SUPPLEMENTARY INFORMATION

A Scalable Platform to Identify Fungal Secondary Metabolites and Their Gene Clusters

Kenneth D. Clevenger^{1,4,7}, Jin Woo Bok^{2,7}, Rosa Ye^{3,7}, Galen P. Miley¹, Maria H. Verdan¹, Thomas Velk², Cynthia Chen³, KaHoua Yang², Matthew T. Robey⁵, Peng Gao⁴, Matthew Lamprecht³, Paul M. Thomas^{4,5}, Md Nurul Islam³, Jonathan M. Palmer⁶, Chengcang C. Wu³, Nancy P. Keller², and Neil L. Kelleher^{1,4,5}

¹Department of Chemistry, Northwestern University, Evanston, Illinois, USA.

²Department of Medical Microbiology and Immunology and Department of Bacteriology, University of

Wisconsin-Madison, Madison, Wisconsin, USA.

³Intact Genomics, Inc. St Louis, Missouri, USA.

⁴Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA.

⁵Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA.

⁶Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, WI, 53726

⁷These authors contributed equally to this work. Correspondence should be addressed to C.C.W. (cwu@intactgenomics.com), N.P.K. (npkeller@wisc.edu), or N.L.K. (n-kelleher@northwestern.edu)

SUPPLEMENTARY RESULTS

Supplementary Figure 1. FACs screened in this study. Bars show the FAC-Score of the top scoring compound from each FAC, reflecting a ~30% success rate (15/56 FACs) for expression and detection of the heterologous metabolite of FAC-strains in this study. Brown bars represent high scoring compounds which were present at trace levels in negative controls (or for one case was refuted by backbone deletions within the FAC). Blue bars represent FAC-encoded secondary metabolites, confirmed by manual analysis of controls and validation by genetic deletions. FACs without visible bars lacked compounds with positive FAC-Scores. The inset highlights the deorphanized and overexpressed secondary metabolite, benzomalvin A, which is encoded by AtFAC9J20.

Supplementary Figure 2. FAC produced metabolites and their clusters. Confirmatory data are shown for the 17 unique compounds from 15 FACs reported to produce unique SM products. For each FAC in panels **a-q**, the gene cluster diagram for the cluster contained in the FAC is shown, along with a table of ORFs with predicted biosynthetic functions. The MS¹ of each FAC metabolite is also shown, along with the selected ion chromatogram for that metabolite from the FAC, its deletant, and its parent strain. The backbone gene subjected to deletion for empirical validation is highlighted by a red box in each case. Panels **c-q** are continued below.

C) FAC: AtFAC9J20 (103 kb)

RF	Gene ID	Predicted Function
alB	ATEG_03576	NRPS (C-A-T-C-A-T-C)
alA	ATEG_03575, ATEG_03574	PKS (KS-AT-DH-MT-ER- KR-T)

	Deletion j	k Imno
ORF	Gene ID	Predicted Function
а	ATEG_07076	MFS Transporter
b	ATEG_07075	Kinesin-Like
с	ATEG_07074	Muramidase
d	ATEG_07073	LysM Domain-Containing
е	ATEG_07072	Glycosyl Hydrolase
f	ATEG_07071	Tetratricopeptide Repeat
g	ATEG_07070	WD Domain-Containing
h	ATEG_07069	Hypothetical Protein
i	ATEG_07068	F-Box Domain Protein
j	ATEG_07067	PKS (KS-AT-DH-KR-T)
k	ATEG_07066	DUF341 Domain
1	ATEG_07065	NRPS (A)
т	ATEG_07064	Integral Membrane Protein
n	ATEG_07063	Nitrite Reductase
0	ATEG_07062	Alcohol Dehydrogenase

ORF	Gene ID	Predicted Function
а	AACU_58519	ToxD-Like Oxidoreductase
b	AACU_25249	WD40 Repeat-Like
с	AACU_50845	Tetratricopeptide-Like
d	AACU_40975	Hypothetical Protein
е	AACU_40974	Cytochrome P450
f	AACU_40973	Formate/Nitrite Transporter
g	AACU_40972	Hypothetical Protein
h	AACU_59515	NRPS-like (A-T-R)
i	AACU_50843	ABC Transporter
j	AACU_40969	Zinc Finger Protein
k	AACU_25059	Aorisin Protease
1	AACU_40967	Acyl-CoA N-Acyltransferase
т	AACU_58511	Extracellular Dioxygenase
n	AACU_40965	GNAT N-Acetyltransferase
0	AACU_40964	Short Chain Dehydrogenase
p	AACU_40963	Beta-Lactamase
q	AACU_40962	C2H2 Transcription Factor
r	AACU_40961	Cytochrome P450
s	AACU_40960	Alpha/Beta-Hydrolase
t	AACU_40959	FAD Monooxygenase
и	AACU_40958	Hypothetical Protein
v	AACU_40957	C6 Transcription Factor
w	AACU_50839	14-Alpha Sterol Demethylase
x	AACU_58505	Cinnamoyl-CoA Reductase

