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Supplementary Note 1: Structure and Interaction 

of Twist Disclination lines in Chiral Nematic Liquid 

Crystals 

  We derive the formulas that describe the director profile and the elastic interaction between twist disclination 

lines embedded in a cell of chiral nematic liquid crystals on the basis of the Frank theory of curvature elasticity1.  

We follow and extend the conformal mapping approach used by Geurst et al.13 The case for achiral nematic liquid 

crystals can be treated as a special case by taking the limit of zero chirality.   We only deal with the planar structure 

in which the director 𝐧 is always constrained in the plane parallel to the flat cell surfaces: 

𝐧 = (𝑛𝑥 𝑛𝑦 𝑛𝑧) = (0 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜑) ,          (1) 

where the 𝑥-axis is taken normal to the surface and 𝜑 is the azimuthal angle of the director.  The director lies in 

the 𝑦 − 𝑧 plane.  The cell has the thickness 𝐿 and is infinitely extended in the 𝑦 − 𝑧 plane. 

  The limit of this planar assumption has been numerically examined in Refs.[14] & [15], confirming the validity in 

the present case of nematics. 

Governing Equations 

For a given director field 𝐧(𝑥, 𝑦, 𝑧),  the Frank elastic free energy is given by 

𝐹 = ∫
1

2
𝐾11(∇ ∙ 𝐧)2 +

1

2
𝐾22(𝐧 ∙ ∇ × 𝐧 − 𝑞)2 +

1

2
𝐾33(𝐧 × ∇ × 𝐧)2 +

1

2
𝐾24∇ ∙ (𝐧∇ ∙ 𝐧 + 𝐧 × ∇ × 𝐧)𝑑𝑣      (2) 

where 𝐾11, 𝐾22 and 𝐾33 are the elastic constants for splay, twist and bend deformations, respectively, 𝐾24 is the 

saddle-splay elastic constant, and 𝑞 represents the natural twist that is nonzero only for chiral nematics.  For a 

given boundary condition at the cell surface, the equilibrium director profile minimizes the total elastic free 

energy, and hence must satisfy the Euler-Lagrange equation.   

For the planar structure, it is readily confirmed that the saddle-splay contribution identically vanishes. The Frank 

elastic free energy is reduced to: 

𝐹 = ∫
1

2
𝐾22 (

𝜕𝜑

𝜕𝑥
− 𝑞)

2

+
1

2
(𝐾11sin2𝜑 + 𝐾33cos2𝜑) (

𝜕𝜑

𝜕𝑦
)

2

+
1

2
(𝐾11cos2𝜑 + 𝐾33sin2𝜑) (

𝜕𝜑

𝜕𝑧
)

2

𝑑𝑣 

      (3) 

or equivalently 

𝐹 = ∫
1

2
𝐾22 (

𝜕𝜑

𝜕𝑥
− 𝑞)

2

+
1

2
𝐾 [(

𝜕𝜑

𝜕𝑦
)

2

+ (
𝜕𝜑

𝜕𝑧
)

2

] −
1

2
∆𝐾cos2𝜑 [(

𝜕𝜑

𝜕𝑦
)

2

− (
𝜕𝜑

𝜕𝑧
)

2

] 𝑑𝑣 

 (4) 

where 𝐾 = (𝐾11 + 𝐾33)/2 and ∆𝐾 = (𝐾11 − 𝐾33)/2.   We assume here that the splay and the bend elastic 

constants are equal, i.e. 𝐾11 = 𝐾33 = 𝐾 and ∆𝐾 = 0, in order to make the equation analytically tractable.  Then 

we obtain 

𝐹 = ∫ ∫ ∫
1

2
𝐾22 (

𝜕𝜑

𝜕𝑥
− 𝑞)

2

+
1

2
𝐾 [(

𝜕𝜑

𝜕𝑦
)

2

+ (
𝜕𝜑

𝜕𝑧
)

2

] 𝑑𝑥𝑑𝑦𝑑𝑧
𝐿/2

−𝐿/2

+∞

−∞

+∞

−∞

 

(5) 

Introducing the scaled coordinates as 
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𝑥̃ = 𝑥,  𝑦̃ = 𝑦√
𝐾22

𝐾
 ,  𝑧̃ = 𝑧√

𝐾22

𝐾

(6) 

the Frank free energy can be rewritten as 

𝐹 =
1

2
𝐾 ∫ ∫ ∫ (

𝜕𝜑

𝜕𝑥̃
− 𝑞)

2

+ (
𝜕𝜑

𝜕𝑦̃
)

2

+ (
𝜕𝜑

𝜕𝑧̃
)

2

𝑑𝑥̃𝑑𝑦̃𝑑𝑧̃
𝐿/2

−𝐿/2

+∞

−∞

+∞

−∞

 

(7) 

The equilibrium director profile is the one that minimizes 𝐹 for a given boundary condition on the surface.  The 

Euler-Lagrange equation now reads: 

𝜕2𝜑

𝜕𝑥̃2
+

𝜕2𝜑

𝜕𝑦̃2
+

𝜕2𝜑

𝜕𝑧̃2
= 0 

(8) 

which is the Laplace equation for  𝜑 in (𝑥̃, 𝑦,̃ 𝑧̃) space.  The linearity of this equation allows superposition of 

solutions, which we will use extensively below.  In particular, since a uniformly twisted state, represented in the 

form of 𝜑 = 𝑞′𝑥̃ + 𝜑0, satisfies the Laplace equation, it is allowed without loss of generality to set 𝑞 = 0 and take 

account of the effect of natural twist separately.   

