
Figure S1. Related to Figure 2. Behavioral results from the post-scan picture test in each fMRI 
Experiment. After finishing all 14 learning rounds and the localizer scan subjects exited the scanner 
and completed the picture test. On each trial, subjects were shown a static picture drawn from one of 
the route stimuli (see STAR Methods). Directly below each picture was a set of destination names. 
Subjects were instructed to select the destination name corresponding to the route picture. In 
Experiment 1, each trial had 4 destination options corresponding to: the target destination; the 
overlapping route destination (‘competitor’); and the two non-overlapping route destinations (‘other’). 
In Experiment 2 all of the routes studied by each subject ended in one of two possible destinations. 
Therefore, on each trial, the two destination options corresponded to either the target destination or 
the overlapping route destination (‘competitor’). Analyses were restricted to pictures drawn from 
Segment 1 of each route (i.e., the segments that contained overlap) in order to test discrimination of 
the overlapping routes. In both experiments subjects successfully learned to discriminate between 
the overlapping routes as evidenced by a higher percentage of target responses than competitor 
responses (Experiment 1: t19 = 8.59, p = 0.00000006; Experiment 2: t20 = 6.44, p= 0.000003). In 
Experiment 1, subjects were more likely to select the competitor destination than one of the ‘other’ 
destinations (t19 = 11.52, p < 0.00000001), indicating that route overlap contributed to memory 
interference. Error bars reflect +/- SEM. *** p < 0.001 



Figure S2. Related to Figure 3. Learning-related changes in spatiotemporal pattern similarity 
(Segment 1 only) for each fMRI Experiment.  (A) In each fMRI Experiment, there was a significant 
learning-related decrease in the similarity of hippocampal representations of overlapping routes 
relative to non-overlapping routes (Experiment 1: F1,19 = 5.99, p = 0.024; Experiment 2: F1,20 = 8.02, 
p = 0.010). Furthermore, the reversal effect (overlapping route similarity < non-overlapping route 
similarity) was significant in the 2nd half of learning for each Experiment (Experiment 1: t19 = 3.03, p 
= 0.007; Experiment 2: t20 = 2.28, p = 0.034). (B) Within PPA, the interaction between learning half 
(1st vs. 2nd) and overlap (overlapping vs. non-overlapping routes) was not significant in Experiment 
1 (F1,19 = 0.45, p = 0.51). In both the 1st and 2nd halves of learning, overlapping route similarity was 
significantly greater than non-overlapping route similarity (1st half: t19 = 4.56, p = 0.0002; 2nd half: 
t19 = 4.76, p = 0.0001). In Experiment 2, however, the interaction between learning half (1st vs. 2nd) 
and overlap (overlapping vs. non-overlapping routes) was significant (F1,20 = 5.19, p = 0.034), 
reflecting a relative decrease in overlapping route similarity across learning. Whereas overlapping 
route similarity was greater than non-overlapping route similarity in the 1st half of learning (t20 = 2.27, 
p = 0.034), there was no difference between overlapping and non-overlapping route similarity in the 
2nd half of learning (t20 = 0.55, p = 0.59). Error bars reflect +/- SEM. * p < 0.05, ** p < 0.01, *** p < 
0.001. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S3. Related to Figure 3. Hippocampal spatiotemporal pattern similarity (Segment 1 
only) computed every two runs.  Qualitatively, there was no evidence for a reversal effect 
(overlapping route similarity < non-overlapping route similarity) until run 9. However, because each 
run contained only two repetitions of each route, this analysis was under-powered relative to the 
main analyses split by learning half.  
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		

 



Figure S4. Related to Figure 3. Comparison of learning-related changes in spatiotemporal 
pattern similarity (Segment 1 only) for hippocampus vs. cortical regions. In addition to PPA 
(our primary control region), we also measured learning-related changes in spatiotemporal pattern 
similarity in cortical regions involved in spatial navigation [retrosplenial cortex (RSC)], object 
processing [lateral occipital cortex (LO)], and medial temporal lobe cortex more generally (MTL 
cortex). (A) Cortical regions of interest from a sample subject are displayed on the subject’s T1 
anatomical scan. (B) The hippocampus is the only region in which overlapping route similarity 
dropped below non-overlapping route similarity (reversal effect) in the 2nd half of learning. This was 
confirmed by significant interactions between overlap (2nd half similarity for overlapping vs non-
overlapping routes) and regions of interest [hippocampus vs. MTL:  F1,39 =  10.84, p = 0.002 ; 
hippocampus vs. RSC: F1,39 = 10.23, p = 0.003; hippocampus vs. LO: F1,39 = 14.70, p = 0.0004; 
hippocampus vs. PPA:  F1,39 = 22.18, p = 0.00003]. Thus, the representational end-states of learning 
were qualitatively different in the hippocampus compared to cortex. (C) Segment 1 pattern similarity 
for each condition and learning half for the hippocampus (identical to Figure 3C, but shown for 
comparison), MTL cortex, RSC, and LO. Among the cortical regions, RSC was the only region that 
showed a significant decrease in overlapping route similarity across learning, relative to non-
overlapping route similarity (F1,39 = 4.45, p = 0.041). This effect was marginal in LO (F1,39 = 3.26, p = 
0.079) and not significant in MTL cortex (F1,39 = 1.36, p = 0.25). In all three regions, overlapping 
route similarly was significantly greater than non-overlapping route similarity in the 1st half of learning 
[MTL cortex: F1,39= 6.27, p = 0.016; RSC: F1,39 = 16.10, p = 0.0003; LO: F1,39 = 12.87, p = 0.0009] 
and there was no difference between overlapping and non-overlapping route similarity in the 2nd half 
of learning [MTL cortex: F1,39 = 0.16, p = 0.069; RSC: F1,39 = 0.11, p = 0.74; LO: F1,39 = 0.76, p = 
0.39]. Error bars reflect +/- SEM. ~ p <0.1 * p < 0.05, ** p < 0.01, *** p < 0.001  



