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Supplementary Information I : Details on model development	
	
In	this	section,	the	detailed	procedure	of	building	the	model	is	described.	Several	steps	are	commented	
from	the	model	structure	based	on	mass	balances	to	the	parameter	identification	process	through	the	
sensitivity	analysis.		
	
	
Model	structure	
	
The	model	structure	can	be	described	by	a	set	of	differential	equations	resulting	from	the	mass	balance	
principle.	There	are	three	categories	of	variables	representing	concentrations:	the	𝑀"#$		intracellular	
metabolites	𝑀"#$ ∈ ℜ'()* 	which	are	measured	in	𝑚𝑚𝑜𝑙	by	100	𝑐𝑒𝑙𝑙𝑠,	the	𝑀56$	extracellular	𝑀56$ ∈
ℜ'78* 	entering	the	cells	(expressed	in	𝑚𝑀)	and	finally	the	cells	density	𝑋 ∈ ℜ	(100𝑐𝑒𝑙𝑙𝑠		/	𝑚𝐿).		
	
The	differential	equations	are	then	represented	by:	
	
=
=$
	𝑀"#$ 𝑡 = 𝑆	 ∙ 	𝜈 𝑡 	– 	𝜇 𝑡 	 ∙ 	𝑀"#$ 𝑡 − 	µGHIJ$K_'()* 	 	 	 	 	 						(1)		

	
=
=$
	𝑀56$	 𝑡 = 𝑆	 ∙ 	𝜈 𝑡 	 ∙ 	𝑋 𝑡 	 ∙ 	1000	mL	/	L	 	 	 	 	 	 	 						(2)	

	
=
=$
	𝑋 𝑡 = 		𝜇		𝑋 𝑡 		 	 	 	 	 	 	 	 	 	 						(3)	

	
	
In	these	expressions,	𝜇 ∈ ℜ	is	the	specific	growth	rate	(ℎPQ).	Eq.	(1)	contains	two	terms:		
	
- A	 reaction	 term	 with	 𝑆 ∈ ℜ'()*×'S 	 the	 stoichiometric	 matrix	 and	 𝜈 ∈ ℜ'S		 the	 vector	 of	𝑀H 	

reaction	rates.				
- A	dilution	term:	𝜇 𝑡 	𝑀"#$ 𝑡 .	
- And	 a	 term	 accounting	 for	 the	 consumption	 rate	 (µGHIJ$K_'()*)	 of	 the	𝑀"#$	 metabolite	 being	

integrated	 into	 the	macromolecules	 composing	 the	 cell	mass;	 and	which	 is	 therefore	no	more	
available	for	the	reactions.	

	
In	 addition,	 in	 Eq.	 (2),	 𝑀56$ ∈ ℜ'78*×'S 	 is	 the	 stoichiometric	 matrix	 linking	 the	 extracellular	
metabolites	to	the	vector	of	reaction	rates.		
	
The	reaction	rates	are	modelled	by	Michaelis-Menten	type	equations:		
	
𝜈T 𝑡 = 	 𝜈U 		

'V
'VWXY,V[∈'Y 			 𝑗 ∈ 1, …			 , 𝑀H		 	 	 	 	 	 	 						(4)		

	
	
𝑀[ 	is	the	k

th	element	of	the	vector	𝑴	containing	all	the	component	concentrations:	
𝑴𝑻 = 𝑀"#$

` 	, 𝑀56$
` , 𝑋 ∈ 		ℜ'8.		The	superscript	symbol	𝑇	means	the	transpose	operator.			

	
In	Eq.	(4),	the	subscript	j	indicates	the	jth	element	of	the	vector	𝜈	containing	the	𝑀H	reaction	rates.		𝜈U	
is	the	maximum	flux	rate	of	the	jth	kinetic	rate.	𝐾T,[ 	is	the	affinity	constant	related	to	the	metabolite	
𝑀[ 	in	the	j

th	kinetic	rate.	𝑀T 	refers	to	the	set	of	indexes	related	to	the	metabolites	used	to	characterize	
the	jth	kinetic	rate.		