I

ORF	Gene ID	Predicted Function
а	ASPWE_022952	C6 Transcription Factor
b	ASPWE_022951	Enoyl-CoA Hydratase
С	ASPWE_034287	O-Methyltransferase
d	ASPWE_034285	Hydrophobin
е	ASPWE_064169	Lysophospholipase-Like
f	ASPWE_034283	Acetyltransferase
g	ASPWE_178631	ZIP Zinc Transporter
h	ASPWE_166859	Major Allergen
i	ASPWE_056119	Short Chain Dehydrogenase
j	ASPWE_099620	Transcription Factor
k	ASPWE_166855	Gluconolaconase
1	ASPWE_034275	Monooxygenase
т	ASPWE_233835	Methyltransferase
n	ASPWE_034272	PKS (AT-KS-AT-DH-T-T)
0	ASPWE_102062	Beta-Lactamase

L) FAC: AwFAC4D17 (96 kb)

ORF	Gene ID	Predicted Function
а	ASPWE_042597	NRPS-like (A-T-R)
b	ASPWE_042596	MFS Transporter
С	ASPWE_042595	PKS (KS-AT-DH-MT-KR-T)
d	ASPWE_052779	Cytochrome P450
е	ASPWE_586808	Zinc Dehydrogenase
f	ASPWE_743260	Cytochrome P450
g	ASPWE_113704	Oxidoreductase
h	ASPWE_042592	C6 Transcription Factor
i	ASPWE_042591	Glycosyltransferase
j	ASPWE_042589	Transcription Factor
k	ASPWE_112861	MFS Transporter
1	ASPWE_185079	Ankyrin
т	ASPWE_042586	Zinc Finger, C2H2-Like
п	ASPWE_070267	Dethiobiotin Synthase
0	ASPWE_060925	MFS Transporter
р	ASPWE_136814	Dioxygenase
q	ASPWE_052774	MFS Transporter

_

M) FAC: AwFAC4D8 (80 kb)

O) <u>FAC</u>: AtFAC5L7 (124 kb)

Backbone Deletion

ghi €¶∎

С d

е f

g

h

i j k I

т

п о р q r

f

j k l m no

a b c d e HĎ

Metabolite: facms0006 (673 Da)

ORF	Gene ID	Predicted Function
а	ATEG_07504	Transporter
b	ATEG_07503	N,N-Dimethylglycine Oxidase
С	ATEG_07502	Monooxygenase
d	ATEG_07501	O-Methytransferase
е	ATEG_07500	PKS (KS-AT-DH-T-T-TE)
f	ATEG_07499	C6 Transcription Factor
g	ATEG_07498	Dioxygenase
h	ATEG_07497	Chitin Binding Domain
i	ATEG_07496	C6 Zinc Finger Domain
j	ATEG_07495	Hypothetical Protein
k	ATEG_07494	Transporter
1	ATEG_07493	Exoglucanase
т	ATEG_07492	Arylsulfotransferase Domain
n	ATEG_07491	N-Acetyltransferase
0	ATEG_07490	Oxidoreductase
p	ATEG_07489	ABC Transporter
q	ATEG_07488	NRPS (A-T-C-T-C)
r	ATEG_07487	Iron Transporter

-

Supplementary Figure 3. Alignment of the seqeunced AtFAC9J20 insert with *A. terreus* strain NIH 2624 reference genome. (a) linear alignment of *A. terreus* strain NIH 2624 reference sequence (top) and the sequence of AtFAC9J20 derived from *A. terreus* strain ATCC 20542 (bottom). AtFAC9J20 BGCs for the sesterterpenoid (green), valactamide (teal), and benzomalvin (purple) are shown; the middle panel of *a* shows sequence alignment with large deletions, insertions, inversions and conserved sequences. (b) SNPs found in AtFAC9J20 insert relative to *A. terreus* strain NIH 2624. (c) Insertions and deletions found in AtFAC9J20 insert relative to *A. terreus* strain NIH 2624.

Supplementary Figure 4. AtFAC9J20 produces atropisomeric pair benzomalvin A and benzomalvin D. (a) Benzomalvin A is in equilibrium with its atropisomer, benzomalvin D. (b) Peaks corresponding to each atropisomer are shown a 38 and 41 minutes. Based on relative peak abundance, it is expected that benzomalvin A is the peak at 38 min and benzomalvin D at 41 min.

Supplementary Figure 5. AtFAC9J20 encodes the BGC for benzomalvin A/D. (a) Selected ion chromatograms of 382.1545 ±5 ppm reveal an unknown, highly abundant ion unique to extracts from a strain harboring FAC AtFAC9J20. (b) Benzomalvin A/D was synthesized and analyzed by LC-MS/MS. Retention time and *m*/*z* of the synthetic standard matches the ion detected at 382.1545, found in both AtFAC9J20 extract and extract from *A. terreus* ATCC 20524. (c) MS² of ion at *m*/*z* = 382.1545 of the synthetic standard matches that of AtFAC9J20, confirming the identity of the unknown ion as benzomalvin A/D. (d) Comparison of benzomalvin from AtFAC9J20, from the synthetic standard, and coinjection of the two as a 1:1 mixture confirms their homogeneity.

Supplementary Figure 6. Abundance of benzomalvins in AtFAC9J20-transformed strain. Amount of benzomalvin A/D, E, and B produced by AtFAC9J20, *A. terreus* strain ATCC 20524, and AtFAC9J20-null.