Once the solution of the Laplace equation (satisfying the proper boundary condition) is known, the Free energy of 

the system can be evaluated as a surface integral over the boundary excluding the singularities, i.e. disclinations, as 

follows: 

𝐹 =
1

2
𝐾 ∫ (∇̃𝜑)

2
𝑑𝑣̃

𝑉

=
1

2
𝐾 ∫ ∇̃ ∙ (𝜑∇̃𝜑) − 𝜑∆̃𝜑 𝑑𝑣̃

𝑉

=
1

2
𝐾 ∫ 𝜑∇̃𝜑 ∙ 𝑑𝑺̃

𝜕𝑉

 

(9) 

where ∇̃ and ∆̃ stand for the gradient and the Laplace operators in (𝑥̃, 𝑦,̃ 𝑧̃) space, and use is made of Gauss’ 

theorem to convert the volume to surface integral.  If the solution is given as a sum of two independent solutions 

of the Laplace equation,  𝜑 = 𝜑1 + 𝜑2,  the Frank free energy is given by 

𝐹 =
1

2
𝐾 ∫ (𝜑1∇̃𝜑1 + 𝜑2∇̃𝜑2 + 2𝜑1∇̃𝜑2) ∙ 𝑑𝑺̃

𝜕𝑉

 

(10) 

where the first two terms are individual contributions from each solution and the last term gives the free energy of 

interaction.    

Single Twist Disclination Line in 𝛑/𝟐-twist Cell 

We consider a straight twist disclination line running in parallel 

with the 𝑧̃-axis at 𝑥̃ = 𝑑 and 𝑦̃ = 0 as shown in 

Supplementary Figure 1.  This disclination line is often 

referred to as a revers twist disclination, since it separates 

regions of inversely twisted states.  The solution of the Laplace 

equation for this two dimensional geometry can be obtained by 

using a type of conformal mapping called the Schwarz-

Christoffel transformation: 

𝒁2 = sinπ
𝒁1

𝐿
(11) 

which transforms the infinite half strip (𝒁1 = 𝑥̃ + 𝑖𝑦̃, −
L

2
≤

𝑥̃  ≤
𝐿

2
, 0 ≤ 𝑦̃(0 ≥ 𝑦̃)) on the complex  𝒁1 plane to the entire 

upper(lower) half plane of the complex  𝒁2 plane.  By applying 

this transformation to a trivial harmonic function, satisfying the required boundary conditions, 

 

Supplementary Figure 1: Geometry of single twist 
disclination line and the boundary conditions. The 
disclination line located at 𝑥̃ = 𝑑, running along the 
z-axis separates the regions of oppositely twisted 
states.
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𝜑 = −
1

2
Im {ln (𝒁2 − sin

𝜋𝑑

𝐿
)} + {

+
𝜋

2
 Re(𝒁2) > 0

−
𝜋

2
 Re(𝒁2) < 0

(12) 

we immediately obtain the solution: 

𝜑(𝑥̃, 𝑦,̃ 𝑧̃: 𝑑) =
1

2
[tan−1 (

sin
𝜋𝑥̃
𝐿

cosh
𝜋𝑦̃
𝐿

− sin
𝜋𝑑
𝐿

cos
𝜋𝑥̃
𝐿

sinh
𝜋𝑦̃
𝐿

) +
𝜋

2
sgn(𝑦̃)] 

(13) 

On using the scaling Supplementary Equation 6 back in this equation, we obtain Eq.(1).  The minus sign in Eq.(1) 

corresponds to the reversal of the sense of twist, thereby, reversing the handedness of the twist disclination line, 

which is equivalent to  𝜑(𝑥̃, −𝑦,̃ 𝑧̃: 𝑑) = −𝜑(𝑥̃, 𝑦,̃ 𝑧̃: 𝑑).  

Free Energy of Single Twist Disclination Line in 𝛑/𝟐-twist Cell 

Substituting Supplementary Equation 13 into Supplementary 

Equation 9, we obtain the surface integral representation of the 

free energy.  Since φ = 0 over the lower surface, we only need 

to calculate the contributions from the upper surfaces (𝑆1, 𝑆5), 

the two vertical plane surfaces (𝑆2, 𝑆4) and the cylindrical 

surface (𝑆3) encircling the disclination line as depicted in 

Supplementary Figure 2 by solid blue lines.    

  Using 

(
𝜕𝜑

𝜕𝑥̃
)

𝑥=𝐿/2
=

𝜋

2𝐿

sinh
𝜋𝑦̃
𝐿

cosh
𝜋𝑦̃
𝐿

− sin
𝜋𝑑
𝐿

(14) 

into Supplementary Equation 9, we obtain as the contribution 

from (𝑆1, 𝑆5) surfaces as 

𝐹1,5 =
1

2
𝐾 ∫ 𝜑∇̃𝜑 ∙ 𝑑𝑺̃

𝑆1,𝑆5

=
1

2
𝐾 ∫ {∫

𝜋2

2𝐿

sinh
𝜋𝑦̃
𝐿

cosh
𝜋𝑦̃
𝐿

− sin
𝜋𝑑
𝐿

𝑑𝑦̃
∞

0

} 𝑑𝑧̃

= ∫ {
𝜋

4
𝐾 lim

𝑦̃→∞
ln (cosh

𝜋𝑦̃

𝐿
− sin

𝜋𝑑

𝐿
) −

𝜋

4
𝐾ln (1 − sin

𝜋𝑑

𝐿
)} 𝑑𝑧̃ 

(15) 

