Supplementary Information

Oxidation of phosphorothioate DNA modifications leads to lethal genomic instability

Stefanie Kellner^{1§}, Michael S. DeMott^{1§}, Ching Pin Cheng¹, Brandon Russell,^{1,¶} Bo Cao,¹ Delin You² & Peter C. Dedon^{1,3*}

¹Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; ²State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; ³Singapore-MIT Alliance for Research and Technology, Singapore.

[§] These authors contributed equally to this work.

[¶] Present address: GlaxoSmithKline, Houston, TX

Content:

Supplementary Figure 1: *dnd* genes and their corresponding functions.

Supplementary Figure 2: Influence of growth state on the response to oxidant exposure.

Supplementary Figure 3: HOCI sensitivity of $\Delta dndF$ -H and $\Delta dndB$ S. enterica strains compared with wild-type and $\Delta dndB$ -H.

Supplementary Figure 4: Reaction of PT-containing dinucleotides with H₂O₂ and HOCI.

Supplementary Figure 5: Agarose gel analysis of DNA isolated from oxidant-treated bacteria after 10 to 40 min of incubation.

Supplementary Figure 6: Mass spectrum showing the different d(G_{ps}T) isotopomers.

Supplementary Figure 7: Estimation of the rate of PT turnover in untreated wild-type *S. enterica serovar Cerro 87.*

Supplementary Figure 8: Percentage of all PT replaced or repaired over time.

Supplementary Figure 9: Full, uncut agarose gel images for Figures 4a and 4b.

Supplementary Table 1: Overview of bacterial strains and their PT levels.

Supplementary Table 2: Parameters for LC-MS/MS detection of PT isotopomers

Supplementary Table 3: Doses of H_2O_2 and HOCI used in analysis of DNA damage in bacteria

Supplementary Results

Supplementary Figure 1: *dnd* genes and their corresponding functions.

Regulator	Incorporating complex	Restriction enzymes	
dndB	dndC dndD dndE	dndH dndG dndF]

Supplementary Figure 2: Influence of growth state on the response to oxidant exposure. Wild-type (blue; PT+) and $\Delta dndB-H$ (red; PT-) *S. enterica* serovar Cerro 87 cultures were exposed to either H₂O₂ (left column) or HOCI (right column) in stationary phase (following from overnight growth; dashed lines) or log phase (after 1 h of growth in fresh medium; solid lines). While exposure to H₂O₂ leads to a difference in both growth and survival depending on the growth state and experimental conditions, no such effect was observed for HOCI. Data for growth rate represent mean \pm SD for 3 technical replicates. Data for survival represent a single illustrative experiment.

Supplementary Figure 3: HOCI sensitivity of $\Delta dndF$ -H and $\Delta dndB$ S. enterica strains compared with wild-type and $\Delta dndB$ -H. Data represent mean \pm SD for 3 biological replicates.

Supplementary Figure 4: Products arising in reactions of PT dinucleotides with H_2O_2 and HOCI. (a) LC-MS/MS analysis of the reaction of $d(G_{ps}A)$ with 8 mM H_2O_2 and 1 mM HOCI reveals desulfuration to form phosphate in $d(G_{Po}A)$ and phosphonate in $d(G_{PH}A)$, as well as dG and dA indicative of strand-breaks. (b) Positive ion mode, collision-induced dissociation product ion mass spectra of $d(G_{Po}A)$ and $d(G_{PH}A)$, difference highlighted in yellow boxes. (c) Concentration dependence of the reactions of $d(G_{ps}A)$ with H_2O_2 and HOCI. Products were quantified as MS signal intensity in LC-MS analysis. (d) Reaction of $d(G_{Po}A)$ and $d(G_{PH}A)$ with 800 mM H_2O_2 . The decrease in $d(G_{Po}A)$ is consistent with an oxidationinduced strand-break (Fig. 3, main text), but not $d(G_{Po}A)$ formation. (e) Comparison of the total ion chromatogram (TIC) and UV absorption for products formed in the reaction of $d(G_{Ps}A)$ to 1 mM HOCI. Note that the elution time offset of the UV and MS signals is due to the fact that the in-line UV detector is positioned ahead of the MS system.

Supplementary Figure 5: Agarose gel analysis of DNA isolated from oxidant-treated bacteria after 10 to 40 min of incubation. Wild-type (right panel; PT+) and $\Delta dndB$ -H (left panel; PT-) S. *enterica* strains were exposed to 150 μ M HOCl and genomic DNA (gDNA) was isolated at various times. The gDNA was then resolved on a 0.7% agarose gel. Lanes marked "(-)" contain DNA from unexposed bacteria.

Supplementary Figure 6: Mass spectra showing the different d(G_{PS}T) isotopomers. The red mass spectrum with molecular ion $[M+H]^+ m/z$ 597 represents the $[^{34}S]/[^{15}N]$ -labeled d(G_{PS}T) in original DNA strands. The black mass spectrum with molecular ion $[M+H]^+ m/z$ 588 represents $[^{32}S]/[^{14}N]$ -labeled d(G_{PS}T) in newly replicated DNA strands. The grey mass spectrum with molecular ion $[M+H]^+ m/z$ 595 represents $[^{32}S]/[^{15}N]$ -labeled d(G_{PS}T) in which original PT $[^{34}S]$ has been replaced with $[^{32}S]$.

Supplementary Figure 7: Estimation of the rate of PT turnover in untreated wild-type *S. enterica serovar Cerro 87.* To calculate PT turnover events per hour ("rate") as in Fig. **5c** for *E. coli* B7A, PT turnover events quantified as the percentage of original PT levels are plotted versus sampling time. Regression analysis reveals a reasonable linear fit of these data, with the slope defining the percentage of PTs turning over per hour. The data shown in the graph are derived from untreated wild-type *S. enterica serovar Cerro 87* and illustrate the regression analysis performed to estimate PT turnover rates for *B7A* and *Cerro 87* in Fig. **5d**. Data in the graph below represent mean values for 2 technical replicates from a single time course experiment, with the slopes from three different experiments averaged to yield the mean ± SD data plotted in Figure 5d.

