

Figure S1 (related to Figure 1 and 2): Netrin1 is required for spinal axon orientation and fasciculation

(A-D) All spinal axons, including NF⁺ axons and the Robo3⁺ and Tag1⁺ commissural axons avoid the Sox2⁺ VZ in E11.5 spinal cords (D). High magnification images (inset in A is shown in B) show that there is a precise, inverse relationship between all spinal axons and Sox2⁺ neural progenitors (B).

(E, F) NF⁺ axons grow just adjacent to the VZ in control spinal cords (yellow dotted line, E). Robo3⁺ commissural axons project in a tightly fasciculated bundle, between the motor column and the VZ (arrows, F) as they extend towards the ventral midline.

(G, H) In contrast, axons profusely extend into the VZ in *netrin1^{lacZ/lacZ}* mutant, while Robo3⁺ are completely defasciculated in the ventral spinal cord, extending over the motor column (arrows, H).

Scale bar: 100 µm

Figure S2 (related to Figure 4): Axons are only mildly perturbed in Unc5 mutants

(A-L Transverse sections of E11.5 control (A-F), $Unc5a^{-/-}$ (G-I) and $Unc5c^{-/-}$ (J-L) mouse spinal cords mouse spinal cord.

(A) *Dcc* is expressed at high levels in many post-mitotic neurons in the dorsal spinal cord and at lower levels in the ventral spinal cord, including the motor columns, at all levels of the spinal cord.

(B) *Unc5a* is expressed transiently in the dorsal VZ and then subsequently in the motor columns.(C) *Unc5c* is present both in the motor columns and in the DRGs at later stages.

(D-F) Dcc protein is present in at high levels in a broad swathe of commissural axons extending to the FP, and at low levels in the motor columns (E). It is not present in the $Sox2^+ VZ$ (F).

D-F, K-N), labeled with antibodies against NF (red), Robo3 (green) and Tag1 (blue).

(G-I) In the absence of Unc5a, there is a modest increase in the numbers of NF⁺ axons projecting into zone 4 (H), however Robo3⁺ commissural axons extend in an analogous manner to control littermates (I).

(J-L) Similarly a few NF⁺ axons extend into zone 3 and 4 in *Unc5c* mutants (K), while the the Robo3⁺ commissural axon trajectory is undistinguishable from controls (L). There is more robust $Unc5c^{-/-}$ axon growth into zone 2; however, these latter projections are NF⁺ Tag1⁺ Robo3⁻ (arrows, K). This profile suggests that they not spinal axons, rather they are DRG axons precociously innervating the spinal cord as previously described (Masuda et al., 2008). (M) The trajectories of NF⁺ spinal axons in *Unc5* mutants are considerably less perturbed that those in *Dcc* mutants (Figure 4P). Control: n=36 sections from 5 embryos, *Unc5a^{-/-}*: n=67 sections from 7 embryos and *Unc5c^{-/-}*: n=57 sections from 4 embryos.

Movie S1 (related to Figure 3)

Transverse sections of E11.5 thoracic mouse spinal cord processed for netrin1 (red), nestin (green) and laminin (blue) staining. A series of Imaris renderings permits the visualization of all netrin1 labeling, following by the netrin1 specifically associated with nestin and then laminin.

Movie S2 and S3 (related to Figure 4)

Transverse sections of E11.5 thoracic control (movie 2) and *Dcc* mutant (movie 3) mouse spinal cord processed for netrin1 (red) and NF (green). Imaris rendering permits the visualization of netrin1 labeling specifically associated with NF⁺ axons.