The contributions from (𝑆2, 𝑆4) surfaces are calculated by using 

𝜕𝜑

𝜕𝑦̃
= −

𝜋

2𝐿

sin
𝜋𝑥̃
𝐿

− sin
𝜋𝑑
𝐿

cosh
𝜋𝑦̃
𝐿

(sin
𝜋𝑥̃
𝐿

− sin
𝜋𝑑
𝐿

cosh
𝜋𝑦̃
𝐿

)
2

+ cos2 𝜋𝑑
𝐿

sinh2 𝜋𝑦̃
𝐿

cos
𝜋𝑥̃

𝐿

(16) 

(
𝜕𝜑

𝜕𝑦̃
)

𝑦̃=0

= −
𝜋

2𝐿

cos
𝜋𝑥̃
𝐿

sin
𝜋𝑥̃
𝐿

− sin
𝜋𝑑
𝐿

(17) 

to be 

Supplementary Figure 2: Surface integration for free 
energy calculation. The blue line indicates the surface 
over which the integration should be performed.  
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𝐹2,4 =
1

2
𝐾 ∫ 𝜑∇̃𝜑 ∙ 𝑑𝑺̃

𝑆2,𝑆4

=
1

2
𝐾 ∫ {∫

𝜋2

2𝐿

cos
𝜋𝑥̃
𝐿

sin
𝜋𝑥̃
𝐿

− sin
𝜋𝑑
𝐿

𝑑𝑥̃
𝐿/2

𝑑+𝛿

} 𝑑𝑧̃ = ∫ {
𝜋

4
𝐾ln

1 − sin
𝜋𝑑
𝐿

sin
𝜋(𝑑 + 𝛿)

𝐿
− sin

𝜋𝑑
𝐿

} 𝑑𝑧̃

≈ ∫ {
𝜋

4
𝐾ln

1 − sin
𝜋𝑑
𝐿

𝜋𝛿
𝐿

cos
𝜋𝑑
𝐿

} 𝑑𝑧̃ 

(18) 

where δ is the cutoff length due to the finite core size on the order of 10nm.  Finally, the contribution from the 

surface (𝑆3) vanishes since ∇̃𝜑 is tangential to the surface at sufficiently close to the core.  Summing all these 

contributions and applying the scaling Supplementary Equation 6, we obtain the free energy per unit depth along 

the z-axis 

𝐹 = 𝐹1,5 + 𝐹2,4 =
𝜋

4
√𝐾𝐾22 lim

𝑦̃→∞
ln (cosh

𝜋𝑦̃

𝐿
− sin

𝜋𝑑

𝐿
) +

𝜋

4
√𝐾𝐾22 ln

𝐿

𝜋𝛿cos
𝜋𝑑
𝐿

→ lim
𝑦→∞

𝜋2

4𝐿
𝐾22𝑦 +

𝜋

4
√𝐾𝐾22 ln

𝐿

𝜋𝛿cos
𝜋𝑑
𝐿

(19) 

where the first term is the deformation energy of a uniform π/2-twisted layer of width 2𝑦.  Subtracting this bulk 

twist contribution from the total free energy, we are left with the second term that gives the excess free energy or 

the line tension associated with the twist disclination line Eq.(2). 

Interaction Force between Two Parallel Twist Disclination Lines 

A. Vertical Arrangement

The director profile for the two parallel disclination line

geometry as depicted in Supplementary Figure 3 is

given by the superposition of the solutions for individual

lines given by Supplementary Equation 13:

𝜑(𝑥̃, 𝑦,̃ 𝑧̃: 𝑑1, 𝑑2) = 𝜑(𝑥̃, 𝑦,̃ 𝑧̃: 𝑑1) ± 𝜑(𝑥̃, 𝑦,̃ 𝑧̃: 𝑑2)    

(20) 

where the plus and minus signs refer to the same and the 

opposite handedness of the disclination lines. 

The interaction free energy between two parallel 

disclination lines can be calculated by integrating the 

coupling term in Supplementary Equation 10 over the surfaces 𝑆1 through 𝑆9: 

∆𝐹 = ±
1

2
𝐾 ∫ 2𝜑(𝑑1)∇̃𝜑(𝑑2) ∙ 𝑑𝑺̃

𝜕𝑉

 

(21) 

   Integration over 𝑆1, 𝑆2, 𝑆8 and 𝑆9 is essentially identical to Supplementary Equation 15 and Supplementary 

Equation 19 except for the plus and minus signs.   Integration over 𝑆3, 𝑆5 and 𝑆7 vanishes.  Per unit depth, the 

interaction free energy for 𝑑2 > 𝑑1 is written as 

∆𝐹4,6 = ±
1

2
√𝐾𝐾22 ∫

𝜋2

𝐿

cos
𝜋𝑥̃
𝐿

sin
𝜋𝑥̃
𝐿

− sin
𝜋𝑑2

𝐿

𝑑𝑥̃
𝑑2−𝛿

𝑑1+𝛿

= ±
𝜋

2
√𝐾𝐾22 ln

𝜋𝛿
𝐿

cos
𝜋𝑑2

𝐿

sin
𝜋𝑑2

𝐿
− sin

𝜋𝑑1

𝐿
(22) 

