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Supplementary 

Cell migration test for new drivers 

 Cell lines and cell culture: HCC1937, MDA-MB-231 and HCC1806 SPORE cell lines were from the 
American Type Culture Collection (Manassas, VA, USA). The MDA-MB-231 were cultured in DMEM 
supplemented with 10% fetal bovine serum (FBS). HCC1937 and HCC1806 were maintained in RPMI 
1640 supplemented with 10% FBS. The cells were cultured at 37°C in a humidified atmosphere 
containing 5% CO2. 

Antibodies: The specific antibody against BCL2L11 and the secondary antibodies of Horseradish 
peroxidase–conjugated goat anti-mouse and anti-rabbit were from Cell Signaling (Beverly, MA). The 
CDH9 antibody was from Thermo Fisher Scientific. The β-actin antibody was purchased from Sigma-
Aldrich (St. Louis, MO).  

 SiRNA transfection:  

Smartpool: on-targetplus BCL2L11, CDH9 and control siRNA were purchased from Dharmacon. 

Human BCL2L11 siRNA - SMARTpool, L-004383-00-0005 

Human CDH9 siRNA - SMARTpool, L-013169-00-0005 

Non-targeting Pool, D-001810-10-05 

SiRNAs were transfected into HCC1937, MDA-MB-231, and HCC1806 cells using Lipofectamine 
RNAiMAX Reagent (Life technologies). 

Immunoblotting:  The HCC1937, MDA-MB-231 and HCC1806 cells were washed with PBS and 
collected in a boiling sample buffer 3 days after siRNA transfection. Cellular proteins were resolved by 
SDS–PAGE (12% acrylamide) and transferred to PVDF membranes (Merck Millipore Ltd). After 
blocking with 5% non-fat milk in PBST (PBS and 0.1% Tween 20), the membranes were incubated 
overnight in a cold room with the primary antibodies and for 1 h with the horseradish peroxidase–
conjugated secondary antibody. Bound antibodies were detected using Clarity Western ECL substrate 
(Bio-Rad). 

Migration assays: A wound healing assay was used to analyze the cell migration of transfectant cells. 
4x10

5
 of cells were seeded in 35 mm dishes. Cells were transfected with siRNAs 24 hrs later and cultured 

for 2 days to a confluence of 90%. The cells were then starved with 0.1% FBS overnight and scratched 
with a sterile 200-μl micropipette tip to form a straight wound. The cells were washed three times with 
PBS and cultured in normal medium for an additional 24 h. An Olympus IX83 microscope was used to 
measure the wound closure. Images were recorded at the time points of 0, 6, 12 and 24 h after wounding. 
The distances invaded by the cells at the front of the wound were measured from the control and the 
experimental samples. Cell migration was assayed by calculating the migrated distance and comparing 
with time 0.  

Statistic test: The differences between the control and treated groups was evaluated using a t-test. 
Statistical significance was calculated based on three experiments. A p-value of <0.05 was considered 
statistically significant. 
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 Fig. S1: The impact of expression statuses of gene transcriptomic modules to the patients’ 
survival. Patient groups with high, middle, low expressions of a transcriptomic module are 
represented as H, M, L, respectively. H* means that the module is up-regulated in cell lines with high 
metastatic activities. L* means that the module is down-regulated in cell lines with high metastatic 
activities. 



HCC1806

Scramble

0 h 6 h 12 h 24 h

Si BCL2L11

Si CDH9

MB231 0 h 6 h 12 h 24 h

Scramble

Si BCL2L11

Si CDH9

0

20

40

60

80

100

120

6 hrs 12 hrs 24 hrs

Pe
rc

en
ta

ge
 o

f C
el

l M
ig

ra
tio

n

HCC1806

Scramble Si BCL2L11 Si CDH9

***

**

**

A B

C D

0

20

40

60

80

100

120

6 hrs 12 hrs 24 hrs

Pe
rc

en
ta

ge
 o

f C
el

l M
ig

ra
tio

n

MDA-MB231

Scramble Si BCL2L11 Si CDH9

**
**

**

Fig. S2: Wound healing assays of HCC1806 and MDA-MB-231 cell lines. A B) siBCL2L11, siCDH9 of 
HCC1806 cell line promote EMT significantly. C D) siBCL2L11, siCDH9 of MDA-MB-231 cell line promote 
EMT significantly.



Table S1: Literature search reveals that many genes in our driver modules are related to metastasis 

 

Modu 
ID 

References Count 

1 LSR1-3, PTP4A34-7, S100A148-10, SMCP11, TP5312-16, ZWINT 5 

2 ABCF3, ATG717,18, ERBB219-22, NME123-26, ODF227,28, VPS72 4 

3 FAM49B, NME123-26, STARD729, TMEM189, ZFYVE16, ZNF596 2 

4 C20orf201, ERBB219-22, FBN1, HOOK130, RP9, ZBTB7B 2 

5 COIL, GRB731-34, IL2035-37, PYCR2, SH2B138, TPCN2 3 

6 CGN, GNA1339-41, GRHL242-44, ITM2B, MTL5, TNFRSF10B45 3 

7 EPPK1, ERBB219-22, IMPG2, KIAA0195, POLDIP246,47, PYGB 2 

8 ANO148-50, ATAD5, CLCF1, IARS, PIK3CA51-55, TRIM58 2 

9 BCL2L1156-58, DISP2, IL2RA59-62, PLEKHG663-65, SMC1B, TMEM105 3 

10 APOA1BP, MRPL55, RBM4B, SHARPIN66,67, SMARCD2, XPO768 2 

11 CCNI, DPT69,70, LIMD2, LRCH4, LY9671,72, RUSC2 2 

12 GNRHR2, LRRC42, PPP1R3B, SDHAP1, STMN373,74, TRPS175-77 2 

13 ARHGEF10, CBWD1, EIF4A3, RECQL478, RUSC1, TRPS175-77 2 

14 ATP1B4, ERLIN2, IFT88, RNFT1, SLC7A13, VIL179 1 

15 DOCK11, GRB731-34, MAP3K13, SLC39A11, TAB280,81, ZCCHC1182,83 3 

16 C8orf86, CACNG4, CHAF1A84, FAM5B, SMYD385-87, ZNF835 2 

17 CAPN8, CDH9, COQ10B, HOXB388-90, IPPK, SGK494 1 

18 BAIAP291, EEF1A292-94, GUK195, PPP1R3B, TEX2, TRPS175-77 4 

19 ADCK5, CHMP6, NDUFS6, RAB1396-98, TDRD12, TRMT1 1 

20 PIK3CA51-55, RGS1699-101, STARD3102,103, TANC2, TGFB2104-106, TRIM58 4 

21 C1S107-109, LY9671,72, PLP2110-112, PPP3CA113, SLAMF8, ZBP1114-117 5 
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