
New Phytologist Supporting Information

Article title: OpenSimRoot: Widening the scope and application of root architectural models
Authors: Postma, Johannes A.1, Kuppe, Christian1 , Owen, Markus R.2,3, Mellor, Nathan3,4,
Griffiths, Marcus3,4, Bennett, Malcolm J.3,4, Lynch Jonathan P.3,4,5, Watt, Michelle1

1) Plant Sciences, Institute of Bio and Geosciences 2, Forschungszentrum Jülich, Wilhelm-Johnen Straße 52425 Jülich, Germany
2) Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, UK
3) Centre for Plant Integrative Biology, University of Nottingham, UK
4) Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, UK
5) Department of Plant Science, Pennsylvania State University, USA

Article acceptance date:

The following Supporting Information is available for this article:

Note S1 Description of the SimulaBase API

Note S2 How to run OpenSimRoot: description of CLI

Note S3 Example C++ code for a plugin

Note S4 Example C++ code for a plugin

Note S5 Technical description of water and nutrient modules

Note S6 Example input file

Note S7 Example graph of state variables and their dependencies

Movie S1 Animation of Figure 6b.

04/26/17

Note S1: Application programming interface (API) of the SimulaBase class

This interface is used by the plugins to navigate the hierarchy and retrieve necessary data. For an
example see, Note S4. Developers that would like to develop a new plugin, will need this
interface in order to retrieve data from other minimodels. These minimodels are in a hierarchy.
The methods listed here can be used to find those minimodels in the hierarchy, and to request
data from them. Minimodels are instantiations (objects) of class (type) SimulaBase.

//Method to retrieve meta data on a given minimodel such as its name, path in the
hierarchy, lifetime of the object, and its units.

std::string getName()const; //name of object
std::string getPrettyName()const; //some what more humen readable name
std::string getPath()const; //path to the object
virtual std::string getType()const; //What type this object has
bool evaluateTime(const Time &t)const; //check if t is within lifetime
Time getEndTime()const; //get the end time of object
Time getStartTime()const; //get the start time of object
virtual Unit getUnit(); //get the unit
void checkUnit(const Unit& unit)const; //check if unit equals given unit
void setUnit(const Unit &newUnit); //change unit
virtual void getXMLtag(Tag &tag); //get the object as tag (xml output)

//Methods to navigate the minimodel hierarchy

The difference between the get() and existing() methods is that when the object does not exist
get() will throw an error and terminate the simulation, whereas existing() will return a NULL
pointer. The getPath() methods will navigate a symbolic path just as a path in a filesystem is
navigated. For example
getPath(“../mySib”) translates to getSibling(“mysib”), where the later is more efficient.

SimulaBase* getParent()const;
SimulaBase* getParent(const unsigned int i) const;
int getNumberOfChildren()const;//does not update!
int getNumberOfChildren(const Time &t);//does update
SimulaBase* getChild(const std::string & name,const Time & t);
SimulaBase* existingChild(const std::string & name,const Time & t);
SimulaBase* getChild(const std::string & name);
SimulaBase* existingChild(const std::string & name);
SimulaBase* getChild(const std::string & name,const Unit & u);
SimulaBase* existingChild(const std::string & name,const Unit & u);
SimulaBase* getSibling(const std::string & name,const Time & t);
SimulaBase* existingSibling(const std::string & name,const Time & t);
SimulaBase* getSibling(const std::string & name);
SimulaBase* existingSibling(const std::string & name);
SimulaBase* getSibling(const std::string & name,const Unit & u);
SimulaBase* existingSibling(const std::string & name,const Unit & u);

 //Sibling can be retrieved in alphabetic order.
SimulaBase* getNextSibling(const Time &t);
SimulaBase* getNextSibling()const;
SimulaBase* getPreviousSibling(const Time &t);

SimulaBase* getPreviousSibling()const;
SimulaBase* getFirstChild(const Time &t);
SimulaBase* getFirstChild()const;
SimulaBase* getLastChild()const;

SimulaBase* getPath(const std::string &name);
SimulaBase* getPath(const std::string &name, const Time &t);
SimulaBase* getPath(const std::string &name, const Unit &u);
SimulaBase* existingPath(const std::string &name);
SimulaBase* existingPath(const std::string &name, const Time &t);
SimulaBase* existingPath(const std::string &name, const Unit &u);

typedef std::vector<SimulaBase*> List;
void getAllChildren(List&, const Time &t);
void getAllChildren(List&)const;

//Method for walking along a root axis. Retrieves the minimodel with the same

 name associated with the next vertex.
virtual SimulaBase* followChain(const Time & t);

//Methods to retrieve specific subsets of minimodels based on position

typedef std::multimap<Coordinate,SimulaBase*> Positions;
static void getAllPositions(const Time & t, Positions& list);
static void getAllPositions(Positions& list);
void getYSlice(const Time &, const double, const double, Positions&);
void getPositionsWithinRadius(const Time &, const Coordinate& c, const
double & r, Positions&);
void getPositionsInsideBox(const Time &, const Coordinate&, const
Coordinate &, Positions&);

//Methods for retrieving data

virtual void get(const Time &t, int &returnConstant);
virtual void get(const Time &t, std::string &returnConstant);
virtual void getRate(const Time &t, Time &var);
virtual void get(const Time &t, Coordinate &point);
virtual void get(const Time &t, MovingCoordinate &point);
virtual void getAbsolute(const Time &t, Coordinate &point);
virtual void getBase(const Time &t, Coordinate &point);
virtual void getRate(const Time &t, Coordinate &point);
virtual void getAbsolute(const Time &t, MovingCoordinate &point);
virtual void get(int &returnConstant);
virtual void get(std::string &returnConstant);
virtual void get(bool &returnConstant);
virtual void get(const Time &x, Time &y);
virtual void get(Time &x);
virtual void get(const Time &t, const Coordinate & pos, double &y);
virtual void get(const Time &t, const Coordinate & pos, Coordinate &y);
virtual void getRate(const Time &t, const Coordinate & pos, double &y);
virtual void get(Coordinate &point);
virtual void getAverageRate(const Time &t1, const Time &t2, double &var);

virtual void getAverageRate(const Time &t1, const Time &t2, Coordinate
&var);

//reverse data look up: returns time that object was nearest to given
value or position. Only works if the object is not garbage collected
virtual void getTime(const Coordinate &p, Time &t, Time tmin=-1, Time
tmax=0);
virtual void getTime(const double &p, Time &t, Time tmin=-1, Time tmax=0);

//Method for setting data, probably only implemented for timetables.

virtual void set(const double &x, const double &y);

//Methods to retrieve info on timestepping of a minimodel

virtual Time &minTimeStep();
virtual Time &maxTimeStep();
virtual Time &preferedTimeStep();
virtual Time lastTimeStep();

//Methods to control garbage collection, which will basically clean up the simulation history

virtual void collectGarbage(const Time&); //clean up history
virtual void garbageCollectionOff(); //keep history of this object always

//Other methods

void stopUpdatefunction(); //When implementing an objectgenerator signal
 it has
 finished creating all objects for all times, and can be deleted.

static void updateAll(const Time &); //update whole tree
void updateRecursively(const Time &); //update subtree
static void signalMeAboutNewObjects(SimulaBase* me); //if plugin has the
addObject() implemented, it will be signaled when new objects are being
instantiated by any of the object generators.

