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Materials and Methods 

Stimulus material 

 

Table S1. Normative valence and arousal ratings for the IAPS[1] stimuli used in the affective 

priming task. 

 

 Positive (N =62) Neutral (N =62) Negative (N = 62) 

Pictures Mean SD Mean SD Mean SD 

Valence
a 7.30 0.53 5.13 0.56 2.80 0.97 

Arousal
b 5.79 0.80 2.90 0.47 6.04 0.81 

 

a
 Valence: positive > neutral (t = 23.86, df = 61, p<0.00), positive > negative (t = 39.15,df = 61, p< 

.00), neutral > negative (t = 17.45,df  = 61, p< .00).   

Valence (subliminal block): positive > neutral (t = 17.65, df = 30, p< .00), positive > negative (t = 

24.81, df = 30, p< .00), neutral > negative (t = 10.26, df = 30, p< .00). 

Valence (supraliminal block): positive > neutral (t = 15.94, df = 30, p< .00), positive > negative (t = 

31.88, df = 30, p< .00), neutral > negative (t = 15.44, df = 30, p< .00). 

b
 Arousal: positive > neutral (t = 25.00, df = 61, p< .00), positive = negative (t = -1.52, df = 61, 

p=.14), neutral < negative (t = -30.00, df = 61, p< .00).  

Arousal (subliminal block): positive > neutral (t = 16.58, df = 30, p< .00), positive = negative (t = -

0.97, df = 30, p= .34), neutral > negative (t = -18.43, df = 30, p< .00). 

Arousal (supraliminal block): positive > neutral (t = 18.74, df = 30, p< .00), positive = negative (t = 

-1.15, df = 30, p= .26), neutral > negative (t = -25.24, df = 30, p< .00). 
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Procedure 

Task and design 

Cover story 

 

We created a cover story in order to justify the employment of the masks, telling participants that 

the experiment aimed at investigating the effects of cognitive load on face categorization Thus, 

participants knew that they had to perform a same/different recognition task between mask 1 and 

mask 2 (which participants believed to be the task that required cognitive load) before making a 

categorization decision about the face. To make this “fake task” more persuasive, the two masks 

were identical in 50% of the trials (i.e. the squares composing them were equally displaced) and 

different in the other 50% of the trials (i.e. the squares composing them were differently displaced). 
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Procedure 

Physiological recordings 

 

 

 

Figure S1. Infrared thermal image of the face of one participant. The red squares indicate the ROIs’ 

positioning over the left and right periorbital regions. 

 

Participants were required to avoid the intake of vasoactive substances (e.g. caffeine, nicotine and 

alcohol) for at least 3 hours prior to the experiment to prevent interference with basal sympathetic 

activity[2]. Once in the experimental room they waited 30 minutes before starting the experiment in 

order to let their skin temperature reach a thermal equilibrium[2]. 
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Task and design 

Memory recognition task 

 

 

Figure S2. Timeline of the memory recognition task. Affective stimuli were taken from the 

IAPS[1]. 

 

Each trial in the memory recognition task included the following elements: 1) fixation cross 

(500 ms), 2) affective stimulus (500 ms), 3) yes/no memory recognition task (“Did you see this 

image previously?”) (see Figure S2). The affective stimuli were presented in a fully randomized 

order. 

We fit the behavioral data in a multilevel logistic regression model predicting accuracy in 

the recognition memory task from the following categorical variables: valence (1 = positive, 2 = 

neutral, 3 = negative) and block (1= subliminal, 2 = supraliminal).  

We also modelled the highest-order interaction as random slope over participants, as 

suggested in these guidelines[3] and in[4–6]. This model explained additional significant portion of 

variance respect to the saturated model without random slopes over participants (Chisq = 105.45, p 

< .001). 

The model that guaranteed the best interpolation with our data showed significant main 

effects of valence (Chisq = 46.16, p < .001) and block (Chisq = 130.80, p < .001) which were 

qualified by a significant two-way interaction between these two factors (Chisq = 12.15, p < 0.01; 

see Figure S3). 
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Figure S3. Accuracy in the recognition memory task. 

