Supplementary Information

Oxidation of phosphorothioate DNA modifications leads to lethal genomic instability

Stefanie Kellner 1§ , Michael S. DeMott 1§ , Ching Pin Cheng 1 , Brandon Russell, 1,¶ Bo Cao, 1 Delin You² & Peter C. Dedon^{1,3*}

¹Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; ²State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; ³Singapore-MIT Alliance for Research and Technology, Singapore.

 $\frac{1}{3}$ These authors contributed equally to this work.

¶ Present address: GlaxoSmithKline, Houston, TX

Content:

Supplementary Figure 1: *dnd* genes and their corresponding functions.

Supplementary Figure 2: Influence of growth state on the response to oxidant exposure.

Supplementary Figure 3: HOCl sensitivity of *ΔdndF-H* and *ΔdndB S. enterica* strains compared with wild-type and *ΔdndB-H*.

Supplementary Figure 4: Reaction of PT-containing dinucleotides with H₂O₂ and HOCl.

Supplementary Figure 5: Agarose gel analysis of DNA isolated from oxidant-treated bacteria after 10 to 40 min of incubation.

Supplementary Figure 6: Mass spectrum showing the different $d(G_{pS}T)$ isotopomers.

Supplementary Figure 7: Estimation of the rate of PT turnover in untreated wild-type *S. enterica serovar Cerro 87.*

Supplementary Figure 8: Percentage of all PT replaced or repaired over time.

Supplementary Figure 9: Full, uncut agarose gel images for Figures 4a and 4b.

Supplementary Table 1: Overview of bacterial strains and their PT levels.

Supplementary Table 2: Parameters for LC-MS/MS detection of PT isotopomers

Supplementary Table 3: Doses of H₂O₂ and HOCl used in analysis of DNA damage in bacteria

Supplementary Results

Supplementary Figure 1: *dnd* **genes and their corresponding functions.**

Supplementary Figure 2: Influence of growth state on the response to oxidant exposure. Wild-type (blue; PT+) and Δ dndB-H (red; PT-) *S. enterica* serovar Cerro 87 cultures were exposed to either H_2O_2 (left column) or HOCI (right column) in stationary phase (following from overnight growth; dashed lines) or log phase (after 1 h of growth in fresh medium; solid lines). While exposure to H_2O_2 leads to a difference in both growth and survival depending on the growth state and experimental conditions, no such effect was observed for HOCl. Data for growth rate represent mean ± SD for 3 technical replicates. Data for survival represent a single illustrative experiment.

Supplementary Figure 3: HOCl sensitivity of *ΔdndF-H* **and** *ΔdndB S. enterica* **strains compared with wild-type and** *ΔdndB-H***.** Data represent mean ± SD for 3 biological replicates.

Supplementary Figure 4: Products arising in reactions of PT dinucleotides with H₂O₂ and HOCI. (a) LC-MS/MS analysis of the reaction of $d(G_{ps}A)$ with 8 mM H_2O_2 and 1 mM HOCl reveals desulfuration to form phosphate in $d(G_{PO}A)$ and phosphonate in $d(G_{PH}A)$, as well as dG and dA indicative of strand-breaks. (**b**) Positive ion mode, collision-induced dissociation product ion mass spectra of $d(G_{PO}A)$ and $d(G_{PH}A)$, difference highlighted in yellow boxes. (c) Concentration dependence of the reactions of $d(G_{ps}A)$ with H_2O_2 and HOCl. Products were quantified as MS signal intensity in LC-MS analysis. (d) Reaction of d(G_{PO}A) and $d(G_{PH}A)$ with 800 mM H_2O_2 . The decrease in $d(G_{PH}A)$ is consistent with an oxidationinduced strand-break (Fig. 3, main text), but not d(G_{PO}A) formation. (e) Comparison of the total ion chromatogram (TIC) and UV absorption for products formed in the reaction of $d(G_{PS}A)$ to 1 mM HOCl. Note that the elution time offset of the UV and MS signals is due to the fact that the in-line UV detector is positioned ahead of the MS system.

