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Figure S1. Conservation of P. merdae PmC11 cysteine protease (red) across a small sampling of commensal 
bacterial strains. MEROPS1 entry numbers for each C11 protease are shown.  
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Figure S2. Incubation of 5 µM inactive zymogen C179A PmC11 and 50 nM active WT PmC11 for 3 hr at 37 °C 
demonstrates proteolytic activity of the exogenously purified PmC11. The protease is most active at pH 8.0 
and addition of 10 mM DTT to the activity buffer does not affect catalytic efficiency. Activity buffers consist of 
10 mM citrate or phosphate, 50 mM NaCl, 0.1% CHAPS with and without 10 mM DTT. Large and small 
domains of the WT PmC11 are denoted relative to the large and small cleavage products of the C179A mutant.  
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Figure S3. Similar to Figure S1, incubation of 5 µM inactive zymogen C179A PmC11 and 50 nM active WT 
PmC11 demonstrates proteolytic activity is improved by the presence of CaCl2 and 0.1% CHAPS to the buffer 
consisting of 10 mM phosphate, pH 8.0, 50 mM NaCl, and 2 mM DTT. 
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Figure S4. Proposed cleavage site of C179A protein by WT PmC11 with sequence SLTK250 in magenta is on 
the opposite side of the protein relative to the active site. The mature cleavage site between Lys147 and 
Ala148 are labeled.  
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Figure S5. A. Inhibition of 25 nM PmC11 by Ac-VLTK-AOMK (A) and E64 (B) shows the strong potency of the 
inhibitor with an IC50 <25 nM and only ~30% inhibition, respectively.  
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Figure S6. Naïve density map for Ac-VLTK after molecular replacement with model PDB 3UWS. Final density 
map is shown below.   
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Figure S7. DALI search results demonstrate PmC11 has structural similarities with other proteases, including 
B. fragilis Cys protease fragipain (PDB ID: 5DYN)2, human caspases (PDB ID: 4JJE)3 as well as human 
integrin (PDB ID: 1N3Y)4. The commonalities of the structures consists of a mixed β-sheet protected by α-
helices above and below the plane of the sheet. The active site His and Cys residues of the proteases 
superimpose and have highly conserved spatial orientation. All active site His and Cys residues are labeled 
and the putative binding site residues of human integrin, located on the same side of the β-sheet as the active 
sites of the cysteine proteases, are highlighted in magenta.  
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Table S1. PmC11:Ac-VLTK-AOMK co-complex X-ray data processing and structure refinement statistics 

 
Structure PmC11:Ac-VLTK-AOMK 
PDB ID 4YEC 
Space group P21 
Unit Cell Parameters (a,b,c) (Å) 38.89, 107.34, 40.94 
Unit Cell Angles (z,y,z)  90.0, 116.59, 90.0 
Data Processing  
Resolution range (Å) (outer shell) 36.6-1.12 (1.14-1.12) 
Unique reflections 90,762 (846) 
Completeness (%) 79.0 (14.6) 
Redundancy 3.0 (1.2) 
Rmeas (%)1 12.6 (46.2) 
Rmerge (%)2 16.0 (29.4) 
Rp.i.m. (%)3 6.7 (32.7) 
Average I/Average s(I) 9.3 (2.1) 
Refinement  
Resolution range (Å) 36.6-1.12 (1.15-1.12) 
No. reflections4 (test set) 90,707 (1,310) 
Rcryst (%)5 15.8 (25.2) 
Rfree (%)5 19.1 (39.6) 
Protein atoms / Waters 2890 / 284 
CV6 coordinate error (Å) 0.10 
Rmsd bonds (Å) / angles (º) 0.011 / 1.39 
B-values protein/waters/peptide ligand (Å2) 22.6 / 38.1 / 39.5  
Ramachandran Statistics (%)  
Most favored 96.4 
Additional allowed 3.3 
Generously allowed 0.3 

1) Rmeas = {Σhkl[N/(N-1)]1/2Σi|Ii(hkl) - <I(hkl)>|}/ΣhklΣi Ii(hkl), where Ii(hkl) are the observed intensities, <I(hkl)> 
are the average intensities and N is the multiplicity of reflection hkl. 2) Rmerge = ΣhklΣi|Ii(hkl) -<I(hkl)>|/ ΣhklΣiIi(hkl) where Ii(hkl) is 
the ith measurement of reflection h and < I(hkl)> is the average measurement value. 3) Rp.i.m. (precision-indicating Rmerge) = 
Σhkl[1/( N hkl – 1) ]1/2Σi|Ii(hkl) - <I(hkl)>|/ΣhklΣiIi(hkl). 4) Reflections with I > 0 were used for refinement.5-7 5) Rcryst = Σh||Fobs|-
|Fcalc||/Σ|Fobs|, where Fobs and Fcalc are the calculated and observed structure factor amplitudes, respectively. Rfree is Rcryst 
with 5.0% test set structure factors. 6) Cross-validated (CV) Luzzati coordinate errors. 
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