### ONLINE DATA SUPPLEMENT

# Myeloid but not epithelial tissue factor exerts protective anti-inflammatory properties in acid aspiration-induced acute lung injury

JB Kral-Pointner\*, WC Schrottmaier\*, V Horvath\*, H Datler\*, L Hell<sup>†</sup>, B Niederreiter<sup>‡</sup>, B Jilma<sup>§</sup>, JA Schmid<sup>¶</sup>, A Assinger\*, N Mackman\*\*, S Knapp<sup>††, ‡‡,</sup> and G Schabbauer\*, <sup>§§</sup>

\*Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria

<sup>†</sup> Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Austria

<sup>‡</sup> Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Austria.

<sup>§</sup>Departments of Clinical Pharmacology, Department of Medicine I, Medical University of Vienna, Austria

<sup>®</sup>Department for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Austria

\*\*Division of Hematology/Oncology, Thrombosis and Hemostasis Program, UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, USA

<sup>††</sup>CEMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria

<sup>‡‡</sup>Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Austria

#### Running head: Myeloid TF exerts anti-inflammatory effects in ALI

§§Address correspondence to:

Dr. Gernot Schabbauer Centre for Physiology and Pathophysiology Medical University of Vienna Schwarzspanierstrasse 17 A-1090 Vienna, Austria E-mail: <u>gernot.schabbauer@meduniwien.ac.at</u> Phone: +43/1/40160/31427

## Supplementary figures

## Supplement figure I







## Supplement figure III



## Supplement figure IV



## Supplement figure V



#### Supplementary figure legend

Supplemental Figure I: Genotyping data of myeloid and airway epithelial TF-deficient mice. (A) Analysis of genomic DNA of *TF* and *cre* alleles of tissue from  $TF^{\Delta epi}$  and  $TF^{\Delta mye}$  mice and respective  $TF^{+/+}$  littermates by PCR was performed. (B) Histological assessment of naive lungs of wild-type ( $TF^{+/+}$ ) and  $TF^{\Delta epi}$  mice. First picture in upper panel shows isotype control staining and in the lower panel the TF antibody staining (brown). Second till fourth pictures shows  $TF^{+/+}$  mice in the upper panel and  $TF^{\Delta epi}$  mice in the lower panel stained for TF. Magnifications are from 100 x to 400 x as indicated, arrow head indicates endothelial cells, arrow indicates epithelial cells, blood vessel (Bv), bronchus (Bc).

Supplemental Figure II: Macrophage recruitment into the lung 8h post acid-induced

**acute lung injury (ALI).** Accumulation of macrophage subpopulations (CD45<sup>+</sup> F4/80<sup>+</sup> (A) and CD45<sup>+</sup> F4/80<sup>+</sup> CD11c<sup>+</sup> (B)) in the broncho-alveolar lavage fluid of TF<sup>+/+</sup> and TF<sup> $\Delta$ mye</sup> mice was analyzed by flow cytometry, n<sub>control</sub>=2; n<sub>HCl</sub>=6. (A, B) Representative flow cytometry blots were given. Upper panel control mice, lower level HCl-treated mice. For statistical analysis unpaired Student's t-test was performed. Representative flow cytometry blots are given.

Supplemental Figure III: Myeloid TF does not influence leukocyte recruitment during sterile peritonitis. (A, B) Extravasation of leukocytes (CD45<sup>+</sup>, A) and neutrophils (CD45<sup>+</sup> Ly6G<sup>+</sup> F4/80<sup>-</sup>, B) was evaluated by flow cytometry 4 hours post thioglycollate intraperitoneal injection,  $n_{TF+/+}=4$ ;  $n_{TF\Delta mye}=8$ . (C,D) Extravasation of leukocytes (C) and macrophages (CD45<sup>+</sup> F4/80<sup>+</sup>, D) 72 hours post treatment,  $n_{TF+/+}=5$ ;  $n_{TF\Delta mye}=4$ . For statistical analysis unpaired Student's t-test was performed.

Supplemental Figure IV: No significant changes in IL-12 and IL-1 $\beta$  levels between myeloid TF and wildtype littermates 8h post acid-induced ALI. Concentrations of (A) IL-12 and (B) IL-1 $\beta$  in broncho-alveolar lavage fluid (BALF) or whole lung tissue were measured by ELISA. For statistical analysis unpaired Student's t-test was performed.

Supplemental Figure V: Effect of thrombin and FVIIa on the inflammatory response of macrophages. Bone marrow cells were isolated and differentiated to bone marrow-derived macrophages by GM-CSF (10 ng/ml) and then stimulated with LPS (10 ng/ml), thrombin (0.66 U/ml) and FVIIa (8 ng/ml) for 3 hours as indicated. (A, D) IL-6, (B, E) TNF- $\alpha$  and (C, F) IkB $\alpha$  mRNA levels were determined by qRT-PCR and depicted as fold PBS control. One-way ANOVA with Tukey's multiple comparisons test was applied for statistical analysis; (A-C) n=5, (D-F) n=3. \*p<0.05, \*\*p<0.01, n.s. not significant.

#### Supplementary methods

#### Thioglycollate-elicited sterile inflammation

2 ml 4% thioglycollate medium (BD Becton, Dickinson and Company, New Jersey, USA) were injected intraperitoneally and after 4 hours or 72 hours a peritoneal lavage with 8ml PBS was performed. The recollected lavage fluid was centrifuged at 1000 xg for 5 min at room temperature and the cell pellet resupended in 0.5 ml PBS and stained for flow cytometry.

#### **BMDM** stimulation

BMDM isolation is described in the method section of the manuscript. BMDMs were stimulated with thrombin (0.66 U/ml, Technoclone, Vienna, Austria) and human FVIIa (8 ng/ml, Novo Nordisk, Vienna, Austria) for 3 hours.

#### Flow cytometry

Additionally used antibody: α-mouse CD11c-PE (1:80, BioLegend, London, UK).

#### qPCR

The following primers were applied: HPRT forward: 5'-CGCAGTCCCAGCGTCGTG-3', 5'-CCATCTCCTTCATGACATCTCGAG-3'; 5'reverse: IL-6 forward: CAAGTCGGAGGCTTAATTACACATG-3', reverse:5'-ATTGCCATTGCACAACTCTTTTCT-3'; TF forward: 5'-CAGTTCATGGAGACGGAGAC-3', 5'reverse: CAACCACGTTCAGTTTTCTACC-3'; TNF-α forward: 5'- CCACCACGCTCTTCTGTCTAC-3', 5'-AGGGTCTGGGCCATAGAACT-3'; reverse: EGR1 forward: 5'-AGCGAACAACCCTATGAGC-3', reverse: 5'- AGGCCACTGACTAGGCTGAA-3'; ΙκΒα 5'-5'forward: GAAGCCGCTGACCATGGAA-3', reverse: GATCACAGCCAAGTGGAGTGGA-3', STAT1 forward: 5'- GCTGCCTATGATGTCTCGTTT-3', reverse: 5'- TGGACATCTGTACGGGATCTT-3'

9