Supplementary Figure 3: Two vertically separated 
parallel twist disclination lines. The blue line indicates 
the surface over which the integration should be 
performed. 
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Adding up all the contributions, we obtain the free energy per unit depth associated with the vertically separated 

disclination line pair as 

𝐹 = 𝐹𝑏𝑢𝑙𝑘
± +

𝜋

4
√𝐾𝐾22 ln

𝐿

𝜋𝛿cos
𝜋𝑑1

𝐿

+
𝜋

4
√𝐾𝐾22 ln

𝐿

𝜋𝛿cos
𝜋𝑑2

𝐿

±
𝜋

4
√𝐾𝐾22 ln (sin

𝜋𝑑2

𝐿
− sin

𝜋𝑑1

𝐿
)

−2

(23) 

where the plus and minus signs refer to the same and the opposite handedness of the disclination lines.  𝐹𝑏𝑢𝑙𝑘
±  is 

the bulk twist deformation energy, which is specifically 𝐹𝑏𝑢𝑙𝑘
− = 0 and 𝐹𝑏𝑢𝑙𝑘

+ = lim
𝑦→∞

𝜋2

𝐿
𝐾22𝑦.  The last term of 

Supplementary Equation 23 is the interaction energy between twist disclination lines given in Eq.(3). 

  Supplementary Figure 4 shows the free energy landscape over the (𝑑1, 𝑑2) plane for the cases of the same and 

the opposite handedness of disclinations.  When the disclinations are of the same handedness, the minimum 

occurs at 

𝑑1 = −
𝐿

4
 𝑑2 =

𝐿

4
(24) 

as a result of force balance between the disclination-disclination repulsion and the surface-disclination repulsion.  

When the disclination lines have opposite handedness, on the other hand, the disclination-disclination interaction 

is strongly attractive toward  𝑑1 = 𝑑2, and there appears a deep minimum at the middle of the cell. 

B. General Arrangement

We now consider a general case of two parallel disclination lines

that are laterally as well as vertically separated as shown in

Supplementary Figure 5.   The solution is again given by the

superposition of the contributions from each individual disclination:

𝜑(𝑥̃, 𝑦,̃ 𝑧̃: 𝑑1, 𝑑2) = 𝜑(𝑥̃, 𝑦̃, 𝑧̃: 𝑑1) ± 𝜑(𝑥̃, 𝑦̃ − ℎ, 𝑧̃: 𝑑2) 

(25) 

where the plus and minus signs refer to the same and the opposite 

handedness of the disclination lines. Taking the same procedure as 

above and using Supplementary Equation 16, the surface integrals 

Supplementary Figure 4: Free energy landscape as in terms of the probability 
density. (a) Disclinations of the same handedness, (b) Disclinations of the opposite 
handedness. 

Supplementary Figure 5: The case of two parallel twist 
disclination lines at arbitrary positions. The blue line indicates 
the surface over which the integration should be performed. 
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can be made in a closed form to replace Supplementary Equation 23 with the following equation: 

𝐹 = 𝐹𝑏𝑢𝑙𝑘
± +

𝜋

4
√𝐾𝐾22 ln

𝐿

𝜋𝛿cos
𝜋𝑑1

𝐿

+
𝜋

4
√𝐾𝐾22 ln

𝐿

𝜋𝛿cos
𝜋𝑑2

𝐿

±
𝜋

4
√𝐾𝐾22 ln {sinh2√

𝐾22

𝐾

𝜋

𝐿
ℎ + 2 (1 − cosh√

𝐾22

𝐾

𝜋

𝐿
ℎ) sin

𝜋𝑑2

𝐿
sin

𝜋𝑑1

𝐿
+ (sin

𝜋𝑑2

𝐿
− sin

𝜋𝑑1

𝐿
)

2

}

−1

(26) 

It follows from this expression of the free energy per unit length of disclinations that the disclinations of the same 

(opposite) handedness repel (attract) each other irrespective of their relative arrangement inside the uniform twist 

cell.  A notable difference from the vertical arrangement is the presence of a long range (infinite range, in fact) 

interaction associated with the twist deformations in the ℎ–wide region between the disclination lines.  In the limit 

of large ℎ, the last term of Supplementary Equation 26 is dominated by sinh2√
𝐾22

𝐾

𝜋

𝐿
ℎ contribution, and it 

approaches 

±
𝜋

4
√𝐾𝐾22 ln {sinh2√

𝐾22

𝐾

𝜋

𝐿
ℎ}

−1

→ ∓
𝜋2

2𝐿
𝐾22ℎ 

(27) 

indicating that there is a gain (loss) of deformation energy of π-twisted state as ℎ is increased, when the 

disclinations have the same (opposite) handedness.  As a result, the region between the disclination lines become 

untwisted in the case of same handedness, whereas in the opposite handedness case, only this area becomes π-

twisted inside the untwisted background.  Twist disclination lines of the same handedness in a uniform twist cell, 

therefore, keep separating until the boundary prevents their further movement or they meet disclination lines of 

the opposite handedness and disappear.  This, in fact, is one of the reasons why it is practically difficult to have 

stable network of disclination lines. 

Interaction Force between Obliquely Oriented Twist Disclination Lines 

Of particular interest is the interaction forces between 

disclination lines when they are intersecting at an oblique 

angle Φ as illustrated in Supplementary Figure 6.  In this 

case, interaction forces act only in the vicinity of the 

intersection within the range of extra elastic distortions 

around the disclination, roughly measured by 𝐿√𝐾/𝐾22 .   

