondrial oxidative phosphorylation independent of amyloid beta

M. Isabel G. Lopez Sanchez ^{# 1, 2}, Hayley S. Waugh ^{# 1, 2}, Andrew Tsatsanis³, Bruce X. Wong^{3, 4}, Jonathan G. Crowston ^{1, 2} James A. Duce ^{3, 4} and Ian A. Trounce ^{1, 2, *}

¹ Centre for Eye Research Australia, 75 Commercial Road, Melbourne, 3004 Victoria, Australia.

² Ophthalmology, University of Melbourne, Department of Surgery.

³ School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, United Kingdom.

⁴ Oxidation Biology Unit, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville, 3052 Victoria, Australia.

[#] These authors contributed equally to this work.

^{*} Corresponding author: Ian A. Trounce, Centre for Eye Research Australia, 75 Commercial Road, Melbourne, 3004 Victoria, Australia. E-mail: i.trounce@unimelb.edu.au.

Supplementary Methods

Sample preparation and SDS-PAGE

Total cellular protein was extracted by homogenization in RIPA buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Tergitol and 0.1% SDS) supplemented with 10 μ g/ml aprotinin, 2 mM Na₃VO₄ and 1 mM phenylmethylsulfonyl fluoride. Samples were incubated on ice for 30 min prior to centrifugation (18,000 *g*, 20 min, 4°C) and the supernatant retained. Cell lysates or mitochondrial preparations were heated at 95°C for 5 min (or 37°C for OXPHOS antibodies) and separated on 10% or 12% SDS-PAGE gels. Proteins transferred to nitrocellulose or PVDF membranes (Amersham, GE Healthcare) were blocked in 5% (w/v) skim milk in PBS-T (1X PBS, 0.05% Tween) for 1 h before incubation overnight at 4°C with primary antibodies.

Standard preparation for mtDNA copy number analysis

ACTB and MT-ND2 standards were produced by PCR using 100 ng DNA template, 1X PCR buffer, 100 μ M dNTPs, 1.5 mM MgCl₂ (all from Invitrogen), 0.5 μ M of each of the forward and reverse primers (ACTB forward 5'-GCAGAAGGAGATCACTGC-3' and reverse 5'-TAAAGCCATGCCAATCTC-3'; MT-ND2 forward 5'-ATTAATCCCCTGGCCCAA-3' and reverse 5'-GAAGGATTATGGATGCGGTT-3'), 2 U Taq Polymerase (Invitrogen) and ultrapure H₂0 (Sigma-Aldrich), followed by purification of the PCR products using a GenElute PCR Clean-Up Kit (Sigma-Aldrich, Cat. # NA-1020), and sequenced to confirm the specific amplification of the MT-ND2 and ACTB targets. Standards were prepared by 10-fold serial dilution (1 x 10⁻² ng/µl to 1 x 10⁻⁷ ng/µl) of the target-specific purified PCR product. MT-ND2 and ACTB probes were run individually and in duplex reactions using 10-fold dilution series of a control DNA sample to confirm reproducibility and that amplification efficiency was the same in single or duplex reactions.

Supplementary Tables and Figures

Antibody	Supplier	Catalogue #	Dilution
			used
Anti-Alzheimer precursor protein	Millipore	MAB348	1:2000
A4, N-term specific 22C11			
Anti-amyloid β antibody clone WO-	Millipore	MABN10	1:2000
2			or 1:200
Anti-β-Amyloid, 1-16 antibody	BioLegend	803001	N/A
Anti-actin clone AC-40	Sigma-Aldrich	A3853	1:5000
Anti-VDAC1/Porin	Abcam	ab14734	1:5000
MitoProfile Total OXPHOS cocktail	MitoSciences	MS604	1:2000
Anti-SDHA	Abcam	ab14715	1:5000
Anti-COX2	Abcam	ab110258	1:5000
Anti-COX5A	Abcam	ab110262	1:5000
Anti-mouse horseradish	Amersham GE	NA931V	1:10,000
peroxidase-conjugated secondary	Healthcare		
antibody			

Supplementary Table 1. Antibodies used in this study

Supplementary Table 2. Gene expression assays used in this study

Gene target	Assay catalogue #
MT-ND1	Hs02596873
MT-ND4	Hs02596876
MT-ND6	Hs02596879
MT-CO1	Hs02596864
MT-CO3	AIY9ZY3
MT-ATP6	Hs02596862
MT-CYB	Hs02596867
NDUFS3	Hs01549083
COX4I1	Hs00971639
АСТВ	Hs03023880
HPRT1	Hs02800695

Supplementary Table 3. Respiration in control cells upon bIV treatment

	Control untreated	Control + bIV
Leak	9.32 ± 0.2	8.51 ± 1.7
CI	11.12 ± 0.5	8.40 ± 2.2
CI+II	13.88 ± 1.1	10.34 ± 2.2 *
Max	10.89 ± 0.8	9.12 ± 1.5

Convergent complex I+II respiration is decreased in control cells incubated with 1 μ M β secretase inhibitor IV (bIV) for 24 h relative to untreated control. Data is presented as mean ± SD (n = 3); * *P* < 0.05 by paired, two-tailed Student's *t*-test.

Supplementary Figure 1

OXPHOS complex IV protein levels are decreased in mitochondria from APP wild-type cells

a) Representative immunoblot of OXPHOS protein levels in mitochondrial preparations from cells expressing APP wild-type (APP WT) compared to control. Porin was used as a loading control. **b)** Densitometric analysis of immunoblot images showing a significant decrease in the expression of mtDNA-encoded COX1. **c)** Representative immunoblot and **d)** Densitometric measurements show a significant decrease in the expression of additional complex IV protein subunits; mtDNA-encoded COX2 and nuclear DNA-encoded COX5A, in mitochondrial preparations from APP wild-type (APP WT) cells compared to control. Porin was used as a loading control. All data is presented as mean \pm SD (n = 3); * *P* < 0.05 and ** *P* < 0.01 by paired, two-tailed Student's *t*-test.