Note S2: Command line interface (CLI) of OpenSimRoot: How to run and use
the model

OpenSimRoot has a command line interface, which means that you operate the model from a
terminal using commands, not with a graphical interface and the mouse.

Step 1: Open a terminal (under windows 10 you may use the program named CMD)

Step 2: Go to the folder where you want to run the model, use the command cd to navigate, for
example: cd MyRunFolder

Step 3: We assume that the folder contains the OpenSimRoot executable. With the “ls” command
you can list all folders (or on windows the command is “dir”). Here we see that my folder
contains the executable OpenSimRoot (conveniently made green, as it is executable) and a XML
input file.

Step 4: OpenSimRoot has a small build in help which we we can run by typing ./OpenSimRoot
-h (on windows you do not type the path “./” in front of the executable).

The help shows how to run OpenSimRoot, and gives you some options and their explanation.

Step 5: Like the help shows, running the model is done by appending the input file:
./OpenSimRoot SimpleCropModel.xml

Again with ls (dir) you can list the filer, the model created two new files, one containing
warnings, one containing the simulation results.

Step 6: The results of the simulation are in the tabled_output.tab file which can be viewed with
any program that opens text files. Here we simply show the first lines with the command head:

The file contains a header in the first row, and 6 columns listing the name of the state variable,
the time, the value, the rate of change of that state variable (if simulated), the unit of the state
variable, and the path in the hierarchy to this state variable.

Real time hours: minutes : seconds

Results file

One warning

Simulation time

Command

Step 7: The tabled_output.tab file is also easily imported into a spreadsheet program. By
enabling the auto filter and selecting leafArea, we can easily create a plot.

8. The same can be achieved in R using this script:
d<-read.table("tabled_output.tab",header=T)
f=d$name=="leafArea"
plot(value~time,data=d[f,],ylab=~"leaf area (cm"^2*")", xlab="time (d.a.g)")

step 9: Editing the input file can be done with any text file editor. Here I opened the file with the
command nano tabled_output.tab and the result is an xml formatted file in which we can change
the numbers, save and rerun. In white you see the numbers, and scrolling to the bottom you
would see more.

step 10: You see several functions listed that are used to simulate a state variable. To get a list of
all functions that are included in your OpenSimRoot version use the command OpenSimRoot -l.
This will list all plugins that are included with OpenSimRoot.

Note S3: Class hierarchy of OpenSimRoot code

This document lists the class hierarchy for the most important classes in OpenSimRoot.

Minimodels

Minimodels are of type SimulaBase and encapsulate one time and location dependent state
variable. The inhertance diagram for all SimulaX classes is given in Figure S3.1.

Figure S3.1: Inheritance diagram for all SimulaBase classes.

• SimulaConstant encapsulates a constant of various types.
• SimulaDerivative encapsulates an algorithm. Available algorithms are all the

DerivativeBase derived plugins.
• SimulaTable encapsulate an array of time,value combinations. Values are interpolated.
• SimulaExternal provides a mechanism for encapsulating other dynamic simulation

models.
• SimulaPoint simulates a point and its movement through space.
• SimulaVariable simulates a value and change over time using numerical integration.
• SimulaGrid simulates a static, 3D field using a list of Coordinates with values and a 3D

interpolation algorithm
• SimulaLink simply bridges to another minimodel in the hierarchy of minimodels.
• SimulaStochastic draws numbers from a random number generator.

Inherited from DerivativeBase

Below is a list of all the plugins that directly, or indirectly, inherit from DerivativeBase and can
be used by SimulaVariable, SimulaPoint or SimulaDerivative for computation.

ActualTranspiration
ActualVaporPressure
AerodynamicResistance
AirDensity
AirPressure
BFMmemory
BiologicalNitrogenFixation
CarbonAllocation2Leafs
CarbonAllocation2Roots
CarbonAllocation2Shoot
CarbonAllocation2Stems
CarbonAvailableForGrowth
CarbonCostOfBiologicalNitrogenFixation
CarbonCostOfNutrientUptake
CarbonReserves
CinDryWeight
ConstantRootGrowthRate
D95
ETbaseclass
Grass_reference_evapotranspiration
Penman
PenmanMonteith
PriestleyTaylor
Stanghellini
Tall_reference_Crop
GetValuesFromPlantWaterUptake
GetValuesFromSWMS
Imax
Interception
InterceptionV2
LeafArea
LeafAreaIndex
LeafAreaReductionCoefficient
LeafDryWeight
LeafDryWeight2
LeafPotentialCarbonSinkForGrowth
LeafRespirationRate
LightInterception
LocalNutrientResponse
MeanLeafAreaIndex
NumberOfRoots
NumberOfTillers
NutrientStressFactor
NutrientStressFactorV2
PhotosynthesisLintul
PhotosynthesisLintulV2
PlantCarbonBalance
PlantCarbonIncomeRate
PlantTotal

PointSensor
PotentialLeafArea
PotentialTranspirationCrop
Proximity
Radiation
RadiusDepletionZoneBarberCushman
RadiusDepletionZoneSimRoot4
RandomGravitropism
RandomImpedence
RelativeCarbonAllocation2LeafsFromInputFile
RelativeCarbonAllocation2RootsFromInputFile
RelativeCarbonAllocation2RootsOneMinusSho
ot
RelativeCarbonAllocation2RootsPotentialGrow
th
RelativeCarbonAllocation2RootsScaledGrowth
RelativeCarbonAllocation2ShootFromInputFile
RelativeCarbonAllocation2ShootPotentialGrow
th
RelativeCarbonAllocation2ShootScaledGrowth
RelativeCarbonAllocation2ShootSwitch
RelativeCarbonAllocation2StemsOneMinusLea
fs
RemainingProportion
Reserves
ReservesSinkBased
RootCircumference
RootClassID
RootDryWeight
RootGrowthDirection
RootGrowthScalingFactor
RootLength2Base
RootLengthDensity
RootLengthProfile
RootNodePotentialCarbonSinkForGrowth
RootPotentialCarbonSinkForGrowth
RootsBelowD95Solute
RootSegmentAge
RootSegmentRespirationRate
RootSegmentRootHairSurfaceArea
RootSegmentSpecificWeight
RootSystemTotal
RootTotal
RootTotal2
SaturatedVaporPressure
ScaledRootGrowthRate
ScaledWaterUptake
ShootDryWeight
ShootOptimalNutrientContent