Supplementary Figure 8: Percentage of all PT replaced, repaired or moved over time. On the left, PT turnover in *E. coli* B7A wild-type is shown. On the right, PT turnover for *S. enterica* Cerro 87 wild-type is shown. Used doses: *E. coli* B7A 0.8 mM H_2O_2 (52% ±1.1% survival), 17.5 µM HOCI (50% ±1% survival) and *S. enterica* 1 mM H_2O_2 (60% ±8% survival), 7.5 µM HOCI (36% ±8% survival). The error bars represent the standard deviation of the mean for 3 biological replicates.

Supplementary Figure 9: Full, uncut agarose gel images for Figures 4a and 4b. a) Uncropped and unedited agarose gel for Figure 4a. Isolated DNA from wild-type (PT⁺) and $\Delta dndB-H$ (PT⁻) *E. coli* were exposed to 0.08–0.8 mM HOCl or 0.08–8 mM H₂O₂; iodine (I₂) exposure serves as a positive control for PT-dependent strand breaks. HOCl-induced strand-breaks are apparent as smearing in the lane for DNA containing PT (PT⁺), but not for DNA lacking PT (PT⁻); strand-breaks are not detectable for H₂O₂ exposure in any case. b) Uncropped and unedited agarose gel for Figure 4b. WT and $\Delta dndB-H E$. *coli* cells were exposed to 7.5- and 25-times the WT LD₅₀ concentration of H₂O₂ or HOCl for 10 min (4 and 14 mM for H₂O₂; 0.13 and 0.43 for HOCl). Again, DNA isolated from HOCl-exposed WT bacteria, but not PT⁻ bacteria, shows strand-breaks, while no strand breaks are apparent after H₂O₂ treatment in either strain.

а		Wild-type (PT ⁺)	∆dndB-H (PT⁻)	b	∆dndB-H (PT⁻)	Wild-type (PT ⁺)	
			$\frac{\text{HOC}}{\text{H}_2\text{O}_2}$		H ₂ O ₂ HOCI	H ₂ O ₂ HOCI	
	L	0 0 0 0 0 0 0 8 l ₂ 0	80.00 80 80 12 L		$0 4 14 0^{5} 0^{10} L$	0 4 14 0 ¹³ 0 ¹⁴³	
						1116	
		Age Alle					
						1.1.1	
			E				

Supplementary Tables

Supplementary Table 1: Overview of bacterial strains and their PT lev

Strain	PT per 10 ⁶ nts
<i>E. coli</i> B7A WT ⁶	875 ± 68
E. coli B7A ΔdndB-H ⁶	Not detectable
E. coli B7A ΔdndF-H ⁶	858 ± 36
S. enterica serovar Cerro 87 WT ¹³	620±41
S. enterica serovar Cerro 87 $\Delta dn dB^{13}$	1236 ± 53
S. enterica serovar Cerro 87 $\Delta dn dB-H^{13}$	Not detectable
S. enterica serovar Cerro 87 $\Delta dn dF - H^{13}$	658 ± 38

Supplementary Table 2: Parameters for LC-MS/MS detection of PT isotopomers

Compound	Precursor ion <i>m/z</i>	Product ion <i>m/z</i>	Fragmentor (V)	Collision energy (eV)	Ret Time (min)	∆Ret Time (min)
dA	252.2	136.1	170	20	5	2
[¹⁵ N]-dA	257.2	141.1	170	20	5	2
[¹⁵ N]/[³⁴ S]-d(G _{ps} A)	609.4	141.1	120	40	8	2
[¹⁵ N]/[³² S]-d(G _{ps} A)	607.4	141.1	120	40	8	2
[¹⁴ N]/[³² S]-d(G _{ps} A)	597.4	136.1	120	40	8	2
[¹⁴ N]/[³⁴ S]-d(G _{ps} A)	599.4	136.1	120	40	8	2
[¹³ C]-d(G _{ps} A)	617.4	141.1	120	40	8	2
[¹⁵ N]/[³⁴ S]-d(G _{ps} T)	597.4	157.1	110	17	9.5	2
[¹⁵ N]/[³² S]-d(G _{ps} T)	595.4	157.1	110	17	9.5	2
[¹⁴ N]/[³² S]-d(G _{ps} T)	588.4	152.1	110	17	9.5	2
[¹⁴ N]/[³⁴ S]-d(G _{ps} T)	590.4	152.1	110	17	9.5	2
[¹³ C]-d(G _{ps} T)	608.4	157.1	110	17	9.5	2

Supplementary Table 3: Doses of H_2O_2 and HOCI used in analysis of DNA damage in bacteria. Data represent mean \pm SD for 3 biological replicates.

			Η ₂ Ο ₂ , μΜ				ΗΟΟΙ, μΜ			
	Strain	LD ₅₀	LD ₈₀	7.5xL D₅₀	25x LD ₅₀	LD ₅₀	LD ₈₀	7.5x LD ₅₀	25x LD ₅₀	
E. coli	Wild-type	555±163	2100	4162	13875	17±0.9	27	128	425	
	∆dndB									
	∆dndB-H	383±59				21±2.8				
S. enterica	Wild-type	524±81	1350	3930	13100	6.0±0.3	15.6	45	150	
	∆dndB					3.7±1.8				
	∆dndB-H	381±128				29±0.2				
	∆dndF-H					9.5±4.8				