 

Pairwise Bonferroni-corrected comparisons showed that all between block contrasts are 

significantly different from one another (ps < .001). Pairwise Bonferroni-corrected contrasts within 

the subliminal block show that negative stimuli are recognized better than neutral (b = -1.28, SE = 

0.20, z = -6.51, p<.0001) and positive (b = -2.30, SE = 0.16, z = -14.06, p<.0001) stimuli, and that 

there is no difference in recognition between positive and neutral stimuli (b= 0.40, SE = 0.18, z = 

2.24, p=0.38). Pairwise Bonferroni-corrected contrasts within the supraliminal block show exactly 

the same pattern: negative stimuli are recognized better than neutral (b = -0.62, SE = 0.15, z = -

4.15, p<.001) and positive (b = -0.54, SE = 0.12, z = -4.51, p<.001) stimuli, while there is no 

difference in recognition between positive and neutral stimuli (b = 0.08, SE = 0.14, z = 0.58, 

p=1.00) (see Figure S3).  

Recognition memory performance indicates that the subliminal and supraliminal 

presentation significantly affects the processing of affective stimuli, as supraliminal stimuli are 

correctly remembered much more often than subliminal ones. Moreover, we found a valence-related 

effect: negative stimuli are recognized more than positive and neutral ones (in both subliminal and 
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supraliminal blocks). This suggests that threat-related visual material elicits enhancing effects on 

long-term memory[7]. Despite the absence of visual awareness, subliminal negative stimuli impact 

long-term memory significantly more than positive and neutral ones; this seems to be consistent 

with the finding that subliminally presented affective stimuli are able to impact implicit learning[8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 

 

Procedure 

Single trial generalized linear mixed models 

In the multilevel logistic regression models, we fit the dependent variable (categorization 

choice: ingroup vs outgroup) with continuous and categorical independent variables. Our 

categorical dependent variable assumes a binomial distribution and as a consequence does not need 

to meet the assumption of normality. We considered the scalar effects of the participant (i.e. 

subject-specific random intercept) as a priori random factor because each individual possesses a 

unique decision style (i.e. he/she can be more prone to categorize the face as either ingroup or 

outgroup) that is independent from the face stimuli. Moreover, by way of a model comparison we 

checked whether it was necessary to include the random slopes for the significant within highest-

order interaction in the model (as suggested in guidelines[3]). Reported main effects and 

interactions are based on model comparisons using the log-likelihood ratio statistics asymptotically 

approximated to a χ2 distribution. This allows for the computation of a p-value that reaches 

statistical significance if the data is better fitted to the more complex model[9]. In addition, we used 

a non-parametric bootstrap technique in order to have a more robust measure of our effects [10]. 

For 1000 times we randomly assigned each data to each condition, entered the data in the same 

generalized linear mixed model, computed the chi square for each main effect and for the 

interactions. Then, we compared our original chi square with the distribution under the null 

hypothesis of the bootstrap chi squares. The bootstrap p-level was calculated as the proportion of 

bootstrapped chi squares (included in the 95% confidence intervals) greater than the original chi 

squares [11]. 
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Results 

Models formulas 

The expression within parenthesis (e.g. Variable name | Subject). indicates the random 

effects defined in the model. The expression outside parenthesis refers to the fixed effects. Colons 

between effects are used to indicate interactions. 

 

a. Temperature subliminal model 

The model was computed as follows: Group categorization decision = Valence + Mean 

periorbital temperature (100-600 ms) + Mean periorbital temperature (600-1100 ms) + Valence : 

Mean periorbital temperature (100-600 ms) + Valence : Mean periorbital temperature (600-1100 

ms) + (1 | Subject).  

The model including the random slope of the highest-order significant interaction was 

computed as follows: Group categorization decision ~ Valence + Mean periorbitalperiorbital 

temperature (100-600 ms) + Mean periorbitalperiorbital temperature (600-1100 ms) + Valence : 

Mean periorbitalperiorbital temperature (100-600 ms) + Valence : Mean periorbitalperiorbital 

temperature (600-1100 ms) + (Valence : Mean periorbital temperature (600-1100 ms) | Subject). 