SimplePotentialTranspiration
SimpleSoilTemperature
SlopeVaporPressure
SoluteMassBalanceTest
SpecificHeatCapacityOfAir
StemDryWeight
StemPotentialCarbonSinkForGrowth
StemRespirationRate
StomatalResistance
StressAdjustedPotentialLeafArea
StressFactor
SumCarbonCosts
SumOverPlants
SumOverPlantsShoot
SuperCoring
Swms3d
ThermalConductivity
TotalBase
CarbonCostOfExudates
CortexDiameter
IntegrateOverSegment
PotentialSecondaryGrowth
RootDiameter
RootSegmentDryWeight
RootSegmentLength
RootSegmentSurfaceArea
RootSegmentVolume
RootSegmentVolumeCortex
SecondaryGrowth
SumSteelCortex
TotalBaseLabeled
Barber_cushman_1981_nutrient_uptake
Barber_cushman_1981_nutrient_uptake_explic
it
MichaelisMenten
OptimalNutrientContent
RootSegmentNutrientDepletionVolume
SegmentMaxNutrientUptakeRate
Tropisms
UseDerivative
UseParameterFromParameterSection
UseRootClassAndNutrientSpecificTable
VolumetricHeatCapacity
WaterMassBalanceTest
WaterUptakeFromHopmans

List of plugins for simulating various processes

Note that these are a list of classes, as they appear in the code. Registration of the plugins may
occur under different names. Inputfiles use the registered names, not the class names. Use
OpenSimRoot -l to get that list. See also operation manual in Note S2.

Integration functions

The SimulaVariable and SimulaPoint classes use helper functions for integrating the result.
Several integration methods have been implemented (Figure S3.2). New integration functions
can be added and registered, using the plugin framework, similar to the classes that inherit from
DerivativeBase.

Figure S3.2: Inheritance diagram for the integration classes

Object generators

Object generators are plugins that can be associated with any SimulaX object and update the list
of children when a child is requested.

Figure S3.3: Inheritance diagram for the object generators

Note S4: Plugin example code

Here we give example code for a simple plugin and the code needed to register this plugin with
OpenSimRoot. Once the code has been put into a text file, it can be compiled and linked to
OpenSimRoot.

1) For new algorithms

//Class declaration. Class should inherit from DerivativeBase, have a constructor, and
implements two virtual methods, getName() and calculate(). The example class presented here has
two SimulaBase pointers as private members, which will be used to connect to the minimodels that
simulate length and diameter of a root segment and to retrieve their values.

class RootSegmentSurfaceArea:public DerivativeBase{
public:
 RootSegmentSurfaceArea(SimulaDynamic* pSD);
 std::string getName()const;
protected:
 void calculate(const Time &t,double &var);
private:
 SimulaBase *diameter,*length;
};

//the constructor of our class. pSD is the pointer to the minimodel that uses the plugin for
computation
RootSegmentSurfaceArea::RootSegmentSurfaceArea(SimulaDynamic* pSD):DerivativeBase(pSD)
{
//We check that the user set the unit right
 pSD->checkUnit("cm2");
//We retrieve the pointers
 length=pSD->getSibling("rootSegmentLength","cm");
 diameter=pSD->getSibling("rootDiameter","cm");
}

//the computation
void RootSegmentSurfaceArea::calculate(const Time &t,double &area){
//first we retrieve data
 double d,l;
 diameter->get(t,d);
 length->get(t,l);
//second we compute
 area=l*d*PI;
}

//the name under which the plugin will be registered, make sure it is unique, use OpenSimRoot
-l to see what names are already taken
std::string RootSegmentSurfaceArea::getName()const{
 return "rootSegmentSurfaceArea.v3";
}

//Now we create a function for instantiating our class
DerivativeBase * newInstantiationRootSegmentSurfaceArea(SimulaDynamic* const pSD){
 return new RootSegmentSurfaceArea(pSD);
}

//And we register this plugin using a static instantiation of a class which guarantees that the
constructor is when OpenSimRoot is started
static class AutoRegisterMyNewPlugin {
public:
 AutoRegisterMyNewPlugin() {
//this line does the registration. Make sure you register under the same name as the getName()
method returns. This important for the model dump being loadable again.
 BaseClassesMap::getDerivativeBaseClasses()["rootSegmentSurfaceArea.v3"] =
newInstantiationRootSegmentSurfaceArea;
} rf9843hh923h; //the one static instance of this class

2) For new integration functions

//class declaration, must inherit from IntegrationBase, has a constructor,
// a getName() method and at least one integrate method
class BackwardEuler:public IntegrationBase{
public:
 BackwardEuler();
 std::string getName()const;
protected:
 virtual void integrate(SimulaVariable::Table & data, DerivativeBase & rateCalculator);
 virtual void integrate(SimulaPoint::Table & data, DerivativeBase & movementCalculator);
};

BackwardEuler::BackwardEuler():IntegrationBase(){}

void BackwardEuler::integrate(SimulaVariable::Table & data, DerivativeBase &rateCalculator){
 //...Your new algorithm here which should extend the data table, the derivative (rates) that
should be used are retrieved from the rateCalculator. For examples see code.
}

void BackwardEuler::integrate(SimulaPoint::Table & data, DerivativeBase & movementCalculator){
 //...Your new algorithm here, but then suitable for Coordinates, not doubles. Intended to
allow the simulation of a point moving through space. Mostly used to simulate the growth
trajectory of the root tip
};

std::string BackwardEuler::getName()const{
 return "BackwardEuler";
}

//function for instantiating the class
IntegrationBase * newInstantiationBackwardEuler(){
 return new BackwardEuler();
}

//Register the instantiation function
static class AutoRegisterIntegrationFunctions {
public:
 AutoRegisterIntegrationFunctions() {
 BaseClassesMap::getIntegrationClasses()["BackwardEuler"] = newInstantiationBackwardEuler;
 }
}p44608510843540385;//the one static instance of this class

3) For object generators

//class declaration for an object generator
class MyGenerator: public ObjectGenerator {
public:
 void initialize(const Time &t);
 void generate(const Time &t);
 MyGenerator(SimulaBase* const pSB);
};

//construction is delayed. Code is in the initialize method
MyGenerator::MyGenerator(SimulaBase* const pSB) :
 ObjectGenerator(pSB) {
}

//collecting of info, and or construction of minimodels at the start of the simulation
void MyGenerator::initialize(const Time &t) {
 //collect some info about planting time
 Time plantingTime;
 SimulaBase *pt=pSB->existingChild("plantingTime");
 if (pt) {
 //read planting time from file
 pt->get(t, plantingTime);
 } else {
 //copy from parent
 plantingTime = pSB->getStartTime();
 }

 //generate new plant by copying the template
 pSB->copyAttributes(plantingTime, ORIGIN->getChild("plantTemplate"));

 //we are done
 pSB->stopUpdatefunction();
}

void MyGenerator::generate(const Time &t) {
 //add code if there is time dependent generation of objects, not just at the start
}

