
S1 Appendix: Optimization modeling framework

We formulate two optimization models (primary and secondary) and employ a post-processing

step, which together allocate available discretionary doses to locations and, in turn, to pre-

specified priority groups, seeking proportional fairness with policy simplicity and geographic

equity in mind. The objective of the primary model is proportional fairness while the objec-

tives of the secondary model are policy simplicity and geographic equity. We describe the

two models and the post-processing step in detail below.

Primary optimization model

We index locations (counties in our analysis) by i ∈ I, priority groups by j ∈ J , and vaccine

types by k ∈ K. The set Kj denotes vaccine types acceptable for priority group j, L

denotes location-priority group pairs (i, j), and G denotes location, priority-group, vaccine-

type triples, i.e., all (i, j, k) such that k ∈ Kj and (i, j) ∈ L. Prior coverage of priority

group j in location i is given by fij = (
∑

k∈Kj
mijk)/nij, where mijk is the number of doses

of vaccine type k previously allocated to location-priority group pair (i, j), and nij is the

population size of location-priority group pair (i, j). If fij ≥ 1 then we exclude (i, j) from

the eligibility set L. Finally, bk denotes the number of doses of vaccine type k available for

discretionary allocation, and wij denotes the importance weight, i.e., precedence, assigned

to location-priority group pair (i, j).

The decision variables, Qijk, allocate discretionary doses of type k to location-priority group
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pair (i, j). The optimization model is as follows:

min
Q

∑
(i,j)∈L

wijnij

[
1− 1

wij

(
fij +

∑
k∈Kj

Qijk

nij

)]2
(1a)

s.t.
∑

(i,j):(i,j,k)∈G

Qijk ≤ bk,∀k ∈ K (1b)

fij +

∑
k∈Kj

Qijk

nij

≤ 1,∀(i, j) ∈ L (1c)

Qijk ≥ 0,∀(i, j, k) ∈ G. (1d)

If all location-priority group pairs are equally important (i.e., all weights wij are set to one)

then the objective function in (1a) is the sum of the squares of vaccine shortfalls,

1−

(
fij +

∑
k∈Kj

Qijk

nij

)
,

weighted by the location-priority group population sizes across all such pairs. In the opti-

mization model, we minimize this sum of population-weighted shortages. Below, we provide

sufficient conditions under which model (1)’s optimal allocations maximize proportional fair-

ness.

Constraint (1b) ensures that the allocated doses of vaccine type k do not exceed the available

doses; constraint (1c) indicates that coverage cannot exceed one for any eligible location-

priority group pair; and, constraint (1d) precludes negative allocations.

We add weights (wij ≥ 1) for each location-priority group pair to acknowledge their rela-

tive importance, where the value of the least important location-priority group pair under

consideration is one. When the weights differ, instead of seeking equal coverage for priority
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groups in each location, we seek equal coverage when weighted by the proportionality con-

stants, wij. So, if one location-priority group pair has twice the weight of another, we seek

twice the coverage rate for the higher priority pair. As Theorem 1 shows, this can indeed

be achieved for two location-priority group pairs under the following conditions: (i) both of

their final coverage rates, after discretionary doses are allocated, are less than one, and (ii)

these two pairs have at least one common type of available discretionary vaccines allocated

in an optimal solution.

With the proper inputs, model (1) provides an optimal allocation, denoted Q∗ijk, and, in

turn, the optimal coverage rate of each pair, denoted gij, i.e.,

gij = fij +

∑
k∈Kj

Q∗ijk

nij

. (2)

Here, we show that the objective function in (1a), when combined with the constraints (1b)-

(1d), seeks to provide an allocation of available discretionary doses in a manner of propor-

tional fairness.