Supplementary Figure 7. Possible models of benzomalvin biosynthesis. Two potential models (a and b) of benzomalvin biosynthesis are shown, which fit the data presented in this study. a) The pathway begins with the loading of amino acid precursors onto the A domains of BenY and BenZ. BenY and the A₁ domain of BenZ are loaded with Anth, while the A₂ domain of BenZ is loaded with Phe. N-methylation of Phe by BenX may happen before loading of Phe onto BenZ, after loading of Phe, or after dipeptide formation. Condensation of Anth with the secondary amine of NmPhe or Phe is catalyzed by the C₁ domain of BenZ, forming a dipeptide intermediate, which is observed to accumulate in the benY deletant due to spontaneous hydrolysis. This is followed by in trans condensation of the Anth-NmPhe dipeptide with Anth bound to the T domain of BenY by the C₂ domain of BenZ to form the linear tripeptide Anth-NmPhe-Anth. Cyclization and release of the tripeptide is then catalyzed by the C_T domain of BenY and the resulting 11-member macrocyclic intermediate is expected to spontaneously collapse to form the benzodiazepine core, as previously reported for the anthranilate containing tripeptide secondary metabolite scaffold, asperlicin¹⁵. Alternatively, the model represented in **b**) is also possible based on the current evidence, where the observed accumulation of the Anth-NmPhe dipeptide would be an off-pathway product resulting from the absence of BenY activity in the benY deletant. In this pathway, the linear tripeptide Anth-Anth-NmPhe is formed attached to BenZ-T₂ and BenZ-C₂ acts as the terminal, cyclizing C domain to release the macrocyclic tripeptide. Sequence alignment is not able to predict which of the two C domains act as the terminal cyclizing C-domain, and future studies will seek to investigate the roles of the C domains of BenZ and BenY in order to determine which biosynthetic pathway occurs.

18

Supplementary Figure 8. Detection of sesterterpenoid product. (a) The ion with m/z = 369.2783 is present in extracts of *A. terreus* strains ATCC 20524, AtFAC9J20, but not in the AtFAC9J20- Δ *sttA* deletant. (b) The simulated formula C₂₅H₃₇O₂ matches the observed MS¹ spectrum within 3 ppm. (c) Analysis of the low-mass region (m/z 50 to 115) of the MS² spectrum of parent ion 369.278 confirms terpenoid structure, with terpenoid diagnostic fragments shown.

Supplementary Figure 9. Structures of sesterterpenoids. Structures of known fungal sesterterpenoids with the molecular formula of $C_{25}H_{36}O_2$, matching the unknown ion with m/z = 369.2710.

Supplementary Figure 10. Sesterterpenoid production by AtFAC9J20, *A. terreus* ATCC 20524, and AtFAC9J20- Δ sttA. The sesterterpenoid is produced by AtFAC9J20 at lower levels than by *A. terreus*. Deletant AtFAC9J20- Δ sttA eliminates production of the sesterterpenoid.

Supplementary Figure 11. Valactamide A produced by AtFAC9J20. (a) An ion with m/z = 507.4152, corresponding to the newly discovered metabolite valactamide A, was detected in extracts from AtFAC9J20 and *A. terreus* strain ATCC 20542, but not AtFAC9J20- $\Delta valB$. (b) The MS². spectrum reveals immonium ions consistent with Val (obs. m/z = 72.0815) and either IIe or Leu residues (obs. m/z = 86.0972). Also an ion characteristic of a dipeptide of IIe and/or Leu with Val was observed (obs. m/z = 185.165).

Supplementary Figure 12. Valactamide A production by AtFAC9J20, *A. terreus* strain ATCC **20542**, and AtFAC9J20- Δ *valB*. Valactamide A production is increased in AtFAC9J20 relative to *A. terreus* and is abolished by the AtFAC9J20- Δ *valB* deletant.

Supplementary Figure 13. ¹H NMR spectrum of valactamide A (CDCl₃, 600 MHz).

Supplementary Figure 14. ¹³C NMR spectrum of valactamide A (CDCI₃, 126 MHz).

Supplementary Figure 15. HSQC spectrum of valactamide A (CDCl₃, 600 MHz).

Supplementary Figure 16. HMBC spectrum of valactamide A (CDCl₃, 600 MHz).

Supplementary Figure 17. gCOSY spectrum of valactamide A (CDCI₃, 600 MHz).

Supplementary Figure 18. Main HMBC (blue) and gCOSY (bold bonds) correlations used for the structure elucidation of valactamide A. COSY correlations are shown as thick lines and HMBC correlations are shown by blue arrows.

Supplementary Figure 19. Valactamide A contains L-Val and L-IIe. Marfey's reagent was used to derivatize free D and L amino acid standards and amino acids released by hydrolysis of valactamide A. Chromatographic retention times of each peak are shown in red. (a) Selected ion chromatogram of $m/z = 412.183 \pm 5$ ppm, corresponding to derivatized valine. Coinjection of derivatized L-Val and valactamide A hydrolysate gives one peak at 27.6 min (2^{nd} from top). Coinjection using D-Val gives two peaks, one for D-Val at 25.2 min and one for L-Val at 27.2 min (*bottom*). (b) Selected ion chromatogram of $m/z = 426.198 \pm 5$ ppm, corresponding to derivatized isoleucine. Coinjection of L-IIe and valactamide A gives one peak at 28.9 min (2^{nd} from top). Coinjection of D-IIe and valactamide A gives two peaks, one at 26.0 min for D-IIe and one at 28.9 min for L-IIe (bottom).

Supplementary Figure 20. **Valactamides A-H.** The family of valactamide metabolites proposed to be produced by the valactamide gene cluster is shown. The structure of valactamide A (shown in black box) was determined by NMR. The structures of the other compounds are proposed based on similarity of MS¹ and MS² data and molecular genetic evidence (see **Supplementary Fig. 21** and **22**).