//the function for instantiation of the class
ObjectGenerator * newInstantiationMyGenerator(SimulaBase* const pSB) {
 return new MyGenerator(pSB);
}

//register the instantiation function
static class AutoRegisterMyGeneratorInstantiationFunctions {
public:
 AutoRegisterMyGeneratorInstantiationFunctions() {
 BaseClassesMap::getObjectGeneratorClasses()["MyGenerator"] =
 newInstantiationMyGenerator;
 }
} p4595582386;

Note S5: Detailed description of the water and nutrient submodules

Watermodule

Plant transpiration is simulated by OpenSimRoot, assuming that water availability is not limiting
and stomatal conductance is constant. Transpiration and evaporation need to be separated within
OpenSimRoot. Transpiration can be estimated from a fixed water use efficiency parameter
(which simply links carbon fixation linearly to transpiration), or from the Penman-Monteith
model, which computes evapotranspiration based on weather conditions (Penman, 1948;
Monteith, 1964). When transpiration is calculated based on a water use efficiency parameter, the
user needs to provide evaporation values; when the Penman-Monteith model is used,
transpiration and evaporation are separated by OpenSimRoot solving the Penman-Monteith
model twice, once for full crop cover, and once for a bare soil. Based on the percent light capture
by the crop OpenSimRoot scales evaporation and the transpiration terms assuming evaporation is
negligible and small under full crop cover (Leaf Area Index ~3).
To simulate the soil hydrology, OpenSimRoot has a submodule that solves the Richards equation
in three dimensions using finite element method (FEM) on a Cartesian grid. The soil water
submodule is a simplified and modified C++ rewrite of the SWMS3D model, which is the basis
of Hydrus and R-SWMS (Šimunek et al., 1995; Diamantopoulos et al., 2013).
Certain exceptional circumstances such as drainage or water ponding at top soil, are excluded.
The top boundary condition is a water flux that is the difference between precipitation and
evaporation. Evaporation, as computed by the Penman-Monteith equation, is assumed to be
potential evaporation (i.e. appropriate for wet soils), and assumed to be equal across the soil
surface, shoot geometry is not simulated. Potential evaporation is scaled back to an actual
evaporation by including a smooth scaling function which causes evaporation to decrease
smoothly from potential, when the top soil is wet, to equal the soil conductivity when the soil is
not able to sustain higher evaporation rates. If the top soil is not necessarily uniformly wet, actual
evaporation will be non-uniform across the soil surface in OpenSimRoot. The water retention
curve and soil hydraulic conductivity are computed using the van Genuchten and Mualem
equations.
The Richards equation can include a sink term, which in OpenSimRoot represents water uptake
by roots (as described evaporation sink is handled as dynamic boundary condition). To do so we
need to know 1) how much water is taken up by each root segment at a given moment in time,
and 2) how that uptake is coupled to the FEM nodes of the grid on which the Richards equation
is solved. Assuming that root uptake equals transpiration, i.e. we ignore temporal water storage
in the plant, OpenSimRoot can either divide the water uptake of the whole root system by
assuming each root segment contributes equally to uptake relative to its length (as in Hopmans,
(Hopmans & Bristow, 2002)) or by solving the hyrdraulic architecture represented by a network
model and using a circuit analogy likewise motivated by finite element theory (Alm et al., 1992;
Doussan et al., 1998). The network model is novel in OpenSimRoot implemented to work with a
growing root and used in the study of Schneider (Unpublished). This model requires axial and
radial hydraulic conductivities for each root segment, which can be defined in the input files as a
function of root age and class, and are scaled (i.e. normalized) with the inverse of the root
segment length (axial), or the root segment surface area (radial). The coupling of the root model
to the FEM model enables each root segment to have a soil water content at the root surface. The
next step is to make sure that water uptake by the root system equals the transpiration which is

achieved by changing the water potential at the root collar (top of the hypocotyl). Getting the
root collar potential is a parabolic optimization function which is solved with a newton solver,
typically in three steps. The water potential at the top of the hypocotyl is not allowed to drop
below a given threshold. If the threshold is reached, OpenSimRoot assumes that water uptake is
less than potential transpiration and will write a warning. Further simulation results might not be
correct as currently no effects of drought on photosynthesis, leaf expansion etc have been
implemented. However, the model should correctly deal with compensatory uptake of water
when soil water distribution is heterogeneous. And this model can show water loss of roots while
the same conductivity from xylem to soil is assumed.
Mapping the root model to the FEM model is done based on a neighborhood search. All FEM
nodes surrounding the root segment are considered. Sink terms, and local environment are
computed based on inverse distance weighted average of the FEM nodes surrounding the root
node. An alternative mapping algorithm, by which every FEM node is assigned with every root
node has been implemented, in order to ignore root architecture completely in the water and
nutrient uptake simulations. This was for example used in Postma and Lynch (2012) where it was
concluded that the positioning of the root, that is root architecture, is necessary for simulating
niche differentiation for nitrate uptake among maize, bean and squash plants, whereas if roots
would be able to take up nutrients from everywhere in the soil, there would be no niche
differentiation.

Nutrient module
OpenSimRoot has a nutrient module to simulate the uptake solutes, and in the new version
theoretically simultaneously for various nutrients. This module was implemented to simulate the
function of root architectural traits for nutrient uptake, and test tradeoffs for acquisition of
different nutrients. Time dependent optimal and minimal nutrient content (µmol/g) have to be
defined for leaves, stems and all root classes, for to be simulated solutes. These amounts are used
to compute nutrient requirements of the plant, and compared to total uptake amounts, including
initial seed reserves (for uptake see below). When uptake is less than demand, plant stress is
assumed, with maximum stress being defined as uptake equal to minimal nutrient content
(stress(uptake) = max(0, min((uptake-minimal)/(optimal-minimal),1)). Stress modifying impact
functions can be defined for components such as leaf expansion rate, photosynthesis rates,
respiration rates, and root elongation rates or secondary growth. Typically, they should be
defined such that, when stress=0, growth ceases altogether. For example, by making the initial
response of the shoot stronger than that of the root, the plant will decrease shoot to root ratios
when nutrient deficient. Thus OpenSimRoot will move towards a functional equilibrium,
although due to the inherent slow nature of growth, and the relative fast dynamics of other
processes, this functional equilibrium might not be reached, and oscillatory behavior might occur
(Postma & Lynch, 2011; Postma et al., 2014b). The current implementation assumes that
internally, reallocation of nutrients is fast and perfect, such that all organs experience equal
stress. This might be true for a nutrient like nitrogen, which typically causes chlorosis
everywhere in the shoot, but might not be correct for other nutrients. The importance of
simulation of nutrient redistribution in the plant still needs study, and would require
implementation of a shoot architectural model in which the age and position of individual leafs is
tracked.
Nutrient uptake from soil to root is simulated independently of utilization of nutrients within the
plant. Two options for simulation are provided: 1) The Barber-Cushman model and 2) a 3D FEM

