Supplementary Information

Nanoscale insights into doping behavior, particle size and surface effects in trivalent metal doped SnO₂

Bogdan Cojocaru,^a Daniel Avram^b, Vadim Kessler^c, Vasile Parvulescu^a, Gulaim Seisenbaeva^c, Carmen Tiseanu^{b*}

^a Department of Chemistry, Univ. Bucuresti, B-dul Regina Elisabeta, nr. 4-12, Sector 3, 030018 Bucharest, Romania

^b National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG-36, RO 76900, Bucharest-Magurele,

Romania

^c Department of Molecular Sciences, Biocenter, SLU, Box 7015, SE-75007, Uppsala, Sweden

*Author to whom correspondence should be addressed. Electronic mail: <u>carmen.tiseanu@inflpr.ro</u>

Figure S2. SEM view of the as-synthetized SnO₂ particles (A), TEM images of the same material with increasing magnification (B-D), TEM images of the material heat-treated at 400°C (E,F).

Figure S3. In situ XRD patterns (a,b) and variation of the particle size of Eu – SnO₂ during heating and cooling cycles (c).

Figure S4. DRIFTs spectra of SnO_2 (a) and $Eu - SnO_2$ (b).

Figure S5. DR - UV/V is spectra of SnO_2 (a), $Eu - SnO_2$ (b) and impregnated $Eu - SnO_2$ (c). The decomposition of the precursors by calcination led to the formation of carbonaceous deposits which correspond to a change in color from white to green - grey below 400 °C.

Figure S6. Selected emission spectra used for the spectral separation of the Eu I – V centers illustrated in Figure 5.

Figure S7. Comparison between the emission spectra of $Eu - SnO_2$ calcined at 700 and 1000 °C showing an enhanced contribution of Eu-surface defect associate (likely OH, see text) in sample calcined 1000 °C.

Figure S8. Selected XRD patterns (a) and DR-UV/Vis spectra (b) of Pr, Tb and Dy-SnO₂. f - f absorption transitions can be readily observed for Pr and Dy in the DR-UV/Vis spectra (b, d).

Figure S9. Luminescence spectra (c) of Tb and Dy-SnO₂. For comparison purpose, included are the emission spectra of Dy and Tb in the inversion symmetry sites of $Y_2O_3^{-1}$ and CeO_2^{-2} .

Figure S10. The emission spectra of the lamps: A. The UV irradiation is composed of (a) and (b); B. visible light irradiation.

Figure S11. Conversion of phenol under UV irradiation using a. SnO₂, b. D-Eu - SnO₂ and c. I-Eu - SnO₂ and

Vis irradiation using d. SnO₂, e. D-Eu - SnO₂ and f. I-Eu - SnO₂ as function of calcination temperature.

References:

- 1 Avram, D., Cojocaru, B., Florea, M. & Tiseanu, C. Advances in luminescence of lanthanide doped Y₂O₃: case of S₆ sites. *Optical Materials Express* **6**, 1635-1643, doi:doi:10.1364/OME.6.001635 (2016).
- 2 Avram, D. *et al.* Toward a Unified Description of Luminescence–Local Structure Correlation in Ln Doped CeO₂ Nanoparticles: Roles of Ln Ionic Radius, Ln Concentration, and Oxygen Vacancies. *The Journal of Physical Chemistry C* **119**, 16303-16313, doi:10.1021/acs.jpcc.5b02240 (2015).