Unlike the case of parallel lines, the force is localized, 

giving rise to a deformation of the disclination line from 

the straight shape.   Here, we neglect this line deformation 

based on an assumption that the line tension is sufficiently 

high to keep the straight linear shape. 

Since the Frank elastic energy is isotropic in the  𝑦 − 𝑧 

plane, i.e. an arbitrary constant can be added to φ without 

influencing the free energy, we can always choose one 

disclination line passing 𝑥̃ = 𝑑1, 𝑦̃ = 0 to be parallel to the 

𝑧 axis and is described by 𝜑1 = 𝜑(𝑥̃, 𝑦̃: 𝑑1), which is 

independent of 𝑧. The second disclination line passes 𝑥̃ =

𝑑2, 𝑦̃ = 0, and is rotated by the angle  𝛷.  The director profile for the rotated disclination line is written as 𝜑2 =

Supplementary Figure 6: Two disclination lines intersecting at an 
oblique angle. (a) Perspective view of the intersecting lines. (b) Top view 
of the intersection showing the locally extended areas of interaction.  

(a)   (b) 
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𝜑(𝑥̃, 𝑦̃cosΦ + 𝑧̃sinΦ: 𝑑2).  Note that when Φ = π, the handedness of the disclination line is reversed.  

Superposing 𝜑1 and 𝜑2, we obtain the solution for the oblique case as 

𝜑(𝑥̃, 𝑦,̃ 𝑧̃: 𝑑1, 𝑑2, Φ) = 𝜑(𝑥̃, 𝑦̃, 𝑧̃: 𝑑1) + 𝜑(𝑥̃, 𝑦̃cosΦ + 𝑧̃sinΦ: 𝑑2) 

(28) 

The interaction energy is then given by 

∆𝐹 =
1

2
𝐾 ∫ 2𝜑(𝑥̃, 𝑦̃: 𝑑1)∇̃𝜑(𝑥̃, 𝑦̃cosΦ + 𝑧̃sinΦ: 𝑑2) ∙ 𝑑𝑺̃

𝜕𝑉

 

(29) 

The surface of integration is the one encircling the first disclination as shown in Supplementary Figure 2.  On the 

surfaces (𝑆2, 𝑆4) (see Supplementary Figure 2), the surface normal has only the 𝑦̃-component, so the above 

equation can be reduced to 

∆𝐹 = 𝜋𝐾cosΦ ∫ {∫ (
𝜕𝜑(𝑥̃, 𝑦̃: 𝑑2)

𝜕𝑦̃
)

𝑦̃=𝑧sinΦ

𝑑𝑥̃
𝐿/2

𝑑1+𝛿

} 𝑑𝑧̃ 

(30) 

Referring to the explicit formula for the 𝑦̃ derivative of 𝜑, Supplementary Equation 16,  it is readily understood 

that it is peaked at 𝑦̃ = 0 and decays exponentially with the characteristic length 𝐿 (𝐿√𝐾/𝐾22  for 𝑦).   Therefore, 

the integrand can make an appreciable contribution only within a narrow region of the size of 𝐿/sin𝛷 about the 

intersection.    This equation indicates that, as the disclination line pair with the same handedness is gradually 

squeezed from parallel (vertical) configuration, there is a continuous crossover from repulsive to attractive regime 

according to cos𝛷.   At the orthogonal arrangement, the direct interaction force disappears.   Unless the angle of 

intersection is very close to 0 or π, the  interaction is practically localized in the vicinity of the intersection. 

Interaction of Twist Disclination line with Surface Pattern 

We confine our attention to the case in which a non-singular solution 

𝜑𝑖(𝑥̃, 𝑦,̃ 𝑧̃) exists, satisfying the given boundary condition on the 

surface.  The periodic orientational pattern shown in Supplementary 

Figure 7, which is the constituent of the squared pattern used in the 

present experiments, allows a non-singular solution of the Laplace 

equation as 

𝜑𝑖(𝑥̃, 𝑦,̃ 𝑧̃) =
𝜋

𝑝
𝑦̃√

𝐾

𝐾22

(
1

2
−

𝑥̃

𝐿
) 

(31) 

where 𝑝 stands for the pitch.  This solution corresponds to the cell 

structure in which the orientation at the top surface at 𝑥̃ = 𝐿/2 is 𝜑 =

0, and the periodic pattern with increasing azimuthal angle is imposed 

on the bottom surface.  Being linear in both 𝑥̃ and 𝑦̃, it trivially satisfies 

the Laplace equation. Superposing the singular solution, we obtain 

𝜑𝑇(𝑥̃, 𝑦̃: 𝑑) = 𝜑(𝑥̃, 𝑦̃: 𝑑) + 𝜑𝑖(𝑥̃, 𝑦,̃ 𝑧̃)          (32) 

that describes a single twist disclination line confined in a cell with the periodic surface pattern.  The coupling free 

energy between the disclination and the surface pattern is given by 

∆𝐹 =
1

2
𝐾 ∫ 2𝜑(𝑥̃, 𝑦̃: 𝑑)∇̃𝜑𝑖(𝑥̃, 𝑦,̃ 𝑧̃) ∙ 𝑑𝑺̃

𝜕𝑉

 

(33) 