Supplementary Figure 21. Effect of *valB* deletion on valactamide metabolites. Each proposed valactamide metabolite is eliminated by deletion of *valB*. The blue box denotes valactamide A.

Supplementary Figure 22. MS² of the valactamide family. The 50 to 200 *m/z* region from MS² for valactamides A-H is shown. Selected fragments which are the same within <1 ppm across each family member are highlighted with sticks. Red sticks correspond to diagnostic fragment ions for Val, Ile, and the Val-Ile dipeptide (amino acid derived fragment structures shown in **Supplementary Figure 11**). Valactamide A is highlighted with a blue box.

```
x1 <- xcmsSet(method="centWave", ppm=3, peakwidth=c(20,100), snthresh=10, prefilter=c(5,10000),
mzCenterFun="wMean", integrate=1, mzdiff=0.001, fitgauss=FALSE, noise=1000, sleep=0,
verbose.columns=FALSE, nSlaves=4)
#Grouping
x2 <- group(x1, bw=30, minfrac=0.5, mzwid=0.01)
#wrting grouping output
dat <- groupval(x2, "medret", "into")
rownames(dat) <- groupnames(x2, mzdec=4, rtdec=0)
dat <- rbind(group=as.character(phenoData(x2)$class), dat)
write.csv(dat, file="groupedoutput.csv")
#retention time correction
x3 <-retcor(x2, family="s", plottype="m")
#regroup after retcor
x4 <- group(x3, bw=30, minfrac=0.5, mzwid=0.01)
#re-write file after retcor
dat2 <- groupval(x4, "medret", "into")
rownames(dat2) <- groupnames(x4, mzdec=4, rtdec=0)
dat2 <- rbind(group=as.character(phenoData(x4)$class), dat2)
write.csv(dat2, file="groupedoutput.csv")
# peakfilling
pkfill < -x4
pkfill@profinfo$step <- 0.001
pkfill2 <-fillPeaks(pkfill)
#load camera
library(CAMERA)
#running camera
x5 <-xsAnnotate(pkfill2)
x6 <-groupFWHM(x5, perfwhm=0.6)
x7 <-groupCorr(x6)
x8 <-findIsotopes(x7)
x9 <-findAdducts(x8, polarity="positive")
write.csv(getPeaklist(x9), file="resultCAMERA.csv")
```

Supplementary Figure 23. XCMS Commands. Commands used in R for feature detection and annotation of untargeted LC-MS data using XCMS and CAMERA.

Supplementary Table 1. AtFAC9J20 sequence comparison with genomic reference strain *A. terreus* NIH 2624. The strain actually used to generate AtFAC9J20 was ATCC20542.

AtFAC9J20	NIH 2624	Large Variations	Location
102,551 -102,722			
(Telomere)	no data	NA	NA
66,920 - 102,550	no data	NA	NA
48,773 - 66,919	42,395 - 60,545	10bp duplication in this strain	intergenic
40,000 - 48,772	missing	(+)8,773 bp	intergenic
34,242 - 39,999	36,648 - 42,404		
missing	36,304 - 36,647	(-)344bp	intergenic
31,774 - 34,248	33,830 - 36,303	7bp duplication in the NIH strain	
missing	33,724 - 33,829	(-)106bp	intergenic
23,337 - 31,881	25,175 - 33,723	2bp duplication in this strain	intergenic
missing	24,806 - 25,174	(-)369bp	intergenic
23,066 - 23,338	24,805 - 24,541	265bp Inversion	intergenic
missing	24,445 - 24,540	(-)96bp	intergenic
15,815 - 23,065	17,183 - 24,444		
missing	15,332 - 17,182	(+)2bp and (-)1,851bp	intergenic
14,667 - 15,813	14,166 - 15,331		
			A10 (14,101 -
13,926 -14,666	missing	(+)741bp and (-)8bp	14,925)
		207 or 225bp duplication in the NIH	A11 (7,736 -
6854-13925	7072-14159	strain	6,762)
1-7237	1-7248		

Supplementary Table 2. Summary of open reading frames on the FAC, AtFAC9J20.

Gene Name	<i>A. terreus</i> NIH2624 homolog	Start	Stop	Predicted domains (CDD)	Deletant Made?
benX	None	91734	90495	SAM binding	Yes
benY	None	86362	89695	NRPS: A-T-C	Yes
benZ	None	84859	77576	NRPS: A-T-C-A- T-C	Yes
valB	ATEG_03576	58960	66874	NRPS: C-A-T-C- A-T-C	Yes
valA	ATEG_03575 and ATEG_03574 ^a	57999	50187	PKS: KS-AT-DH- Mtase-ER-KR- PP	Yes
AtFAC9J20_6	ATEG_03573	37549	36224	TRI7-like toxin biosynthesis protein	No
AtFAC9J20_7	ATEG_03571	28172	27526	None	No
AtFAC9J20_8	None	33718	34061	None	No
AtFAC9J20_9	ATEG_03570	25661	25386	BBE domain	No
AtFAC9J20_10	ATEG_03569	24016	24968	acetyltransferase	No
sttA	ATEG_03568	20124	22740	Isoprenoid C1 superfamily	Yes
sttB	ATEG_03567	19694	17673	p450 superfamily	Yes
AtFAC9J20_13	None	14107	14931	None	Yes
AtFAC9J20_14	ATEG_03566	10961	12219	SUR7 – transmembrane	No
AtFAC9J20_15	None	10154	9035	None	No
AtFAC9J20_16	None	7254	6768	None	No
AtFAC9J20_17	ATEG_03564	5109	6241	Tyrosinase superfamily	No
AtFAC9J20_18	ATEG_03563	3898	1120	NRPS: A-T-TE	No
AtFAC9J20_19	None	153	611	None	No

^a Previously mis-annotated as two genes, correctly annotated here as one gene, *valA*

Supplementary Table 3. AtFAC9J20 Deletants.