Theorem 1. By using model (1) to allocate available discretionary vaccine doses, the optimal

coverage rates of two location-priority group pairs, (i, j) and (i′, j′), denoted gij and gi′j′, are

proportional to their weights, wij and wi′j′, if (i) both gij and gi′j′ as defined in equation (2)

are less than 1; and, (ii) (i, j) and (i′, j′) have a common type of available discretionary

vaccine allocated in an optimal solution.

Proof. Let λk and νij be the Lagrange multipliers of constraints (1b) and (1c), respectively.

Let F (Q) denote the objective function in (1a). Then, we have

∂F

∂Qijk

= 2

[
−1 +

1

wij

(
fij +

∑
k∈Kj

Qijk

nij

)]
.

As a result, the Karush-Kuhn-Tucker optimality conditions for the convex quadratic pro-

gram (1) (see, e.g., [1]) are then:
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Primal feasibility: constraints (1b), (1c), and (1d)

Dual feasibility:

λ∗k +
ν∗ij
nij

≥ 2

[
1− 1

wij

(
fij +

∑
k∈Kj

Q∗ijk

nij

)]
,∀(i, j, k) ∈ G (3a)

λ∗k ≥ 0,∀k ∈ K (3b)

ν∗ij ≥ 0,∀(i, j) ∈ L (3c)

Complementary slackness:

λ∗k

bk − ∑
(i,j):(i,j,k)∈IJK

Q∗ijk

 = 0,∀k ∈ K (4a)

ν∗ij

[
1−

(
fij +

∑
k∈Kj

Q∗ijk

nij

)]
= 0,∀(i, j) ∈ L (4b)

Q∗ijk

{
λ∗k +

ν∗ij
nij

− 2

[
1− 1

wij

(
fij +

∑
k∈Kj

Q∗ijk

nij

)]}
= 0,∀(i, j, k) ∈ G. (4c)

Consider two (i, j) and (i′, j′) pairs that satisfy hypotheses (i) and (ii). By hypothesis (i)

and complementary slackness condition (4b), we have ν∗ij = ν∗i′j′ = 0. By hypothesis (ii), we

have Q∗ijk > 0 and Q∗i′j′k > 0 for some k and hence by (4c) for that k:

2− λ∗k
2

=
1

wij

(
fij +

∑
k∈Kj

Q∗ijk

nij

)
=

1

wi′j′

(
fi′j′ +

∑
k∈Kj

Q∗i′j′k

ni′j′

)
.

Using the definition of gij from equation (2), we have

gij
gi′j′

=
wij

wij′
.
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Secondary optimization model

We index geographic health service regions by h ∈ H. We form three more index sets: Ih, O,

and P , where Ih is the subset of counties in region h; O is the subset of priority group-vaccine

type pairs (O ⊆ J ×K) for which priority group j is suitable for vaccine type k; and, P is

the subset of region, priority group, vaccine type triples (P ⊆ H × J ×K), which indicates

priority group-vaccine type pairs in region h with (j, k) in set O.

We define decision variables Vjk, Yhjk, and Y jk: Vjk is a binary variable, which takes value 1

if we allocate discretionary doses of type k to priority group j and takes value 0 otherwise;

Yhjk is the regional coverage of priority group j in region h from discretionary doses of type

k; and, Y jk is the average regional coverage of priority group j from discretionary doses of

type k. Instead of requiring the optimal coverage levels from the primary model, we allow

the final coverage of a location-priority group pair to be at most ε away from optimality to

provide more opportunity to improve secondary objectives. In our analysis presented in the

main text, we use ε = 0.001.

