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1. Single crystal X-ray diffraction characterization 

Suitable single crystal was selected and mounted onto a rubber loop using 
Fomblin oil. Single crystal X-ray diffraction data were recorded on a Bruker Apex 
CCD diffractometer (λ (MoKα) = 0.71073 Å) at 150 K equipped with a graphite 
monochromator. Data collection and reduction were performed using the Apex2 
software package and structure solution, and refinement was carried out by 
SHELXS-971 and SHELXL-20142 using WinGX3. Corrections for incident and 
diffracted beam absorption effects were applied using empirical absorption 
correction. All the Mo atoms (including those disordered) and most of the O atoms 
were refined anisotropically. Cerium ions (inside the cavity of the ring) were identified 
and refined anisotropically. Solvent water molecule sites with partial occupancy were 
found and included in the structure refinement. Crystallographic formulas typically 
contain much more water molecules in the crystal lattice than the formulas used for 
chemical analyses as the sample was dried up. The final refinement statistics are 
relatively good, and in all cases the structural analysis allows us to unambiguously 
fully determine the structure of the compound. Further details of the crystal structure 
investigations may be obtained from FIZ Karlsruhe, 76344 Eggenstein-
Leopoldshafen, Germany (fax: (+49)7247-808-666; e-mail: crysdata@fiz-
karlsruhe.de, on quoting the deposition number CSD-432715. 

According to the single-crystal X-ray diffraction characterization the full formula 
corresponds to: Na6[Mo120Ce6O366H12(H2O)78]·200H2O (1) 

 

Figure S1: Representation of the {Mo120Ce6} wheel. Coloring code: {Mo2}, red; 
{Mo8}, blue with central atom in cyan; {Mo1}, yellow; Ce, green. 
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Figure S2: Representation of the building units of the {Mo120Ce6} wheel. Top left, 
{Mo2}, red; top right, {Mo8}, blue with central atom in cyan; bottom left, {Mo1}, yellow; 
bottom right, Ce, green. 

 

Figure S3: The dodecameric ring-shaped clusters 1 in the unit cell packed parallel to 
the crystallographic bc plane. The different building units of {Mo120Ce6} are 
represented with the same color for clarity. 
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Table S1: Crystallographic data and structure refinement of {Mo120Ce6} wheel. 

 
formula Ce6H568Mo120Na6O644 
Mr [g mol-1] 23367.97 
Crystal system Monoclinic 
space group P21/c 
Crystal size [mm] 0.100 x 0.070 x 0.050 
a [Å] 27.6641(12) 
b [Å] 38.4811(17) 
c [Å] 65.261(3) 
α [°] 90 
ϐ [°] 99.935(2) 
γ [°] 90 
h -34≤h≤32 
k -47≤k≤43 
l -80≤l≤66 
ρ [μg m-3] 2.268 
V [Å3] 68431(5) 
Z 4 
Wavelength, λ [Å] 0.71073 
μ [mm-1] 2.622 
T [K] 150(2) 
F(000) 44696 
rflns (collected) 497446 
rflns (unique) 132515 
Absorption correction empirical 
data/ restraints/ parameters 132515 / 2 / 6052 
Refinement method Full-matrix least-squares on F2 
R1 (all data) 0.1180 
wR2 (all data) 0.2157 
R1 [I>2sigma(I)] 0.0734 
wR2 [I>2sigma(I)] 0.1764 
Rint 0.0628 
GooF on F2 1.113 
Largest diff. peak and hole [e.A-3] 2.80 and -2.92 
 

Table S2: Average bond valence sum values (BVS) for the Mo centres which span 
the incomplete {Mo5O6}-type double cubanes and the μ3-O atoms of the {(μ3-O)2O2}-
type compartments in {Mo120Ce6}. 

Compounds BVS (Mo) BVS (μ3-O) 

{Mo120Ce6} 5.63 1.26 
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2. Vis – NIR spectroscopy 

Analysis of the extinction coefficient (ε) for the ligand-to-metal charge-transfer 
associated with the reduced MoV centres. Each centre should contribute ca. 5 -6 x 
103 L mol-1·cm-1 to ε. 

 

Figure S4: Vis-NIR spectrum for {Mo120Ce6} in 0.5 M H2SO4 (2 × 10-6 mol L-1). The 
average ε of each MoV centre is about 5.23 x 103 L mol-1·cm-1 at 736 nm 
corresponding to the ligand-to-metal charge-transfer (LMCT). 

 

Figure S5: IR spectrum for {Mo120Ce6}. Characteristic IR bands: (KBr; 1700-500 cm-

1): 1618 (m), 971 (m; v (Mo=O)), 803 (s), 635 (s), 558 (s) cm-1. 
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3. Thermogravimetric analysis 

 

Figure S6: TGA curve for {Mo120Ce6}. The 16.5 % weight loss from room 
temperature to 200°C corresponds to approximately 210 H2O. 

 

4. Redox titrations 

Redox titrations help to determine the number of reduced MoV centres. The 
cerimetric titration was carried out using a 0.005 M solution of CeIV in 0.5 M of 
sulphuric acid as oxidant which was added dropwise to a solution of compound 
{Mo120Ce6} (20 mg in 50 mL of H2Ο). After addition of 4.30 mL of the oxidant the 
colour of the solution turned from deep blue to colourless along with characteristic 
potential jump showed the presence of 24 ± 1 4d electrons which (formally) 
corresponds to 24 MoV centres (theoretical value for 24 e-reduced species : 4.10 
mL). 
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Figure S7: Redox titration of {Mo120Ce6} with 0.005 M CelV. 

 

5. Synthetic procedures 

All chemicals were supplied by Sigma Aldrich and they were used without further 
purification. 