Deletant Name	Genes Deleted	Benzomalvin A/D Detected?	Terpenoid Detected?	Valactamide A Detected?
null	benX, benY, benZ, valB, valA	No	Yes	No
ΔbenX	benX	Yes	Yes	Yes
ΔbenY	benY	No	Yes	Yes
Δbenz	benZ	No	Yes	Yes
∆valB	NRPS valB	Yes	Yes	No
∆valA	PKS valA	Yes	Yes	No
∆sttA	Terpene synthase sttA	Yes	No	Yes
∆sttB	Cytochrome P450 sttB	Yes	No	Yes

Supplementary Table 4. Extracted Adenylation Domain Signatures of NRPS genes encoded by AtFAC9J20.

Domain	Extracted A-domain Signature	Predicted Amino Acid
BenY- <mark>A</mark> TC	GMFIVGLGMK	Anth
BenZ- <u>A</u> TCATC	GINFIGAGTK	Anth
BenZ-ATC <u>A</u> TC	DMNVMGGVTK	Phe, NmPhe, Tyr
ValB- C <mark>A</mark> TCATC	DALLLGITIK	Branched Aliphatic
ValB- CATC <mark>A</mark> TC	DLGFSGPIIK	Branched Aliphatic

Supplementary Table 5. Annotated ¹H and ¹³C chemical shifts for valactamide A (CDCI₃, ^a600 MHz and ^b150 MHz).

Position	^a δ _C , mult.	^ь δ _H , mult. (J in Hz)
1	171.2, C	
2	57.3, CH	4.28, dd (6.5, 6.2)
3	37.4, CH	1.90, m
4	15.1, CH ₃	0.87, d (6.9)
5	25.9, CH ₂	1.20, m; 1.51, m
6	11.5, CH ₃	0.94, dd (7.4, 7.3)
7	170.9, C	
8	58.8, CH	4.33, dd (7.6, 5.0)
9	30.2, CH	2.33, ddd (6.9, 6.8, 5.00
10	17.5, CH ₃	0.93, d (6.8)
11	19.6, CH ₃	1.02, d (6.9)
12	169.4, C	
13	128.2, C	
14	12.6, CH ₃	1.93, d (0.9)
15	144.6, CH	6.34, dq (10.2, 0.9)
16	30.8, CH	2.57, dddd (10.6, 10.2, 6.7, 2.6)
17	20.9, CH ₃	0.96, d (6.7)
18	46.1 CH	1.12, ddd (13.0, 10.6, 3.4);
10	40.1, OH2	1.37, ddd (13.0, 10.9, 2.6)
19	29.0, CH	1.28, m
20	19.5, CH ₃	0.80, d (6.3)
21	48.0, CH ₂	0.94, m; 1.00, ddd (13.4, 7.6, 5.1)
22	28.4, CH	1.49, m
23	21.2, CH ₃	0.81, d (6.5)
24	44.8, CH ₂	0.82, m; 1.26, ddd (13.6, 9.4, 3.3)
25	29.9, CH	1.48, m
26	20.8, CH ₃	0.86, d (6.6)
27	30.5, CH ₂	0.99, m; 1.44, m
28	32.6, CH ₂	1.43, m; 1.62, m

29	72.5, CH	4.93, ddd (7.0, 6.4, 4.4)
30	20.3, CH ₃	1.23, d (6.4)
HN-I		6.56, d (6.2)
HN-V		6.18, d (7.5)

Supplementary Table 6. Relative Abundance of valactamide metabolites.

	Molecular	Exact	#	
Metabolite	Formula	Mass	ketides	Abundance
valactamide A	$C_{30}H_{54}N_{2}O_{4}$	506.4084	7	94 %
valactamide B	$C_{27}H_{48}N_2O_4$	464.3614	6	3.0%
valactamide C	$C_{27}H_{50}N_{2}O_{4}$	466.3771	6	1.4%
valactamide D	$C_{30}H_{56}N_{2}O_{4}$	508.4240	7	0.94%
valactamide E	$C_{24}H_{44}N_2O_4$	424.3301	5	0.099%
valactamide F	$C_{24}H_{42}N_2O_4$	422.3145	5	0.027%
valactamide G	$C_{33}H_{60}N_2O_4$	548.4553	8	0.018%
valactamide H	$C_{33}H_{62}N_{2}O_{4}$	550.4710	8	0.00043%

Supplementary Table 7. FAC clones containing 56 full-length BGCs.