The secondary optimization model is as follows:

min
Q,V,Y,Y

∑
(j,k)∈O

Vjk +
∑

(h,j,k)∈P

|Yhjk − Y jk|
|H|

(5a)

s.t.
∑

(i,j):(i,j,k)∈G

Qijk ≤ bk,∀k ∈ K (5b)

fij +

∑
k∈Kj

Qijk

nij

≤ 1,∀(i, j) ∈ L (5c)

Qijk ≥ 0,∀(i, j, k) ∈ G (5d)

fij +

∑
k∈Kj

Qijk

nij

≥ gij(1− ε),∀(i, j) ∈ L (5e)∑
i∈I:(i,j,k)∈G

Qijk ≤M · Vjk,∀(j, k) ∈ O (5f)

Yhjk =

∑
i∈Ih:(i,j,k)∈GQijk∑
i∈Ih:(i,j)∈L nij

,∀(h, j, k) ∈ P (5g)
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Y jk =

∑
h∈H Yhjk

|H|
,∀(j, k) ∈ O (5h)

Vjk ∈ {0, 1},∀(j, k) ∈ O. (5i)

The objective function in (5a) consists of two terms. The first term represents the number

of vaccine type-priority group pairs that receive doses, and the second term measures the

variation of vaccine types allocated across health service regions. In order to understand the

second term, fix a (j, k) pair for the moment. As defined mathematically in constraints (5g)

and (5h), Yhjk is the regional coverage of priority group j in region h that comes from

discretionary doses of vaccine type k, and Y jk is its average across all health service regions.

The average absolute deviation,

∑
h∈H

|Yhjk − Y jk|
|H|

,

represents the dispersion vaccine type k contributes to the coverage of priority group j among

regions. By summing this average absolute deviation across j ∈ J , we obtain the dispersion

vaccine type k contributes to the coverage among regions. Lastly, we sum across k ∈ K to

form a measure of variation of vaccine types allocated among health service regions. We

could assign different weights to the two terms in (5a) to adjust the relative importance of

policy simplicity and geographic equity. However, we obtain desirable results, as we describe

in the main text, with equal weights.

In addition to constraints (5b)-(5d), which replicate constraints from the primary model, we

have five other sets of constraints to satisfy. Constraint (5e) ensures that the final coverage

of a location-priority group pair is no more than ε away from the optimal proportionally fair

coverage of the primary model. Constraints (5f) and (5i) calculate the number of vaccine

type-priority group pairs that receive doses using the “big M” method, where M is a constant

that is large enough so that constraint (5f) is vacuous if Vik = 1. Constraints (5g) and (5h)
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define Yhjk and Y jk for measuring the variation of vaccine types allocated among health

service regions.

Model (5) takes as input the optimal proportionally fair coverage rates (gij) from the primary

model. Then, model (5) provides an optimal allocation, denoted Q∗∗ijk, and the associated

coverage rate of each location-priority group pair, which considers proportional fairness and

the secondary objectives.

Post-processing for integer-valued allocations

By using the primary and secondary models, we allocate available discretionary doses to

eligible location-priority group pairs in a proportionally fair manner with two secondary ob-

jectives. However, these two models ignore integrality of vaccine doses. Hence, we construct

a post-processing step to find a near-optimal solution that allocates integer-valued discre-

tionary doses. First, for each vaccine type k, we round each Q∗∗ijk from model (5) down to

the nearest integer, denoted bQ∗∗ijkc. Next, we calculate the difference between the sum of

Q∗∗ijk across all (i, j) pairs in subset L and that of bQ∗∗ijkc. This difference represents extra

doses from the fractional part of each Q∗∗ijk. We sort eligible (i, j) pairs in descending order

of their fractions and add one dose to each bQ∗∗ijkc by this order until all the extra doses are

allocated.

Computation

The primary and secondary optimization models are solved using the commercial software

modeling language GAMS [2], which calls the CPLEX [3] optimization solver. We can run

the software to solve the models on a server at http://flu.tacc.utexas.edu/ or on a

laptop. On a 1.7 GHz Intel Core i7 MacBook Air using GAMS version 24.7.3 and CPLEX

version 12.6.3, the three-step solution process takes about 4 seconds for a single value of the

discretionary reserve (e.g., 6.8%). This computation time includes the software creating a
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model instance from input data, solving the primary and secondary models, and performing

the post-processing step.
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