 

b. Temperature supraliminal model 

The model was computed as follows: Group categorization decision = Valence + Mean 

periorbital temperature (100-600 ms) + Mean periorbital temperature (600-1100 ms) + Mean 

periorbital temperature (1100-1600 ms) + Valence : Mean periorbital temperature (100-600 ms) + 

Valence : Mean periorbital temperature (600-1100 ms) + Valence : Mean periorbital temperature 

(1100-1600 ms) + (1 | Subject).  

The model including the random slope of the highest-order significant interaction was 

computed as follows: Group categorization decision = Valence + Mean periorbital temperature 
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(100-600 ms) + Mean periorbital temperature (600-1100 ms) + Mean periorbital temperature (1100-

1600 ms)  + Valence : Mean periorbital temperature (100-600 ms) + Valence : Mean periorbital 

temperature (600-1100 ms)  + Valence : Mean periorbital temperature (1100-1600 ms) + (Valence : 

Mean periorbital temperature (600-1100 ms)  | Subject). 

 

c. Individual differences 

 Main analysis 

The model was computed as follows: Group categorization decision = Valence + Emotional 

Awareness + Mean periorbital temperature (600-1100 ms) + Block + Valence : Emotional 

Awareness + Valence : Mean periorbital temperature (600-1100 ms) + Emotional Awareness : 

Mean periorbital temperature (600-1100 ms) + Valence : Block + Emotional Awareness : Block + 

Mean periorbital temperature (600-1100 ms) : Block + Valence : Emotional Awareness : Mean 

periorbital temperature (600-1100 ms) + Valence : Emotional Awareness : Block + Valence : Mean 

periorbital temperature (600-1100 ms) + Emotional Awareness : Mean periorbital temperature (600-

1100 ms)  : Block + Valence : Emotional Awareness : Mean periorbital temperature (600-1100 ms) 

: Block + (1 | Subject).  

The model including the random slope of the within highest-order significant interaction 

was computed as follows: Group categorization decision = Valence + Emotional Awareness + 

Mean periorbital temperature (600-1100 ms) + Block + Valence : Emotional Awareness + Valence : 

Mean periorbital temperature (600-1100 ms) + Emotional Awareness : Mean periorbital 

temperature (600-1100 ms) + Valence : Block + Emotional Awareness : Block + Mean periorbital 

temperature (600-1100 ms) : Block + Valence : Emotional Awareness : Mean periorbital 

temperature (600-1100 ms) + Valence : Emotional Awareness : Block + Valence : Mean periorbital 

temperature (600-1100 ms) + Emotional Awareness : Mean periorbital temperature (600-1100 ms)  
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: Block + Valence : Emotional Awareness : Mean periorbital temperature (600-1100 ms) : Block + 

(Valence : Mean periorbital temperature (600-1100 ms) : Block | Subject). 

 

 Low-  and high-EA participants 

The model was computed as follows: Group categorization decision ~ Valence + Mean 

periorbital temperature (600-1100 ms) + Block + Valence : Mean periorbital temperature (600-1100 

ms) + Valence : Block + Mean periorbital temperature (600-1100 ms) : Block + Valence :  Mean 

periorbital temperature (600-1100 ms) : Block + (1 | Subject) .  

The model including the random slope of the highest-order significant interaction was 

computed as follows: Group categorization decision ~ Valence + Mean periorbital temperature 

(600-1100 ms) + Block + Valence : Mean periorbital temperature (600-1100 ms) + Valence : Block 

+ Mean periorbital temperature (600-1100 ms) : Block + Valence :  Mean periorbital temperature 

(600-1100 ms) : Block + (Valence :  Mean periorbital temperature (600-1100 ms) : Block | Subject). 

The models were computed separately for low- and high- EA sub-sample. 

 

d. Memory recognition task 

The model was computed as follows: Accuracy ~ Valence + Block + Valence : Block + (1 | 

Subject).  

The model including the random slope of the highest-order significant interaction was 

computed as follows: Accuracy ~ Valence + Block + Valence: Block + (Valence : Block | Subject). 
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