Fungal species	Cluster No.	FAC Name	FAC Location (Chr: position)	FAC Size (bp)
A. aculeatus	9	AaFAC1K8	7:483343-596987	113,644
A. aculeatus	19	AaFAC1J4	25:37-110883	110,846
A. aculeatus	21 22	AaFAC1D8	1:78626-186378	107,752
A. aculeatus	1_25	AaFAC2P10	8:211037-336059	125,022
A. aculeatus	30	AaFAC6A16	16:18608-112106	93,498
A. aculeatus	32	AaFAC8A16	1:2370038-2483583	113,545
A. aculeatus	34	AaFAC10A5	4:1981-104478	102,497
A. aculeatus	35	AaFAC10D7	5:13457-135109	121,652
A. aculeatus	39	AaFAC1L21	18:355848-455803	99,955
A. aculeatus	40	AaFAC3D12	22:235518-338083	102,565
A. aculeatus	41	AaFAC2P8	4:870643-1011680	141,037
A. terreus	7	AtFAC8P6	2:37278-154428	117,150
A. terreus	8	AtFAC5P8	2:175456-236080	60,624
A. terreus	10	AtFAC6H11	3:7234-82997	75,763
A. terreus	12	AtFAC8G17	3:1480896-1564240	83,344
			4:2151734-the missing	•
A. terreus	20	AtFAC9J20	telomeric end	102,722
A. terreus	29	AtFAC3E2	8:1151835-1242603	95,425
A. terreus	31	AtFAC9M17	8:1557569-1681014	123,445
A. terreus	35	AtFAC9B9	10:388955-491178	102,223
A. terreus	36	AtFAC9H19	10:590841-687211	96,370
A. terreus	37	AtFAC4N23	10:1162818-1274448	111,630
A. terreus	38	AtFAC7O19	10:1344783-1469927	125,144
A. terreus	39	AtFAC5N15	10:1464244-1565353	101,109
A. terreus	40	AtFAC5L7	11:189737-313873	124,136
A. terreus	46	AtFAC5B9	13:398169-522253	124,084
A. terreus	48	AtFAC5E10	14: 6368-97532	91,164
A. terreus	49	AtFAC6I22	14:10646-148251	137,605
A. terreus	51	AtFAC7M4	14:179105-281612	102,507
A. terreus	53	AtFAC6N3	15:324192-439862	115,670
A. wentii	1	AwFAC4O2	2:748867-861001	112,134
A. <i>wentii</i>	2	AwFAC1K8	4:96694-210549	113,855
A. wentii	3	AwFAC2F10	10:572788-655030	82,242
A. wentii	4	AwFAC4E11	1:2038648-2143968	105,320
A. wentii	5	AwFAC4L5	2:1829642-1920197	90,555
A. wentii	6	AwFAC2P3	4:186740-312513	125,773
A. wentii	7	AwFAC4I20	4:3165620-3255977	90,357
A. <i>wentii</i>	8	AwFAC4D17	5:2466262-2562334	96,072
A. <i>wentii</i>	10	AwFAC4D8	7:2270034-2350260	80,226
A. wentii	11	AwFAC3M17	10:471140-562395	91,255
A. wentii	13	AwFAC3D18	7:2189142-2288310	99,168
A. wentii	19	AwFAC1H17	4:1-87455	87,454
A. wentii	20	AwFAC2K17	1:3915914-4008958	93,044

A. <i>wentii</i>	25	AwFAC3E24	8:318322-407365	89,043
A. <i>wentii</i>	26	AwFAC3L2	9:672348-770093	97,745
A. <i>wentii</i>	27	AwFAC3B4	9:1507369-1620289	112,920
A. <i>wentii</i>	29	AwFAC4J7	2:84403-199331	114,928
A. <i>wentii</i>	30	AwFAC2F2	2:2776606-2876645	100,039
A. <i>wentii</i>	31	AwFAC3D3	3:179174-288015	108,841
A. <i>wentii</i>	32	AwFAC1B1	8:2015243-2105484	90,241
A. wentii	34	AwFAC1C5	1:4290614-4374135	83,521
A. wentii	38	AwFAC4H11	7:1563096-1662018	98,922
A. <i>wentii</i>	39	AwFAC4F15	10:118366-207802	89,436
A. wentii	40	AwFAC3H22	1:2934184-3041025	106,841
A. <i>wentii</i>	43	AwFAC1J2	10:1-87900	87,899
A. wentii	44	AwFAC4O4	2:2094226-2208140	113,914
A. wentii	47	AwFAC4C1	4:1016467-1115739	99,272

Supplementary Table 8. PCR primers used for FAC engineering in this study.

Name	Sequence
ΔAtFAC9J20Ben- Ipt-clusters (AtFAC9J20-null)	
Pben-KF	TCTTTAAGACCAGCTTGAGCAGTACCTTTAGAATGCAACGGCTTTTAACC CCTGTTGACAATTAATCATCGGCA
Pben-KR	ACTAAAGTTTGGAGCTTGTAAGTTAATTTTTGCGTTGTTACTATTGCCTCT CAGCACTGTCCTGCTCCTT
ΔAtFAC9J20Sester terpenoid-cluster (AtFAC9J20-null2)	
Poph-KF	GTGGTGGCAATCCTATCCCCGATCCTGCAGGCTCTGGAAGCTCGGGATC CCCTGTTGACAATTAATCATCGGCA
Poph-KR	TTAGGAGGCTTATGCTTCTTACCGGATGTTAATAAGACTGCTTTGTTAGCT CAGCACTGTCCTGCTCCTT
ΔAtFAC9J20BenX	
Mtase-KF	ATGTCCGCGGTCGAGATTCCTCACCCCTCCGGCTGCCGAGTATACGATA TCCTGTTGACAATTAATCATCGGCA
Mtase-KR	TCACCGATGTGCGACACTTACTCTCTCGTTCCCGGACGTGAACGTCTGG GTCAGCACTGTCCTGCTCCTT
ΔAtFAC9J20BenY	
NRPS1-KF	ATGGTCTCACGTAAACCAGCACTGGCAGTCAAAGAATTGGGATGCATCA GCCTGTTGACAATTAATCATCGGCA
NRPS1-KR	CTCATGGGGCCATTATGTTGACCAGAGCTTGTTCCGGGTGCCTCGCGAG CTCAGCACTGTCCTGCTCCTT
ΔAtFAC9J20BenZ	
NRPS2-KF	TCACACTTTGATCTTGTCCAACAGCTCTCCAGGCTGACTAGCAAACGCCG CCTGTTGACAATTAATCATCGGCA
NRPS2-KR	CATGACAAGGATAGGCTTCCAGCAGCATATCACTGGGGAGGATACTGGG ATCAGCACTGTCCTGCTCCTT