Supplementary Figure 7: Top view of the 
periodic orientational pattern on the 
bottom surface with a linearly increasing 
azimuhtal angle. For each pitch, the director 
makes a 180 degrees rotation. 
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Extracting only the part that depends on the position of the disclination, we obtain 

∆𝐹 =
1

2
𝐾 ∫ {∫ −2𝜋

𝜋

𝑝
√

𝐾

𝐾22

(
1

2
−

𝑥̃

𝐿
) 𝑑𝑥̃

𝐿/2

𝑑

} 𝑑𝑧̃ = ∫ {∫ −
𝜋2

2𝑝
𝐾 (1 − 2

𝑥̃

𝐿
) 𝑑𝑥̃

𝐿/2

𝑑

} 𝑑𝑧 

(34) 

The free energy per unit 𝑧 depth (or unit length of disclination line) is given by 

∆𝐹𝑢 = −
𝜋2

2𝑝
𝐾 (

𝐿

4
− 𝑑 +

𝑑2

𝐿
) 

(35) 

From this result follows the force that the surface pattern at the bottom surface exerts on the disclination line as 

𝑓𝑝 = −
𝜕∆𝐹𝑢

𝜕𝑑
= −

𝜋2

2𝑝
𝐾 (1 − 2

𝑑

𝐿
) 

(36) 

This indicates that the periodic pattern with an increasing azimuth in the 

direction consistent with the handedness of the disclination line pulls 

the disclination line toward the pattern.  When the disclination has the 

opposite handedness, the force acts in the opposite direction with the 

same magnitude.  As a result, when both bottom and top surfaces have 

the periodic pattern in the same sense as illustrated in Supplementary 

Figure 8, the total force acting on the disclination line from both 

surfaces becomes position independent: 

𝑓𝑝 = −
𝜋2

𝑝
𝐾 

(37) 

The direction of the force is opposite for a disclination of the opposite 

handedness. 

  It is of interest to consider the balance of force in the case of parallel 

disclination lines of opposite handedness in the presence of the surface 

patterns.  It has been shown that the disclination lines attract each 

other, and are expected to eventually annihilate themselves in a uniform 

cell.  To see how the pattern generated force could counter this trend, we set −𝑑1 = 𝑑2 ≡ 𝑑 in Supplementary 

Equation 23 and calculate the attractive force on each line: 

𝑓𝑎 = −
1

2

𝜕

𝜕𝑑
{
𝜋

2
√𝐾𝐾22 ln (tan

𝜋𝑑

𝐿
)} = −

𝜋2

2𝐿
√𝐾𝐾22

1

sin2
𝜋𝑑
𝐿

(38) 

The smallest attractive force 
𝜋2

2𝐿
√𝐾𝐾22  occurs at 𝑑 = 𝐿/4; if the pulling force due to surface pattern is larger than

the smallest attractive force, there appears a metastable position for the disclination line.  Since the attractive 

force is inversely proportional to the cell thickness, while the force due to surface pattern is independent of the 

thickness, there is a threshold thickness of the cell 𝐿𝑡ℎ below which the disclination line pair of opposite 

handedness is always unstable for ultimate annihilation: 

𝐿𝑡ℎ =
1

2
𝑝√𝐾22/𝐾           (39) 

Supplementary Figure 8: Identical surface 
orientational patterns overlapped. This 
configuration creates a position 
independent force on twist disclination 
lines. 
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 In case the surface patterns have the increasing azimuth in the opposite 

directions as shown in Supplementary Figure 9, the force from the top 

surface is written as 

𝑓𝑝 =
𝜋2

2𝑝
𝐾 (1 + 2

𝑑

𝐿
) 

(40) 

Combining the contributions from both surface, we now obtain 

𝑓𝑝 = 2
𝜋2𝑑

𝑝𝐿
𝐾 

(41) 

indicating that the force changes sign, passed the mid plane of the cell, and 

hence is always toward the closer surface.  If the handedness of the 

disclination line is reversed (although this arrangement seems unlikely in 

practice), it becomes incompatible with both surfaces and is subjected to the 

opposite force:  

𝑓𝑝 = −2
𝜋2𝑑

𝑝𝐿
𝐾 

(42) 

which is always toward the mid plane of the cell. 

Finally, let us consider the case of orthogonal surface patterns as shown in Supplementary Figure 10, since this 

is especially relevant for the web of disclination lines reported here.  The azimuthal angle at the top surface 

increases in 𝑧 direction as 𝜋𝑧/𝑝.  Referring to Supplementary Equation 31, we see that the force between the 

disclination line running in the 𝑦 direction and the top surface vanishes.  Since the interaction between 

orthogonally crossing disclination lines is also vanishing, we only need to consider the balance of force on the 

disclination line along the 𝑦-axis, Supplementary Equation 34, and the force due to line tension, Supplementary 

Equation 19.  The stable 𝑧 position of the disclination line is then given by 

𝑝

𝐿
√

𝐾22

𝐾
= 2

1 −
𝑑
𝐿

tan
𝜋𝑑
𝐿

(43) 

Supplementary Figure 9: Opposite 
surface orientational patterns 
overlapped. This configuraton creates a 
bidirectional force attracting the 
disclination lines toward the closer 
surface.  

Supplementary Figure 10: Orthogonally 
oriented surface patterns. Orientations on 
the top substrate are given in black and 
those on the bottom substrate are in blue. 