model. One is a C++ implementation of the original Barber-Cushman model with root hairs. The
model is described as radial 1D PDE (Partial Differential Equation) which corresponds to the
rhizosphere around the root. It assumes nutrient uptake to be described by a Michealis-Menten
term, and the nutrient transport in the soil to be driven by convection (water flow) and diffusion.
A buffer constant replaces a reaction term. The Barber-Cushman model is suitable for immobile
nutrients like phosphorus. Phosphorus uptake causes steep gradients in concentrations around the
root. These depletion zones are typically only 2-4 mm in diameter, and thereby would require a
computationally unacceptably high resolution of the 3D finite element model (~0.1 mm
resolution of a 1 m3 soil pedon would result in 1e12 elements or 8 petabytes to hold a single
double precision array).
Competition between roots is computed based on a local average root density which determines
the outer boundary of the Barber-Cushman model. OpenSimRoot updates this boundary when
new roots grow in the vicinity of other roots and corrects the initial nutrient concentration for
new roots with the uptake of nutrients of older roots. Nevertheless, this handling of root
competition is only acceptable when the overlap of depletion zones, which can be computed
based on raster images of the root system, is relatively small. For crops, overlap in phosphorus
depletion zones is typically below 20% because of its low mobility. Inter and intra root
competition plays a much more important role in the uptake of mobile nutrients such as nitrate.
Nitrate might form diffuse or no depletion zones around the root and for this reason is better
simulated using a 3D FEM. SimRoot solved the convection-dispersion equation on the same
FEM grid as the water transport is solved which can be restricting, OpenSimRoot alternatively
can solve it on a refined grid, where the refinement factor is yet fixed to 2nd, 4th, 8th or the 16th
of a reference grid. For each solute a new FEM model is instantiated and linked to the water
model. The 3D FEM model for solute transport is coupled to the root systems using the same
method as used for the hydraulic model, where the uptake of solutes by the root segments is
based on Michaelis Menten kinetics, as in the Barber-Cushman model. Buffering and diffusion
coefficients are dependent on the soil water content, and might thereby deviate from the constant
coefficients used in the Barber-Cushman model. The effects must be considered when comparing
the output of both models (Postma and Lynch, 2011).
When simulating more than one solute, solutes do not influence each other directly in
OpenSimRoot. Indirect effects occur through the influence of nutrient uptake on root growth.
Each solute has a stress function to determine how each impacts, for example, photosynthesis. A
user specified aggregation function determines the aggregate impact (Dathe et al., 2013). For
example, Postma et al., (2014a) showed how the optimal lateral branching density in maize
depends on the relative availability of phosphorus and nitrogen.

References
Alm DM, Cavelier J, Nobel PS. 1992. A finite-element model of radial and axial conductivities
for individual roots: development and validation for two desert succulents. Annals of Botany 69:
87–92.

Dathe A, Postma JA, Lynch JP. 2013. Modeling resource interactions under multiple edaphic
stresses. In: Timlin D,, In: Ahuja LR, eds. Advances in Agricultural Systems Modeling.
Enhancing Understanding and Quantification of Soil–Root Growth Interactions. Madison, Wis.,
USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of
America., 273–294.

Diamantopoulos E, Iden SC, Durner W. 2013. Modeling non-equilibrium water flow in
multistep outflow and multistep flux experiments. HYDRUS Software Applications to Subsurface
Flow and Contaminant Transport Problems: 69.

Doussan C, Pagès L, Vercambre G. 1998. Modelling of the hydraulic architecture of root
systems: An integrated approach to water absorption - Model description. Annals of Botany 81:
213–223.

Hopmans JW, Bristow KL. 2002. Current capabilities and future needs of root water and
nutrient uptake modeling. Advances in Agronomy 77: 103–183.

Monteith JL. 1964. Evaporation and environment. Symposia of the society for experimental
biology 19: 205–234.

Penman HL. 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the
Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal
Society, 120–145.

Postma JA, Dathe A, Lynch JP. 2014a. The optimal lateral root branching density for maize
depends on nitrogen and phosphorus availability. Plant Physiology 166: 590–602.

Postma JA, Lynch JP. 2011. Theoretical evidence for the functional benefit of root cortical
aerenchyma in soils with low phosphorus availability. Annals of Botany 107: 829–841.

Postma JA, Lynch JP. 2012. Complementarity in root architecture for nutrient uptake in ancient
maize/bean and maize/bean/squash polycultures. Annals of Botany 110: 521–534.

Postma JA, Schurr U, Fiorani F. 2014b. Dynamic root growth and architecture responses to
limiting nutrient availability: linking physiological models and experimentation. Biotechnology
Advances 32: 53–65.

Šimunek J, Huang K, van Genuchten MT. 1995. The SWMS 3D code for simulating water
flow and solute transport in three-dimensional variably-saturated media. California: U. S.
Salinity laboratory, USDA.

Note S6: Example of a simple OpenSimRoot input file

The XML below is an example of an OpenSimRoot input file that constructs a simple crop
model, without any roots. All the SimulaX tags will instantiate a minimodel of the corresponding
type, for example a constant (time independent parameter) is declared as <SimulaConstant ...>.
Metadata for the minimodels, such as name and unit, are given in the attributes lists.

General rules for XML documents
1) The document has tags which are between brackets like <>
2) Tags correspond to minimodels in OpenSimRoot and therefore carry different names, such as
SimulaBase, SimulaConstant, etc.
3) Tags need to be closed either by putting a / before the closing bracket, or if data is nested
inside the tag with a corresponding closing tag which is recognized by </. For example
<SimulaConstant></SimulaConstant>
4) Between opening and closing tags you will find data, and or declarations of minimodels which
are at the next level in the hierarchy
5) Tags carry attributes which describe metadata. Attributes are always listed as
attribute=”something”. In OpenSimRoot all tags have at least a name attribute.
6) An XML document is plain text and recognized by a special declaration at the top of the
document. <?xml version="1.0" encoding="UTF-8"?>

7) XML documents can have stylesheets associated with them so the the browser knows how to
render the document. Here we have <?xml-stylesheet type="text/xsl" href="tree-view.xsl"?>

8) Comments are between <!-- and -->.
9) All XML documents of a document type tag. For OpenSimRoot the document type is declared
as <SimulationModel></SimulationModel>. All other tags must be in between these tags.

Here follows an example input file. The comments in black give more explanation as to how a
simple crop model is being constructed by this input file. Input files for full root architectural
models can be found in the software repository on gitlab:
https://gitlab.com/rootmodels/OpenSimRoot

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="tree-view.xsl"?>
<!--
Copyright © 2016 Forschungszentrum Jülich GmbH
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
under the GNU General Public License v3 and provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided with
the distribution.
3. Neither the name of the copyright holder nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

Disclaimer
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You should have received the GNU GENERAL PUBLIC LICENSE v3 with this file in license.txt but it
can also be found at http://www.gnu.org/licenses/gpl-3.0.en.html -->

<!--This XML constructs a simple, radiation use efficiency based crop model.