Figure S5. Related to Figure 6. Bayesian curve-fitting analysis.   To more formally assess the 
non-monotonic relationship between 1st half and 2nd half timecourse similarity, we used a Bayesian 
curve-fitting algorithm–the Probablistic Curve Induction and Testing Tooblbox (P-CIT) [S1] that was 
specifically developed to test for non-monotonic plasticity. Relative to quadratic trend analyses, the 
P-CIT algorithm allows for a more detailed specification of a predicted curve shape, by explicitly 
including a set of curve parameters. In our case, the parameters describe the relationship between 
first-half timecourse similarity (x-axis) and second-half timecourse similarity (y-axis). We 
parameterized the predicted curve shape using previously described parameters that reflect the 
prediction of non-monotonic plasticity [S2]. Specifically, the predicted curve was defined as one in 
which the function, when moving from left to right, drops below the initial start value and then rises 
above the start value. The first step of the P-CIT algorithm is to estimate a curve shape given the 
data. To accomplish this, the algorithm estimates a probability distribution over possible curves, 
conditional on the observed data, by randomly sampling curve shapes and then assigning each 
sampled curve an importance weight indicating how well the curve’s shape fit the observed 
data. It then estimates a curve by averaging the sampled curves together, weighted by their 
importance values. The next goal of the algorithm is to evaluate the level of evidence in favor of the 
predicted curve shape. It does so by labeling each sample curve as theory consistent (in our case, if 
it drops below the starting value and then rises above the starting value) or inconsistent, and then 
computes a log Bayes factor value that represents the log ratio of evidence in favor of or against the 
predicted shape [S3]. Positive log Bayes factor values indicate greater evidence in favor of the 
theory. For this analysis, we re-binned all of the 1st-half timecourse similarity values into 60 bins (5 
voxels per bin) in order to allow for greater variability in the observed curve shape. This analysis 
used data aggregated across all subjects. (A) The estimated curve was consistent with the predicted 
curve shape (log Bayes factor = 1.51) and explained a significant amount of variance in the actual 
(X2 = 11.13, p = 0.0008). Shaded area reflects the 90% credible interval. (B) We next ran a 
permutation test to estimate the null distribution of log Bayes Factor values. Out of 500 
permutations, only 2.6% yielded log Bayes factor values that matched or exceeded the value 
obtained from the un-permuted data, indicating that it was unlikely to obtain this level of support for 
the predicted curve shape by chance. Finally, to assess the population-level reliability of the non-
monotonic curve we ran a bootstrap resampling test in which we iteratively resampled data from 
subjects with replacement and then computed the log Bayes factor value for each iteration. Four-
hundred and eighty-eight of the 500 bootstrap iterations (97.6%) yielded positive log Bayes factor 
values. Thus, the curve-fitting analyses provided additional evidence for a non-monotonic 
relationship between voxel overlap at the beginning vs. end of learning: that is, hippocampal voxels 
that were ‘moderately shared’ across overlapping routes at the beginning of learning were the ‘least 
shared’ by the end of learning. 



Figure S6. Related to Figure 6. Consistency of voxel timecourse similarity binning across 
overlapping route pairs. (A) Voxels within each ROI (hippocampus, PPA) were binned into three 
groups (weak, moderate, or strong) based on their 1st half timecourse similarity across overlapping 
pairs. Importantly, this binning was independently repeated for each pair of overlapping routes. 
Thus, a given voxel might be in the “weak” bin (low timecourse similarity) for one pair of overlapping 
routes, but in the “strong” bin (high timecourse similarity) for a different pair of overlapping routes. To 
measure the consistency of voxel bins across pairs (i.e. to test whether a voxel’s bin for one pair of 
overlapping routes predicted its bin for another pair of overlapping routes) we computed the 
percentage of voxels within each ROI, for each subject, that were placed in the same bin across 
overlapping route comparisons. [Note: for each subject, there were exactly two pairs of overlapping 
routes]. Chance ‘performance’ for this measure would be 33.3%–anything above chance would 
indicate some degree of consistency in voxel binning across route pairs. Hippocampal voxels were 
not consistently binned across overlapping routes, with the measure of consistency falling right at 
chance.  The consistency values were slightly higher in PPA.  However, even in PPA, the values 
were below 36%, which means the overall consistency of binning was quite low. This indicates 
that the binning of voxels according to timecourse similarity was idiosyncratic for each overlapping 
route pair. Error bars reflect +/- SEM. (B) Histograms showing distributions of timecourse similarity 
values, pooling across all subjects, route pairs, and voxels. Note: count values are higher for the 
non-overlapping routes because there are more non-overlapping route pairs than overlapping route 
pairs.		
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