Supplementary Figure 11: Stable separation of the straight 
disclination line from the mid plane of the cell for the 
orthogonal surface patterns. The stable separation 𝑑 is given 
as a function of the pitch of the surface pattern 𝑝.   
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which is graphically represented in Supplementary Figure 11.   Even for a fairly large pitch of the pattern  𝑝 

relative to the cell thickness, there remains an appreciate distance from the middle of the cell.   This is consistent 

with the experimental observations. 

Effect of Natural Twist 

As long as the planar structure is maintained, the contribution of the natural twist (𝑞 ≠ 0) is to add a null 

Lagrangian.   Getting back to the starting equation of free energy, Supplementary Equation 7, we find 

𝐹 =
1

2
𝐾 ∫ ∫ ∫ (

𝜕𝜑

𝜕𝑥̃
− 𝑞)

2

+ (
𝜕𝜑

𝜕𝑦̃
)

2

+ (
𝜕𝜑

𝜕𝑧̃
)

2

𝑑𝑥̃𝑑𝑦̃𝑑𝑧̃

𝐿
2

−
𝐿
2

+∞

−∞

+∞

−∞

=
1

2
𝐾 ∫ ∫ ∫ (

𝜕𝜑

𝜕𝑥̃
)

2

+ (
𝜕𝜑

𝜕𝑦̃
)

2

+ (
𝜕𝜑

𝜕𝑧̃
)

2

𝑑𝑥̃𝑑𝑦̃𝑑𝑧̃

𝐿
2

−
𝐿
2

+∞

−∞

+∞

−∞

+
1

2
𝐾 ∫ ∫ {

1

2
𝐾𝑞2𝐿 − 2𝑞(𝜑(𝐿/2) − 𝜑(−𝐿/2))} 𝑑𝑦̃𝑑𝑧̃

+∞

−∞

+∞

−∞

 

(44) 

Hence, as long as the boundary conditions at the surfaces, 𝜑(𝐿/2), 𝜑(−𝐿/2), are fixed, the natural twist locally 

provides a constant bias of free energy, so that the analytical 

treatments and results so far obtained remain formally valid.  

However, the stability of a particular configuration of the 

director is subjected to change, because the natural twist 

breaks the energetic symmetry of oppositely twisted states.   

With a finite natural twist, an energetically stable twist 

disclination line can occur between the regions twisted by 

𝜋/2 + 𝑞𝐿 and −𝜋/2 + 𝑞𝐿 as illustrated in Supplementary 

Figure 10.  So, the director orientations at the surfaces are not 

necessarily orthogonal at the point of disclination line.   The 

explicit solution for chiral cases can be readily obtained by 

superposition of natural twist on top of the achiral solution we 

have already obtained.  Let 𝜑𝑎(𝑥, 𝑦, 𝑧) be the solution for 

achiral system, then the solution for the chiral system is 

written as 

𝜑 = 𝜑𝑎(𝑥, 𝑦, 𝑧) + 𝑞𝑥 + 𝜑0 

(45) 

where 𝜑0 is an arbitrary constant.  Since 𝑞𝑥 + 𝜑0 satisfies the Laplace equation, the above equation is also the 

solution of the Laplace equation.   Unlike the achiral nematic, the director profile right above and below the 

disclination line is not uniform, but is a twisted state as required by the natural twisting power.   For these reasons, 

the interpretation of polarizing microscope observation cannot be as straightforward as in the case of achiral 

systems. 

We can generalize the above argument further to include arbitrary, yet uniform boundary conditions.  To satisfy 

the boundary condition, we can add more twist in such a way that the boundary conditions are met: 

𝜑 = 𝜑𝑎(𝑥, 𝑦, 𝑧) + 𝑞𝑥 + 𝛼𝑥 + 𝜑0      (46) 

The constants 𝛼 and 𝜑0 must be chosen to satisfy the given boundary conditions.  Due to the equivalence of states 

by an integral multiple of 𝜋, the choice of these constants is not unique. 

When 𝛼 ≠ 0, 𝑛𝜋, a straight twist disclination line is not in mechanical equilibrium with the surrounding.  The 

imbalance of elastic free energy on both sides of the disclination line induces a bending of the line.  Due to the 

Supplementary Figure 12: Chirality effect in the stability 
of twist disclination line.  In the achiral system (left), the 
twist is opposite yet is of the same magnitude across the 
disclination line.  In chiral systems (right), the twist angle 
is no longer the same, but suffers a constant bias due to 
the presence of natural twist. 
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isotropy on the plane, the curvature of bending of the disclination line can be written in the form of Young-Laplace 

equation: 

𝛾

𝑅
= ∆𝑓 

(47) 

where  𝛾 is the line tension of disclination Eq.(2) and Supplementary Equation 19, 𝑅 is the radius of curvature, and 

∆𝑓 is the difference of elastic energy density across the disclination line.   The center of curvature must be taken in 

the side with lower elastic energy, noting that the region of lower elastic energy tends to expand.  Assuming 

𝛾~10𝐾 and ∆𝑓~𝐾/𝐿, the radius of curvature is roughly estimated to be 𝑅~10𝐿, which appears to justify the 

assumption of straight disclination lines in calculating the interaction forces at the intersection. 

Consideration on Anisotropic Elastic Constants 𝐾11 ≠ 𝐾33 

The validity of the superposition approach we have extensively used rests on the in-plane isotropy of the system 

resulting from 𝐾11 = 𝐾33.   In case ∆𝐾 ≠ 0 in Supplementary Equation 4, the cos2𝜑 term makes the Euler-

Lagrange equation nonlinear, and the superposition is no longer valid.  According to existing data of the elastic 

constants of calamitic liquid crystals, 1< 𝐾33/𝐾11 < 2 and in the majority of cases, 1 < 𝐾33/𝐾11 < 1.5 is satisfied. 