ΔAtFAC9J20BenY-	
C-domain	
At20BenYCkan-F	GTGAGCTCTGTCTGTCGCATCTTCGGGAACAGACATCGTTGCTGGACTC TCGACCTGCAGCCTGTTGACAA
At20BenYCkan-R	GAACGCGACCCCATACGATCAATCAAAGCACCCTTCCAATCACCATCTCA GTCGAGGCTGATCAGCGA
ΔAtFAC9J20BenZ-	
C-domain	
At20BenZCkan-F	ATGATACATTCTGGGTGGTGGATGTACCCTCCTCCGGAAGAGATAGAT
At20BenZCkan-R	TTGACGGTGAGCTCCGTGCAGTGGCAACGCGCGAGCTAGTCAGCCGCG GCGTCGAGGCTGATCAGCGA
ΔAtFAC9J20valB	
NRPS3-KF	ATGGCGGACGGAGCTGACTATACCCAACGCAATATCCATTCTCTCGACT CCCTGTTGACAATTAATCATCGGCA
NRPS3-KR	TCATGATGCTGCTTCGATGATGAATCTGCCAGTGCCGGCGTTGTTATGC GTCAGCACTGTCCTGCTCCTT
ΔAtFAC9J20valA	
PKS-KF	ATGAGCCTTCCAGCACAGTCCCCAATTGCCGTCGTGGGCGTTGCATACA GCCTGTTGACAATTAATCATCGGCA
PKS-KR	TCAAGAGACGCATGTTTCCTTCCCCTTTAACCCTGAGCCACGATCCGACT TCAGCACTGTCCTGCTCCTT
ΔAtFAC9J20- ATEG_03569	
20t03569-kF	CTCTTCTCCCGCTTAGAGCTTATACCAAGCACTGTCTGTTCCTGCCCAAA CGACCTGCAGCCTGTTGA
20t03569-kR	GAAACCTTCCAATACAGTATGGGTGATCAAACAACTGTGCATTCTATATA GTCGAGGCTGATCAGCGA
ΔAtFAC9J20- ATEG_03568	

20DMAT-kF	TCAGTACCATAACAAGGTGATAACATTTTCAATTTGGCTGGC
20DMAT-kR	CCTACATTAAGAACTAACAAACACATGCACCAAAATATTACCACAGCAGA GTCGAGGCTGATCAGCGA
ΔAtFAC9J20- ATEG_03567	
20DMAT2-kF	GTTGAAGCACAACCTTCGTACACCTGCCAATAGCATGATAATCGTCTCCT CGACCTGCAGCCTGTTGA
20DMAT2-kR	AGACATACGCATATGTCCTGCCGGAACGATACCTGGAGAAAATCAAGAA CGTCGAGGCTGATCAGCGA
ΔAtFAC9J20- ATEG_03573	
At20-71Kan-F	ATGAGCTTATTGCATCCACTTTTAGTGCAGCTGATTGCTTTGGCACTTCC CGACCTGCAGCCTGTTGACAA
At20-71Kan-R	TCAGATGTTTATACCAATGTGACGCCAAATAAGCAGTGTTCCTGTCGCCA GTCGAGGCTGATCAGCGA
ΔAtFAC36-9H19- ATEG_07067	
At36-7kan-F	AGTTTATCGCCTCGTCCGATTTCCTGTTTGCGGCCTACACTCCACATATA CGACCTGCAGCCTGTTGACAA
At36-7kan-R	CATATAATATGGCACTTAATAAATTCTAGAGTACAGGCTGTCTGT
ΔAtFAC38-7O19- ATEG_07358	
At38NRPS-kF	CTCATAATCGGAAGTATCATTGCTTGCATCTCAGCCACTAGCTCGTCTAT CGACCTGCAGCCTGTTGA
At38NRPS-kR	GATTCATCAGAATACCTCTTTCGCCCAGCTCTCATTGTCGCGAAATCAAT GTCGAGGCTGATCAGCGA
ΔAtFAC39-5N15- ATEG_07380	
At39-80kan-F	CTGTTGCAAGAAACCTTGACCCGTCTTGAAGTGTTCTGAGTCTACTCACC CGACCTGCAGCCTGTTGACAA