			
	
	
	
In	order	to	clarify	the	notations,	the	example	of	the	first	reaction	rate	Vde	is	selected	in	Table	2.	It	has	
two	affinity	constants	KQ,ghij	and	KQ,klm	related	to	two	variables	(𝐸𝐺𝐿𝐶	and	𝐴𝑇𝑃).	The	index	of	each	
variable	could	be	for	instance	1	and	40	in	the	vector	𝑴.	Consequently,	the	notation	becomes:		
	
- 𝜈Q = Vde	and	𝜈Q = Vstu,de	for	the	reaction	rate	and	its	maximum	value	
- 𝑥Q = 𝐸𝐺𝐿𝐶	,	𝑀wx = 𝐴𝑇𝑃	for	the	component	concentrations	
- 𝑛Q = 1,40 	the	selected	indexes	
- 𝐾Q,Q = KQ,ghij	and	𝐾Q,wx = KQ,klm	for	the	affinity	constants.	
	
	
	
Parameter	identification	
	
Once	 the	model	 structure	 is	 defined,	 the	 parameter	 identification	 is	 performed	with	 the	 available	
measurements.	 Basically,	 the	 identification	 is	 performed	 by	minimizing	 the	 sum	 of	 squares	 of	 the	
errors	 between	 the	 measurements	 and	 the	 predicted	 values	 given	 by	 the	 model.	 The	 parameter	
identification	can	be	formulated	as	below:	
	
	
min
}~��

𝐽[ 𝜃
#�
[�Q 		 	 	 	 	 	 	 	 	 																				(5)	

		

𝐽[ 𝜃 = 𝑦�5��,[ 𝑡" − 𝑦[ 𝜃, 𝑡"
�#*

"�Q 		
	
In	 Eq.	 (5),	 𝑛�	 is	 the	 number	 of	 measured	 variables.	 In	 general,	 the	 set	 of	 measured	 variables	

𝒚` = 𝑦Q	, … , 𝑦#� 	is	a	subset	of	the	vector	x	of	the	component	concentrations.	The	measurement	
at	time	𝑡" 	of	the	k

th	measured	variable	is	noted	𝑦�5��,[ 𝑡" .	𝑦[ 𝜃, 𝑡" 	is	the	k
th	measured	variable	at	

time	𝑡" 	deduced	from	the	model	(integration	of	the	differential	equations)	with	𝜃	as	parameter	vector.	
𝜃���	is	a	subset	of	the	whole	parameter	vector	𝜃.	𝜃	contains	all	the	maximum	flux	rates	and	the	affinity	
constants.	
	
𝜃` = 𝜈	`, 𝐾` .		
	
𝜈	` = 𝜈	Q, … , 𝜈	ww	 			
𝐾` = 𝐾Q,Q, 𝐾Q,wx, … , 𝐾ww,�, 𝐾ww,�, 𝐾ww,Q�	 			 	 	 	 	 	 	 						(6)	
	
In	Eq.	(6)	the	last	reaction	rate	is	the	growth	rate:	 𝜈ww = 	V������ 	and	the	variables	have	the	following	
notation:	𝑥� = 𝐺6𝑃,	𝑥� = 𝑅5𝑃	, 𝑥Q� = 𝐸𝐺𝐿𝐶.	
	
In	general,	as	the	number	of	parameters	is	substantial,	a	subset	of	parameters	is	used,	fixing	the	others	
at	the	previous	given	or	estimated	values.			
	