Roots and stems are only presented as Carbon (dry weight) pools
Leaf dry weight is converted to leaf area based on specific leaf area (SLA)
Leaf area is converted to light interception using an extinction coefficient.
Light interception is converted to photosynthesis using radiation use efficiency (RUE).
Photosynthesis is converted to structural carbon using a conversion factor (multiplier) which
represents relative losses due to respiration
Fixed allocation causes structural carbon to be divided over root, stem and leafs.

Behavior, is simple exponential growth for which
RGR = SLA * C2Leafs * photosynthesis * multiplier
However, as the light interception with increasing leaf area
reaches an asymptote, the model will move towards linear growth.-->

<SimulationModel>

<!-- SimulaBase is a simple container, that holds other SimulaX objects. SimulaBase is thus a
minimodel that does not hold or simulate data. It should, like all mini models, have a name. So
here we declare a container in which we are going to put all our plants. Inside it we put a
container for our plant, named arbitrarily “myPlant”. -->

 <SimulaBase name="plants">
 <SimulaBase name="myplant">

<!-- Here follow three SimulaConstant declarations. SimulaConstant is a minimodel that holds time
and space independent data of different types. Possible types are double, int, string,
Coordinate. Besides the name attribute they must have a unit, and if the data is not a double, a
type declaration.

A plant should be of a given species/genotype. The model will look for a parameter set in
roottypeParameters with the corresponding type. Here we declare that we want to simulate a plant
of type mySpecies -->

 <SimulaConstant name="plantType" type="string">
 mySpecies
 </SimulaConstant>

<!-- The time that the plant is planted. 0. is at the start of the simulation. -->

 <SimulaConstant name="plantingTime" unit="day">
 0.
 </SimulaConstant>

<!-- Location in space where the seed is planted. -->

 <SimulaConstant name="plantPosition" type="Coordinate">
 0 -2 0

<!-- Container that hold all the minimodels that will simulate shoot
related parameters. The shoot and root are inside plantPosition, as OpenSimRoot works with a
relative Coordinate system. We achieve that all coordinates that belong to our plant are relative
to plantPosition. -->

 <SimulaBase name="shoot">

<!-- Licht interception is simulated by the light interception module. SimulaDerivative declares
a minimodel that wil use the lightInterception plugin to compute light interception. Attributes
are name of what is being computed (name="lightInterception"), the unit of what is being computed
(unit="umol/cm2/day"), and the plugin that should be used to compute it
(function="lightInterception"). The plugin lightInterception requires leafAreaIndex and from the
parameter section and extinctionCoefficient (kdf). Further it needs irradiation levels from the
environmental section. All have been declared further down. -->

http://www.gnu.org/licenses/gpl-3.0.en.html

 <SimulaDerivative name="lightInterception" unit="umol/cm2/day"
 function="lightInterception" />

<!--Simulation of photosynthesis rates can be done by the plugin registered as
photosynthesisLintulV2. However, since we want to know the total photosynthesis, the rates need
to be integrated over time. SimulaVariable does this. Thus unit is not g/day, but g. Attributes
are otherwise same as for a SimulaDerivative tag. Optional attributes that control the method of
integration and the timestep can be given. For example integrationFunction=”ForwardEuler” will
use the forward euler plugin for integrating. List of all integration methods can be obtained by
running OpenSimRoot -L. maximumTimeStep=”0.1” would reduce the maximum timestep from the default
0.2 to 0.1.
-->
 <SimulaVariable name="photosynthesis" unit="g"
 function="photosynthesisLintulV2" />

<!--Declaration of how leafAreaIndex should be simulated, as it is needed by the
lightInterception plugin. -->

 <SimulaDerivative name="leafAreaIndex" unit="cm2/cm2"
 function="leafAreaIndex" />

<!--Declaration of how leafArea should be simulated, as it is needed by the leafAreaIndex plugin.
Here the initial leaf area is given. More time value pairs can be entered in order to specify a
predefined initial leaf area. The leafArea plugin will simulate increases in leaf area on the
basis of carbon allocation to the leafs, the specificLeafArea and the carbonToDryweight ratio,
all declared later on.--->

 <SimulaVariable name="leafArea" unit="cm2" function="leafArea">
 0. 1. </SimulaVariable>

<!--Same as leafArea, but then for leafDryWeight. -->

 <SimulaVariable name="leafDryWeight" unit="g"
 function="leafDryWeight.v2"> 0. 0.001 </SimulaVariable>

<!--Here follow more minimodels, all with their respective plugins declared -->

 <SimulaDerivative name="relativeCarbonAllocation2Leafs"
 unit="100%"
 function="relativeCarbonAllocation2LeafsFromInputFile" />
 <SimulaVariable name="carbonAllocation2Leafs" unit="g"
 function="carbonAllocation2Leafs" />
 <!-- optional to have stem weight -->
 <SimulaDerivative name="relativeCarbonAllocation2Stems"
 unit="100%"
 function="relativeCarbonAllocation2StemsOneMinusLeafs" />
 <SimulaVariable name="carbonAllocation2Stems" unit="g"

function="carbonAllocation2Stems" />
 <SimulaVariable name="stemDryWeight" unit="g"

function="stemDryWeight" />
 </SimulaBase>
 </SimulaConstant>

<!--In this simulation it was decided to declare the carbonToDryWeight ratio as a simple
constant. -->

 <SimulaConstant name="carbonToDryWeightRatio" unit="100%">
 0.45
 </SimulaConstant>

<!--Carbon allocation -->

 <SimulaDerivative name="relativeCarbonAllocation2Shoot"
 unit="100%"
 function="relativeCarbonAllocation2ShootFromInputFile" />
 <SimulaVariable name="carbonAllocation2Shoot" unit="g"
 function="carbonAllocation2Shoot" />

<!--Instead of using a process specific plugin to simulate the carbon available for growth, here
we use a general plugin named usePath which simply couples the carbon available for growth to
photosynthesis. Since this declaration as a child called “multiplier” the photosynthesis rates is
halved, so it is assumed that half of all carbon fixed by photosynthesis is converted to plant
dry mass, the rest is respired. -->

 <SimulaDerivative name="carbonAvailableForGrowth"
 unit="g" function="usePath">
 <SimulaConstant name="path" type="string">
 plantPosition/shoot/photosynthesis
 </SimulaConstant>
 <!-- half of carbon assumed to be respired -->
 <SimulaConstant name="multiplier">0.5</SimulaConstant>
 </SimulaDerivative>

<!--Some declarations related to roots -->

 <SimulaDerivative name="relativeCarbonAllocation2Roots" unit="100%"
function="relativeCarbonAllocation2RootsOneMinusShoot" />

 <SimulaVariable name="carbonAllocation2Roots" unit="g"
function="carbonAllocation2Roots" />

