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Discussion 

Our findings reveal unique roles for the methylation states of histone H3K9 in RNAi-dependent and -

independent heterochromatin formation. Clr4 is the sole S. pombe enzyme responsible for H3K9 di- and tri-

methylation. Our generation of active site mutations in Clr4 that impair or completely block H3K9me3 

(Clr4I418P and Clr4F449Y, respectively), but allow H3K9me2 catalysis, made it possible to investigate the role of 

each modification in heterochromatin formation.  

First, we found that H3K9me2 defines a transcriptionally permissive chromatin state that is sufficient for 

the H3K9me-dependent recruitment of RNAi, siRNA amplification, and the spreading of H3K9me at 

pericentromeric DNA repeats (Fig. 4f). The cooperative association of the RITS complex with pericentromeric 

DNA repeats therefore requires the interaction of its siRNA-programmed Ago1 subunit with nascent noncoding 

pericentromeric transcripts and its Chp1 subunit with H3K9me2 (Fig 4f). H3K9me2 is also sufficient for the 

key steps downstream of this cooperative recruitment: RDRC- and Dcr1-mediated siRNA amplification and the 

spreading of H3K9me throughout siRNA producing domains, although H3K9me3 contributes to efficient 

siRNA amplification at the dh pericentromeric repeats. Importantly, the above events are restricted to 

chromosome regions that produce trigger sRNAs1,2.  

Second, in cells lacking H3K9me3, we observed partial but substantial silencing of pericentromeric dg 

and dh transcripts without a reduction in RNA polymerase II occupancy (Fig. 1). This demonstrates a major role 

for H3K9me2- and RNAi-dependent co-transcriptional RNA degradation in silencing (RNAi-CTGS) and 

indicates that H3K9me3 is required for TGS (Fig 4f). Our findings, as well as previous reports3, provide an 

explanation for the dependence of CTGS and TGS on different H3K9me states based on the different affinities 

of downstream chromo domain proteins for H3K9me2 and H3K9me3 as follows. In native fission yeast whole 



cell extracts, the Chp1 subunit of RITS binds to histone H3K9me2 and H3K9me3 with a similar efficiency, 

while Swi6, which is required for efficient TGS4,5, binds to H3K9me3 with higher efficiency (Fig. 3d-f). 

Finally, the ability of Clr4 to catalyze H3K9me3 is required for epigenetic maintenance of silencing and 

H3K9me domains, even after the establishment of a large domain of heterochromatin containing both 

H3K9me2 and H3K9me3 (Fig. 4a-d). It was previously shown that ectopically established domains of H3K9me 

can be epigenetically inherited in the absence of sequence-dependent recruitment in cells in which the rate of 

H3K9 demethylation is reduced by deletion of epe1+6,7. H3K9me domains and epigenetic states can also be 

stably transmitted in epe1+ cells, but only within native heterochromatic domains such as the pericentromeric 

DNA repeats and the mating type locus6,8. Our findings indicate that H3K9me3 is required for epigenetic 

maintenance of silencing in both epe1∆ and epe1+ cells. In epe1∆ cells, neither ade6+ silencing nor a large 

domain of H3K9me2/3, induced by the ectopic recruitment of TetR-Clr4-I, could be maintained by Clr4I418P, 

which has reduced H3K9 tri-methylation activity. This loss of epigenetic information can be explained by the 

reduced affinity of the Clr4 chromo domain for H3K9me2 (Fig. 3d-f), which would reduce the strength of the 

positive feedback mechanism based on binding of Clr4 to H3K9me nucleosome and methylation of newly 

deposited nucleosomes (also referred to as the read-write mechanism). Additionally, the loss of TGS and the 

resulting transcription-coupled increase in histone exchange may contribute to instability of H3K9me2 domains. 

In epe1+ cells, the residual RNAi-independent H3K9me present throughout pericentromeric DNA repeats is 

maintained epigenetically by a mechanism that requires the chromo domain of Clr4 (ref. 6) and is lost when 

Clr4 cannot catalyze H3K9me3 (Fig. 4e, f). 

Several previous studies have described the preferential association of histone H3K9me2 and H3K9me3 

with euchromatic versus heterochromatic DNA domains9-14, have reported a role for H3K9me3 in peripheral 

nuclear localization of heterochromatin in C. elegans15, and have identified methyltransferases that catalyze 

H3K9me1 prior to chromatin assembly16. Moreover, different H3K4 methylation states are associated with 

enhancers, promoters, and transcribed regions, and perform distinct functions in recruitment of downstream 

factors associated with transcription17-20. The utility of histone lysine methylation states in signaling 

downstream events is therefore widespread in chromatin biology. 
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Strain 

SPY137 

SPY815 

Genotype 

h
+ 

leu1-32 ade6-M210 ura4-DS/E otr1R(SphI)::ura4
+

 