	
Sensibility	analysis	
	
A	 study	of	 the	parameters	 sensibility	 is	performed	 to	determine	 the	most	 sensitive	parameters.	 In	
order	to	estimate	the	parameter	sensitivity,	a	cost	function	𝐽	is	defined	based	on	the	weighted	distance	



(noted	𝑒)	between	the	initial	model	prediction	(using	𝜃x	as	a	set	of	parameters)	and	another	model	
prediction	using	another	set	of	parameters	(noted	𝜃).	
	
	

𝐽 𝜃 = Q
#8×#*

		 𝑒T� 𝜃, 𝑡[
#*
[�Q

#8
T�Q 			avec	𝑒T 𝜃, 𝑡[ = Q

JY
	 𝑥T 𝜃x, 𝑡[ − 	𝑥T 𝜃, 𝑡[ 		 	 						(7)	

	
In	Eq.	(6),	𝑤T 	is	a	weight	related	to	the	j

th	variable.	The	objective	of	the	chosen	weights	is	to	scale	the	
values	of	metabolites	evolving	with	time	to	have	similar	quantities.	For	instance	the	weight	𝑤T 	can	be	
the	value	at	the	initial	instant	𝑡x	of	the	variable	𝑥T 	(w_j=x_j	(θ_0,t_0))	or	its	mean	value.	
	
The	sensitivity	analysis	allows	selecting	the	most	sensitive	parameters	which	can	be	a	first	choice	in	
the	parameter	estimation	process.		
	
	
Strategy	of	parameter	estimation	
	
	
The	strategy	of	the	parameter	estimation	is	schematized	by	the	following	diagram.	The	main	strategy	
is	to	perform	a	sensitivity	analysis	to	determine	a	hierarchy	in	the	parameters.	The	maximum	flux	rates	
are	 ranked	 according	 to	 their	 sensitivity.	 Knowing	 the	 hierarchy,	 parameter	 subsets	 are	 defined	
containing	a	small	number	of	parameters	to	optimize	(for	instance	8	maximum).	The	strategy	proposed	
by	Rizzi	et	al.	(1997)	enabled	proceeding	by	steps	minimizing	the	number	of	parameters	at	each	step.	
	
The	choice	of	 the	parameters	 can	be	determined	according	 to	 the	 sensitivity	analysis	and/or	using	
some	knowledge	of	the	metabolic	structure.	For	instance,	four	sensitive	parameters	in	the	set	𝜈		are	
𝑉�X, 𝑉�`���5, 𝑉�5�[ 	and		𝑉� X.	According	to	Table	2,	they	become	𝜈Q,	𝜈w�,	𝜈wx	and		𝜈0	respectively.	
Based	on	this	information,	several	subsets	could	be	chosen	according	to	the	structure	of	the	metabolic	
network.	In	this	example,	𝑉�X 	and	𝑉� X 	are	in	the	glycolysis	pathways	and	can	be	gathered	along	with	
their	most	sensitive	affinity	constants.	Similarly,	all	the	parameters	related	to		𝑉�5�[ 	and	𝑉�`���5 	could	
be	part	of	another	parameter	subset.		
	
Then,	 when	 the	 subsets	 are	 selected,	 an	 iterative	 procedure	 takes	 place	 testing	 all	 subsets	
consecutively.	 For	 each	 of	 them,	 the	 optimized	 subset	 replaced	 the	 original	 one	 in	 the	 parameter	
vector		𝜃	after	the	optimization,	in	order	to	be	used	for	the	next	iteration.		
	
	
Reference	
Rizzi	M,	Baltes	M,	Theobald	U,	Reuss	M.	1997.	In	vivo	analysis	of	metabolic	dynamics	in	
Saccharomyces	cerevisiae:	II.	Mathematical	model.	Biotechnol	Bioeng	55(4)	

	
	
	
	
	
	
	
	
	
	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure	S1.	Algorithm	model	structure	calibration	and	parameters	value	estimation	
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Supplementary Information II : Model simulations with no experimental data	



	

	
	

Figure	S2.	Model	simulations	of	metabolites	with	no	experimental	data	
	