 <SimulaVariable name="rootDryWeight" unit="g" function="rootDryWeight" />

<!--The closing tags for the myPlant and Plants containers. -->

 </SimulaBase>
 </SimulaBase>

<!-- Environmental data needs to be declared, here all we need is irradiation in order to know
how much light is being captured for photosynthesis -->

 <SimulaBase name="environment">
 <SimulaBase name="atmosphere">
 <SimulaTable name_column1="time" name_column2="irradiation"
 unit_column1="day" unit_column2="umol/cm2/day">
 0 3000
 100 3000
 </SimulaTable>
 </SimulaBase>
 </SimulaBase>

<!-- here a parameter section for our plant is specified. -->

 <SimulaBase name="rootTypeParameters">
 <SimulaBase name="mySpecies">
 <SimulaBase name="resources">

<!--relativeCarbonAllocation to leafs (see above) uses a plugin in that simply looks up data from
a table. The table is declared here. SimulaTables have two columns. Each column has a name and a
unit declared in the attribute list. Here, as will be often the case, the first column is time.
This is time since the plant started growing, not since the start of the simulation. First all
carbon that is going to the shoot is allocated to leafs, later on more carbon is going to the
stems. Values in the table are interpolated linearly, unless a different interpolation method is
declared. Currently, only interpolation=”step” is implemented as alternative method. -->

 <SimulaTable name_colum1="time" unit_colum1="day"
 name_colum2="carbonAllocation2LeafsFactor" unit_colum2="100%">
 0 1
 10 0.8
 40 0.5
 60 0.
 80 0.
 </SimulaTable>

<!--How much carbon should go to the root. The rest goes to the shoot. -->

 <SimulaTable name_colum1="time" unit_colum1="day"
 name_colum2="carbonAllocation2RootsFactor" unit_colum2="100%">

 0 0.8
 10 0.2
 40 0.2
 80 0.2
 </SimulaTable>
 </SimulaBase>

<!--Declaration of several well known shoot related parameters. -->

 <SimulaBase name="shoot">
 <SimulaConstant name="areaPerPlant" unit="cm2">
 100
 </SimulaConstant>
 <SimulaConstant name="extinctionCoefficient" unit="noUnit">
 0.6
 </SimulaConstant>
 <SimulaConstant name="lightUseEfficiency" unit="g/umol">
 0.4E-6
 </SimulaConstant>
 <SimulaTable name_colum1="time" name_colum2="specificLeafArea"
 unit_colum1="day" unit_colum2="g/cm2" note="SLA in lintul">
 0 0.001
 10 0.002
 40 0.003
 80 0.003
 </SimulaTable>
 </SimulaBase>
 </SimulaBase>
 </SimulaBase>

<!--This section gives the user some control over the output.-->

 <SimulaBase name="simulationControls">
 <SimulaBase name="outputParameters">
 <SimulaBase name="table">

<!--A table should be written containing values for each minimodel, for every half day from day 0
to 80. Hierarchy will be traversed up to depth 10 -->

 <SimulaConstant name="run" type="bool"> 1 </SimulaConstant>
 <SimulaConstant name="searchingDepth" type="int"> 10
 </SimulaConstant>
 <SimulaConstant name="startTime" type="time"> 0.
 </SimulaConstant>
 <SimulaConstant name="endTime" type="time"> 80.
 </SimulaConstant>
 <SimulaConstant name="timeInterval" type="time"> 0.5
 </SimulaConstant>
 </SimulaBase>
 </SimulaBase>
 </SimulaBase>

<!--We are done -->

</SimulationModel>

User friendly viewing of XML input files
A webbrowser can transform this into more human friendly presentation using the attached tree-
view.xsl transformation style sheet (available for download at the gitlab repository
https://gitlab.com/rootmodels/OpenSimRoot). The result when you open this file in a browser is
given below.
OpenSimRoot Parametrization
OpenSimRoot uses a hierarchical xml formatted input file which is graphically presented below. The hierarchy gives the parameters context. For
example, the parameter 'specific leaf area' belongs to the shoot of a specific plant. In OpenSimRoot parameters can be a single value, a value
drawn from a distribution, or the result of an interpolation table.

https://gitlab.com/rootmodels/OpenSimRoot

 |___ Origin
 |___ 'plant'
 | |___ 'myplant'
 | |___ 'plantType' = mySpecies
 | |___ 'plantingTime' = 0 (day)
 | |___ 'plantPosition' = 0 -2 0
 | | |___ 'shoot'
 | | |___ 'lightInterception' (umol/cm2/day)
 | | |___ 'photosynthesis' (g)
 | | |___ 'leafAreaIndex' (cm2/cm2)
 | | |___ 'leafArea' (cm2) initial value = 1.
 | | |___ 'leafDryWeight' (g)
 | | |___ 'relativeCarbonAllocation2Leafs' (100%)
 | | |___ 'carbonAllocation2Leafs' (g)
 | | |___ 'relativeCarbonAllocation2Stems' (100%)
 | | |___ 'carbonAllocation2Stems' (g)
 | | |___ 'stemDryWeight' (g)
 | |___ 'carbonToDryWeightRatio' = 0.45 (100%)
 | |___ 'relativeCarbonAllocation2Shoot' (100%)
 | |___ 'carbonAllocation2Shoot' (g)
 | |___ 'carbonAvailableForGrowth' (g)
 | | |___ 'path' = plantPosition/shoot/photosynthesis
 | | |___ 'multiplier' = 0.5
 | |___ 'relativeCarbonAllocation2Roots' (100%)
 | |___ 'carbonAllocation2Roots' (g)
 | |___ 'rootDryWeight' (g)
 |___ 'environment'
 | |___ 'atmosphere'
 | |___ x,y pairs :{ 0 3000 100 3000 }
 |___ 'rootTypeParameters'
 | |___ 'mySpecies'
 | |___ 'resources'
 | | |___ 'carbonAllocation2LeafsFactor' (100%)=f{'time'} (day) x,y pairs :{ 0 1 10 0.8 40 0.5 60 0. 80 0. }
 | | |___ 'carbonAllocation2RootsFactor' (100%)=f{'time'} (day) x,y pairs :{ 0 0.8 10 0.2 40 0.2 80 0.2 }
 | |___ 'shoot'
 | |___ 'areaPerPlant' = 100 (cm2)
 | |___ 'extinctionCoefficient' = 0.6 (noUnit)
 | |___ 'lightUseEfficiency' = 0.4E-6 (g/umol)
 | |___ 'specificLeafArea' (g/cm2)=f{'time'} (day) x,y pairs :{ 0 0.001 10 0.002 40 0.003 80 0.003 }
 |___ 'simulationControls'
 |___ 'outputParameters'
 |___ 'table'
 |___ 'run' = 1
 |___ 'searchingDepth' = 10
 |___ 'startTime' = 0.
 |___ 'endTime' = 80.
 |___ 'timeInterval' = 0.5

User friendly editing of XML input files

Besides attaching a transformation sheet for transforming xml to html and view it in a
webbrowser, a XML schema (xsd) is available, which allows schema aware editors to provide
auto completion and validation of the input file. Below is a screenshot from an XML editor
(plugin in www.eclipse.org) which shows the declaration of the schema, and a pop down menu
for the available arguments for SimulaTable, and the different values that the objectGenerator
argument can have.

http://www.eclipse.org/

Figure S6.1: Screenshot of XML editor in eclipse in which a new file was created, using the new
file wizard. The schema is declared with
“xsi:noNamespaceSchemaLocation="../scripts/XML/SimulaXMLSchema.xsd"”
and the black and the black and white pop up boxes show suggestions, as defined in the
schema.