At39-80kan-R	ATGTCAATTGGGAGCCACGAGAAGGACTGCCACTTCGTCAGCTGCGTTC CGTCGAGGCTGATCAGCGA
ΔAaFAC30-6A16-	
Aacu16872_046595	
Aa30NRPSkan-F	GACTAAAGATTCAAGGATTGAGGGAAATAGACTCATAAAACTCAGTTGTC CGACCTGCAGCCTGTTGACAA
Aa30NRPSkan-R	CCTTCATATATCGTATCATCCTGAGGTTCTATGACCTCTGTGGGGCCT GTCGAGGCTGATCAGCGA
ΔAaFAC35-10D7- Aacu16872_51108	
Aa35PKSkan-F	ACTATCCTCATATCCAACAGTGCCATTCTGGTTAAAGAGATAATCTCCAC CGACCTGCAGCCTGTTGACAA
Aa35PKSkan-R	GATCGAGCATTGGATTGTTTACAAACACAGCATAGAGGTAAGATAATAGA GTCGAGGCTGATCAGCGA
ΔAaFAC39-1L21-	
Aacu16872_054820	
Aa39PKSkan-F	GTCAGGATGACCACCTATCGGGAACATTCAGTCCTACCGCAGTATGTGG CCGACCTGCAGCCTGTTGACAA
Aa39PKSkan-R	AACTCCAAAGCACATCCCGCGCAGCTTCATGCCCAACCTTAACAACCAAC
ΔAaFAC41-2P8- Aacu16872_058515	
Aa41NRPSkab-F	TCAAAACCGAACGAAATAGCTTGAGATCTTATTTCAGACCGACATCGAAA CGACCTGCAGCCTGTTGACAA
Aa41NRPSkab-R	CAAACCCCATCCGTTTCCCCGCCCCATTCCGCTATCAGCCCTAAGCCGC CGTCGAGGCTGATCAGCGA
ΔAwFAC2-1K8-	
Aspwe1_0027400	
Aw2-400kan-F	GTTTCCCTTTTTTCCAACATTAACCAACTTTCTGACCAATAACACCAATC GACCTGCAGCCTGTTGACAA
Aw2-400kan-R	TATTCAATGTGTCATCGTGGATTGTTCCTGGTTACTTCATTCA

ΔAwFAC4-4E11- Aspwe1_0034272	
Aw4-72kan-F	TCTAGTGGATCACATGTACCAGCTGAACCTGAAGCTGAATGCGGTCCAG GCGACCTGCAGCCTGTTGACAA
Aw4-72kan-R	CCCCAACATGAAAACAATCTAGCTGTAGTACTCCTCCATCCA
ΔAwFAC8-4D17- Aspwe1_0042597	
Aw8-97kan-F	ACGTCAAGTGCGATACAAACAAGAGCAAAACTAACGACAGCGGAATCAT CCGACCTGCAGCCTGTTGACAA
Aw8-97kan-R	CATCGCATAAGACATTATCCATAAATACTACCAACTTGATACCAATTCACG TCGAGGCTGATCAGCGA
ΔAwFAC10-4D8- Aspwe1_0044725	
Aw10-25kan-F	GCAGCCCCTGCGTACTCTGTACGCCGCAGATTCACCCCCAAAGCACGCAA GCGACCTGCAGCCTGTTGACAA
Aw10-25kan-R	GAATAGCGCTTTGCAAACACTTTCAACAGAACTGTCAGTGCTACACCCCA GTCGAGGCTGATCAGCGA
ΔAwFAC19-1H17- Aspwe1_0085322	
Aw19-22kan-F	ACGATCTCTCTCCTGCAGTCCAAGTATCTGCCTGAAGCAGGGATCAAA CGACCTGCAGCCTGTTGACAA
Aw19-22kan-R	GCTTGATATCTGAAGATCCGTTGAAACAGACATCCAACGTCTGGCGGAA CGTCGAGGCTGATCAGCGA
ΔAwFAC27-3B4- Aspwe1_0121409	
Aw27-09kan-F	GCTCGTATTTGCTATTATGTAACAGTTGCTAAAGCTCTTGCTCCCTTGTAC GACCTGCAGCCTGTTGACAA
Aw27-09kan-R	GTATTGTACACAGGTATCCTTAAACAATAGTAACACAAACAGACGATCCA GTCGAGGCTGATCAGCGA

ΔAwFAC31-3D3-	
Aspwe1_0151732	
Aw31-32kan-F	TGGGCATCGATTCAATTGCTTGATTGCAAAAGCTTGTGGACGCAAGAACT
	CGACCTGCAGCCTGTTGACAA
Aw31-32kan-R	ATGCATTCAAGATAGAGTCCTTGTCCAAACTCAACTCGACCGTGTTGATC
	GTCGAGGCTGATCAGCGA
ΔAwFAC32-1B1-	
Aspwe1_0163793	
Aw32-93kan-F	TAGCACGGGTTTTTGTTGATCTCTGTGTCTGGCTGTATAATATTCATAGTC
	GACCTGCAGCCTGTTGACAA
Aw32-93kan-R	ACGAATCAATATATACAAGGTCAAGAGGCAGGCCTGCCATCTTATACGTT
	GTCGAGGCTGATCAGCGA
ΔAwFAC43-1J2-	
Aspwe1_0294248	
Aw43-48kan-F	ATGCCATTCTTGCGGTGCACAACACCGGCTGTAGTCCGGCTTTAATAGC
	CCGACCTGCAGCCTGTTGACAA
Aw43-48kan-R	TTCGGTGGCTTTGAGGGAGTCAACTGTGACATGTTAGCATACATCATATG
	GTCGAGGCTGATCAGCGA