Even if we assume 𝐾33/𝐾11 = 1.5, we find ∆𝐾/𝐾 = 0.2, and it may be permitted to treat ∆𝐾 term as a small 

correction in most practical cases. 

  Deviation from the in-plane isotropy due to ∆𝐾 ≠ 0 should manifest in the presence of preferred orientation of 

disclination lines relative to the base surface alignment, or in terms of the orientation dependence of radius of 

curvature of a disclination line, Supplementary Equation 47, when subjected to unbalanced twist deformations.  
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Supplementary Note 2: Distribution of Twist 

Deformation Energy on the Web of Disclination 

Lines 

The 3D structure of director distributions in the surface patterned cell is not straightforward.  As an aid for better 

appreciation of the director profile and the twist energy distribution, graphical representation of the energy 

distribution is presented below in relation to the stability of the square web of disclination lines and the competing 

array of diagonal disclination lines.   The diagonal lines are 

energetically more stable than the square web; however, the energy 

and topological barrier for the transformation of the square web to 

the diagonal array is sufficiently high, so that the “metastable” square 

web can be easily formed and maintained indefinitely without 

noticeable relaxation to the diagonal form. 

In Supplementary Figure 13 shown is the projection of the director 

orientation imposed on the twist energy density map.  The distribution 

of twist angles in a unit cell is written as 

φ𝑡 =
𝜋

𝑝
(𝑧 − 𝑦)                              (48)

As shown in Supplementary Figure 14, along the diagonal lines 

from bottom left to top right, the twist angle is constant.  In the square 

web, the disclination lines are so formed that the intersections of the 

disclination lines (lattice points) are anchored on the zero twist 

diagonal.  Then, the quadrants of the intersection have either 0 or ±π 

twist.  Since the twist energy makes a jump across the disclination line 

except at the mid points of the lattice where the twist angle is π/2 on 

Supplementary Figure 13:  Orthogonal 
orientational surface patterns superimposed 
on the twist energy density map.  The 
gradation in red indicates the magnitude of 
twist energy density, and the yellow lines are 
twist disclination lines forming the web. 

Supplementary Figure 14: Twist energy density map on the square web and the diagonal array of disclination lines. (a) Square 
web of disclination lines consisting of the upper (blue) and the lower (black) disclination lines.  The yellow dots at the center of 
the edge indicate the position where the twist angles are ±𝜋/2. (b) Distribution of twist angles in the case of diagonal array of 
disclination lines (blue).  Note that the regions of twist angle larger than 𝜋/2 are converted to lower twist states. 
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both sides of the line, the straight disclination lines cannot be in mechanical equilibrium, but must be curved.  As 

we have already discussed, this effect can be  practically negligible unless the pitch 𝑝 is too large compared to the 

cell thickness.   It is therefore seen that the disclination lines are anchored at the corner and the middle point of 

the square lattice.  Although metastable, the intersecting disclination lines are separated in the depth direction by 

the forces from the surface and the pattern. 

A more energetically stable state of disclination lines is the diagonal array shown in Supplementary Figure 14b.  

The disclination lines are running diagonally connecting the middle points of the lattice (there is no longer a lattice, 

though) where the twist angle is ±π/2.  Across the disclination line, the twist angle jumps from +π/2 to −π/2, yet 

the elastic energy are the same on both sides.  Therefore, the straight diagonal lines are in mechanical equilibrium.  

Furthermore, the higher twist energy areas bearing twist angles between π/2 and π are converted into lower 

twisted state not exceeding π/2.  In addition, the total length of the diagonal lines to span the entire space of 

pattern is shorter by a factor of 1/√2 than the total length of lines in the square web.  For these reasons, the 

diagonal array is energetically more stable.  Nevertheless, the kinetic process we employed to fabricate the square 

web as well as the energy and topological barrier separating these states is effective enough to keep the 

metastable square web of disclinations intact for long period of time.  

Shown in Supplementary Figure 15 is the coexistence of square web and diagonal disclination lines.  This is a 

magnified view of the left bottom part of the overlapped region.   The twist angle distribution is given by 

𝜑𝑡 = −
𝜋

𝑝
(𝑧 + 𝑦)   (49) 

Hence the lines of constant twist angle are diagonal from the right bottom to the left top; the mirror image of that 

in Supplementary Figure 14.  In the middle of the picture, a two lattice wide row of square web has been 

converted to an array of diagonal lines.   The diagonal lines did not invade the square web any further in the time 

frame of experiment.    

(a)   (b) 
Supplementary Figure 15:  Observation of coexisting square web and diagonal disclination lines.  (a) Polarized 
micrograph left lower side of the overlapped region.  (b) Twist energy density map and the curved disclination lines due to 
the imbalance of twist deformation energy. 
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  This preparation was more aged and the cell thickness got a little thinner than that shown in Fig. 3 as suggested 

by the deeper coloration.  The narrower cell gap increases the twist deformation energy, which resulted in an 

appreciable periodic deformation of disclination lines in accordance with the Young-Laplace equation, 

Supplementary Equation 47.  The corner area with zero twist angle pressures the disclination lines to bend 

outward, and the π twist region is pressed inward as illustrated in Supplementary Figure 15b.   