Note S7: Diagram of all state variables and their dependencies in an exemplar
bean simulation

We drew a graph which contains the various state variables in an example simulation and the
dependencies among them. Each state variable is simulated by a SimulaObject, here we depicted
SimulaConstants, SimulaTables and SimulaStochastic as wedges, whereas all others are depicted
as a rounded boxes. The arrows indicate information flow, that is the result of one minimodel
goes into the computation of another. The network is strongly dependent on the input file, and
somewhat dependent on time, given that computations might switch on given conditions and
should thereby be regarded as exemplar. To properly view the graph, enlarge the pdf strongly.

Figure S7.1: Graph representing all the state variables in a bean simulation, and their connections
at day 12. For better viewing, enlarge by about 1200%.

OpenSimRoot

D90

roots below d90 for nutrient

stress factor:impact on:root potential longitudinal growth multiplier

Swms3d

top boundary flux rate bottom boundary flux rate total sink rate total mineralization rate nutrient concentration at the root surface volumetric water content at the root surface

top boundary flux bottom boundary flux total sink total mineralization

root water uptake

carbon allocation to roots

root growth scaling factor

root growth scaling factor;major axissecondary root growth scaling factor

carbon allocation to shoot

carbon allocation to leafs carbon allocation to stems

carbon available for growth

relative carbon allocation to shoot

carbon reserves

carbon to dry weight ratio

plant carbon income

reserves

leaf area

leaf potential carbon sink for growth

stem dry weight

root segment potential carbon sink for growth

root segment secondary potential carbon sink for growth

nutrient stress factor

stress factor stress factor:impact on:leaf area expantion rate stress factor:impact on:leaf respirationstress factor:impact on:photosynthesis stress factor:impact on:root segment carbon cost of exudates stress factor:impact on:root segment respirationstress factor:impact on:root segment secondary growth stress factor:impact on:stem respiration

plant minimal nutrient content

plant nutrient fixation

root carbon cost of biological nitrogen fixation

plant nutrient uptake

root carbon cost of nutrient uptake

plant optimal nutrient content

plant dry weight

plant potential carbon sink for growth

plant respiration

relative carbon allocation to roots

root carbon costs

root carbon cost of exudates

root dry weight

root longitudinal growth

root length

root potential carbon sink for growth

root respiration

root secondary potential carbon sink for growth

growthpoint

root nutrient uptake

root optimal nutrient content

root segment optimal nutrient content

root length to base

root segment length

root segment water uptake

root potential carbon sink for growth;major axis root surface area root volume

root diameter

shoot dry weight

shoot potential carbon sink for growth

shoot respiration

stress adjusted potential leaf area

leaf respiration

photosynthesis

root segment carbon cost of exudates root segment respiration

stem respiration

leaf area index leaf area reduction coefficient leaf dry weight

light interception root potential secondary growth leaf minimal nutrient content leaf optimal nutrient content

stem potential carbon sink for growth

stem minimal nutrient contentstem optimal nutrient content

potential transpiration

potential leaf area

relative carbon allocation to leafs

relative carbon allocation to stems

root minimal nutrient content

root segment minimal nutrient content

root segment surface area root segment volume

root segment nutrient uptake

root potential longitudinal growth

ImaxKm

root segment dry weight

spatial root density

root hair surface area

threshold

planting time

default spatial integration length

start timetime interval total solute in column total solute change total water in column total water change in columnbulk density

irradiation

carbon content CNratio speed of aging initial relative mineralisation rate assimilation efficiency microbes CNRatio microbes time offset

impact by:phosphorus

initial hydraulic head residual water content saturated water content van genuchten:alpha van genuchten:n saturated conductivity

volumetric water content in barber cushman

PAR/ RDD

precipitation evaporation concentration

carbon cost of nitrate uptake

saturated diffusion coefficient longitudinal dispersivity transverse dispersivity adsorption coefficient

diffusion coefficient buffer power r1-r0 increase time step

impact by:nitrate

carbon cost of biological nitrogen fixation

relative reliance on BNF

max carbon allocation to secondary growth

max carbon allocation to shoot

seed size seed reserve duration

carbon allocation to leafs factor

Cto dry weight ratio

relative potential transpiration

extinction coefficient

specific leaf area

light use efficiency

area per plant

branching frequency

branching delay

density

length root tip longitudinal growth rate multiplier

leaf area expantion rate

growth rate

diameter

secondary growth rate secondary growth scaling factor

initial nutrient uptake

leaf optimal nutrient concentrationleaf minimal nutrient concentration

stem optimal nutrient concentration stem minimal nutrient concentration

optimal nutrient concentrationminimal nutrient concentration

Cmin

relative respiration rate leafs relative respiration rate stems

relative respirationrelative carbon cost of exudation

root hair length root hair diameter root hair density

soil impedence.v2 gravitropism.v2 branching angle

leaf nutrient uptake stem nutrient uptake

growth rate multiplier

	New Phytologist Supporting Information
	Note S1: Application programming interface (API) of the SimulaBase class
	//Method to retrieve meta data on a given minimodel such as its name, path in the hierarchy, lifetime of the object, and its units.
	//Methods to navigate the minimodel hierarchy
	//Method for walking along a root axis. Retrieves the minimodel with the same
	//Methods to retrieve specific subsets of minimodels based on position
	//Methods for retrieving data
	//Method for setting data, probably only implemented for timetables.
	//Methods to retrieve info on timestepping of a minimodel
	//Methods to control garbage collection, which will basically clean up the simulation history
	//Other methods

	Note S2: Command line interface (CLI) of OpenSimRoot: How to run and use the model
	Note S3: Class hierarchy of OpenSimRoot code
	Minimodels
	Inherited from DerivativeBase

	Below is a list of all the plugins that directly, or indirectly, inherit from DerivativeBase and can be used by SimulaVariable, SimulaPoint or SimulaDerivative for computation.
	Integration functions
	Object generators

	Note S4: Plugin example code
	Note S5: Detailed description of the water and nutrient submodules
	Watermodule

	Note S6: Example of a simple OpenSimRoot input file
	OpenSimRoot Parametrization

	Note S7: Diagram of all state variables and their dependencies in an exemplar bean simulation