Supplementary Figure 5: Agarose gel analysis of DNA isolated from oxidant-treated bacteria after 10 to 40 min of incubation. Wild-type (right panel; PT+) and *ΔdndB-H* (left panel; PT-) *S. enterica* strains were exposed to 150 μM HOCl and genomic DNA (gDNA) was isolated at various times. The gDNA was then resolved on a 0.7% agarose gel. Lanes marked "(-)" contain DNA from unexposed bacteria.

Supplementary Figure 6: Mass spectra showing the different d(G_{PS}T) isotopomers. The red mass spectrum with molecular ion [M+H]⁺ m/z 597 represents the [³⁴S]/[¹⁵N]-labeled $d(G_{PS}T)$ in original DNA strands. The black mass spectrum with molecular ion $[M+H]^+$ m/z 588 represents $[^{32}S]/[^{14}N]$ -labeled d(G_{PS}T) in newly replicated DNA strands. The grey mass spectrum with molecular ion [M+H]⁺ m/z 595 represents [³²S]/[¹⁵N]-labeled d(G_{PS}T) in which original PT $[34S]$ has been replaced with $[32S]$.

Supplementary Figure 7: Estimation of the rate of PT turnover in untreated wild-type *S. enterica serovar Cerro 87.* To calculate PT turnover events per hour ("rate") as in **Fig. 5c** for *E. coli* B7A, PT turnover events quantified as the percentage of original PT levels are plotted versus sampling time. Regression analysis reveals a reasonable linear fit of these data, with the slope defining the percentage of PTs turning over per hour. The data shown in the graph are derived from untreated wild-type *S. enterica serovar Cerro 87* and illustrate the regression analysis performed to estimate PT turnover rates for *B7A* and *Cerro 87* in **Fig. 5d**. Data in the graph below represent mean values for 2 technical replicates from a single time course experiment, with the slopes from three different experiments averaged to yield the mean ± SD data plotted in **Figure 5d**.

Supplementary Figure 8: Percentage of all PT replaced, repaired or moved over time. On the left, PT turnover in *E. coli* B7A wild-type is shown. On the right, PT turnover for *S. enterica* Cerro 87 wild-type is shown. Used doses: *E. coli* B7A 0.8 mM H₂O₂ (52% ±1.1%) survival), 17.5 μ M HOCl (50% ±1% survival) and *S. enterica* 1 mM H₂O₂ (60% ±8% survival), 7.5 μ M HOCI (36% ±8% survival). The error bars represent the standard deviation of the mean for 3 biological replicates.

Supplementary Figure 9: Full, uncut agarose gel images for Figures 4a and 4b. a) Uncropped and unedited agarose gel for Figure 4a. Isolated DNA from wild-type ($PT⁺$) and *ΔdndB–H* (PT⁻) *E. coli* were exposed to 0.08–0.8 mM HOCl or 0.08–8 mM H₂O₂; iodine (l₂) exposure serves as a positive control for PT-dependent strand breaks. HOCl-induced strand-breaks are apparent as smearing in the lane for DNA containing PT ($PT⁺$), but not for DNA lacking PT (PT⁻); strand-breaks are not detectable for H₂O₂ exposure in any case. **b)** Uncropped and unedited agarose gel for Figure 4b. WT and *ΔdndB–H E. coli* cells were exposed to 7.5- and 25-times the WT LD₅₀ concentration of H_2O_2 or HOCl for 10 min (4 and 14 mM for H₂O₂; 0.13 and 0.43 for HOCI). Again, DNA isolated from HOCl-exposed WT bacteria, but not PT- bacteria, shows strand-breaks, while no strand breaks are apparent after H_2O_2 treatment in either strain.

Supplementary Tables

Supplementary Table 2: Parameters for LC-MS/MS detection of PT isotopomers

Supplementary Table 3: Doses of H₂O₂ and HOCI used in analysis of DNA damage in **bacteria.** Data represent mean ±SD for 3 biological replicates.