SPY137  clr4Δ::kanMX6 

Source 

2 

3 

SPY1098 SPY137  swi6Δ::natMX6 6 

SPY1368 SPY137  chp2Δ::kanMX6 5 

SPY2421 SPY137  chp1Δ::TAP-kanMX6 1 

SPY4719 SPY137  ago1Δ::kanMX6 1 

SPY797 SPY137   natMX6-5’-3xflag-ago1 4 

SPY2337 SPY137 natMX6-5’-3xflag-ago1, clr4Δ::kan 1 

SPY8072 SPY137  natMX6-5’-3xflag-ago1,  kanMX6-5’(1kb)-clr4
F449Y

 1 

SPY4636 SPY137   hphMX6-5’(1kb)-3xflag-clr4 1 

SPY4639 SPY137  hphMX6-5’(1kb)-3xflag-clr4
H410L,  C412A

 1 

SPY4642 SPY137   hphMX6-5’(1kb)-3xflag-clr4
F449Y

 1 

SPY5562 SPY137   kanMX6-5'(1kb)-3xflag-clr4
W31G

 1 

SPY6537 SPY137   hphMX6-5’(1kb)-3xflag-clr4
I418P

 1 

SPY6529 SPY137  hphMX6-5’(1kb)-3xflag-clr4
I418P

,   ago1Δ::kanMX6 1 

SPY5378 SPY137   hphMX6-5'(700bp)-3xflag-chp2 1 

SPY5380 SPY137  hphMX6-5'(700bp)-3xflag-chp2,  clr4Δ::kanMX6 1 

SPY5382 SPY137   hphMX6-5'(700bp)-3xflag-chp2,   kanMX6-5’(1kb)-clr4
F449Y

 1 

SPY5593 SPY137   hphMX6-5'(900bp)-3xflag-clr3 1 

SPY5595 SPY137  hphMX6-5'(900bp)-3xflag-clr3,  clr4Δ::kanMX6 1 

SPY5597 SPY137   hphMX6-5'(900bp)-3xflag-clr3,  kanMX6-5’(1kb)-clr4
F449Y

 1 

SPY6481 SPY137   natMX6-5’(0.5kb)-3xflag-swi6 1 

SPY5659 SPY137   kanMX6-5’(1kb)-clr4
F449Y

,  natMX6-5’(0.5kb)-3xflag-swi6 1 

SPY5086 h
- 
leu1-32 ade6? ura4Δ::10xtetO-ade6, clr4Δ:nat-clr4p-NLS-TetR-2xflag-clr4ΔCD, epe1Δ::kanMX6 7 

SPY5244 SPY5086    trp1::hphMX6-5'(1kb)-3xflag-clr4-3'(1kb) 1 

SPY5245 SPY5086   trp1::hphMX6-5'(1kb)-clr4
W31G

-3'(1kb) 1 

SPY5248 SPY5086   trp1::hphMX6-5'(1kb)-clr4
F449Y

-3'(1kb) 1 

SPY6326 SPY5086   trp1::hphMX6-5'(1kb)-clr4
I418P

-3'(1kb) 1 

 

Supplementary Table 1 | List of strains used in this study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1 = this study; 2 = Karl Ekwall; 3 = ref. 
21

; 4 = ref. 
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; 5 = ref. 
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; 6 = ref. 
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 Supplementary Table 2 | List of primers used in this study.   

Target Primer Orientation Sequence 

dg 

dg 

dg2 

dg2 

dh 

dh 

dh2 

dh2 

ura4 

ura4 

act1 

act1 

fbp1 

fbp1 

ade6 

ade6 

mug135 

GJ195 

GJ196 

GJ736 

GJ737 

AS133 

AS134 

GJ254 

GJ255 

GJ412 

GJ413 

MB90 

MB91 

GJ173 

GJ174 

KR111 

KR112 

KR124 

Forward 

Reverse 

Forward 

Reverse 

Forward 

Reverse 

Forward 

Reverse 

Forward 

Reverse 

Forward 

Reverse 

Forward 

Reverse 

Forward 

Reverse 

Forward 

GGTTAAAGCGGTTGTTTGGCACTG 

TGACGAGGCACATTCCTTATACGC 

GCGAAACGAATGCCAAATAC 

GGAAAGTGGCTTCACACTATAA 

GTATTTGGATTCCATCGGTACTATGG 

ACTACATCGACACAGAAAAGAAAACAA 

GTCGTTGTCAACCGCACTTCCTTT 

GCATGCTCCGTTGCTTATCTCGTT 

GGTTTGAGAAGCATACCGATTT 

CCTTTAACATCCAAGCCGATAC 

CAACCCTCAGCTTTGGGTCTTG 

TCCTTTTGCATACGATCGGCAATAC 

ATTGACGCCGGTGTTAGTGTAGGT 

TGACACGATGACCTGTGGTAAGCA 

TTGCAGGAGAGGGTTCAACAGCA 

AATGCATCATCTTGGATGCAGCAA 

GAGCCTCATGTCCATACGATCAACCT 

mug135 KR125 Reverse AATCGATGGATGAGTGGAGAAAGTCG 
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