Na2MoO4.2H2O [CAS: 10102-40-6]: sodium molybdate dihydrate (99%), M=241.95 
g/mol; Ce(NO3)3.6H2O [CAS: 10294-41-4]: cerium nitrate(III) hexahydrate (99%), 
M=434.22 g/mol; HClO4 [CAS: 7601-90-3]: perchloric acid 70%, d=1.66 g/mL; 
NH2NH2.2HCl [CAS: 5341-61-7]: hydrazine dihydrochloride (98%), M=104.97 g/mol 

The pump system set-up utilized 10 programmable syringe pumps (C3000 
model, Tricontinent Ltd, CA, USA) fitted with a 5 mL syringe and a 3-way solenoid 
valve (Figure S8). Four pumps (i.e. pumps 1, 2, 3 and 4) have been designated for 
functions such as the washing protocol and sampling. 
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Figure S8: Image of the platform used for our experiments. 

More specifically, pump 1 is connected to a deionized water tank at all times 
and is used for washing the plastic tubing after the sampling has been completed; 
pump 2 is used for the sampling from the reactor (Figure S9a) to the Gilson FC204 
fraction collector; pump 3 is used for emptying the reactor before the washing and 
pump 4 is connected to a 4-way connector (Figure S9b) and used for switching the 
flow in the tubing between sampling (pump 2) and washing (pump 1). From the 
remaining pumps, the stock reagent solutions are assigned to pumps 5 to 9 as 
described in the Experimental, Method A. Pumps 7-8 are mixing the stock solutions 
in a 6-way connector (Figure S9c) while pump 9 is directly connected to the reactor. 
This was arranged in order to avoid blockage issues because of the reaction of 
Na2MoO4.2H2O and Ce(NO3)3.6H2O to readily form MoO3·Ce2O3. Finally, pump 10 
(spacer) is used to pump air into the connector in order to make sure that there are 
no reagents left in the tubing of the 6-way connector. FEP plastic tubing 1/8” OD was 
cut to connect the stock solutions of reagents to the inlets of the assigned pumps by 
using standard HPLC low pressure PTFE connectors. 
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Figure S9: a) The oil bath heats the reactor to 90°C during the experiments. Pump 9 
is directly connected to the reactor to avoid blockage issues. b) Position 1 is the 
input from pump 1 for the cleaning; position 3 is the output to pump 4 switching 
between sampling and washing; position 4 is the input from pump 2 performing the 
sampling. c) positions 3-6 are the inputs of the stock solutions described in 
Experimental, Method A (3 for A, 4 for C, 5 for H2O, 6 for D); position 1 is the input of 
air(spacer, pump 10); position 2 is the output to the reactor 

The platform is controlled by a computer using LabVIEWTM based interface 
(Figure S10) capable to control hardware. The design of experiments is previously 
planned and prepared in TXT files containing the volumes of the reagents in four 
columns (1st for water; 2nd for reagent A; 3rd for reagent D; 4th for B and C) and, then, 
are introduced in the LabVIEW-based PC interface. The LabVIEWTM based interface 
recognizes the matrix TXT files, converts the volume entries to proper command 
scripts and, finally, executes them to run the pumps. 
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Figure S10: LabVIEWTM control PC interface. Functions like initializing the pumps 
and washing are located on rectangle (1). The experimental settings (number of 
reagents, total reaction volume, reaction time and pump rate) are located on 
rectangle (2). On (3) we can see a representative sample of a TXT file prepared for 
the experiments. 

 

Synthesis details of Na6[Mo120Ce6O366H12(H2O)78]·200H2O (1): 

Method A (synthesis in the platform): 

4 aqueous stock solutions were prepared as follows: 250 ml HClO4 1M (A), 500 ml 
Na2MoO4.2H2O 1M (B), 500 ml Ce(NO3)3.6H2O 0.1M (C) and 200 ml NH2NH2.2HCl 
0.25M (D) 

Stock solutions B and C are always added in a volume ratio of 1:1. Maximum 
reaction volume is 15 ml. 

The stock solutions along with H2O were connected to the inlets of the assigned 
pumps; namely pump number 5 for H2O, pump number 6 for A, pump number 7 for 
D, pump number 8 for C and pump number 9 for solution B. For this experiment, all 
pumps (10 in total) were active. Five pumps (no. 5-9) for the solutions of the 
reagents, four (no. 1-4) for functions like washing (using deionized water as solvent) 
and sampling and one pump (no. 10) for the space required between each reaction 
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(spacer). The volumetric fraction of each reagent can either be decided by an 
algorithm and transformed into a set of orders recognizable by the pumps or it can 
be provided as a list ready to be input in the software from the human experimenters. 
The total reaction volume (15 ml), the temperature (90°C), the number of iterations 
(10) and the reaction time (30 min) have been defined beforehand and loaded from 
the software used to control the experiment. Dark blue samples are collected 
automatically at the end of each iteration using a Gilson FC204 fraction collector. 
After 1 day we obtain dark blue, prismatic crystals of {Mo120Ce6} (unit cell match). 
Yield: 0.025 g (4.31 % based on Mo). MW: 23649.94 g·mol-1. IR (cm-1): 1618 (m), 
971 (m; v (Mo=O)), 803 (s), 635 (s), 558 (s). Elemental analysis calcd for: Na, 0.59; 
Ce, 3.59; Mo, 49.3 %. Found: Na, 0.76; Ce, 3.81; Mo, 50.2 %. 

Method B (in bench, adjusted from the ratios of Method A): 

Solutions of HClO4 1 M (9.48 mL), NH2NH2·2HCl 0.25 M (1.55 mL), Na2MoO4·2H2O 
1 M (5.84 mL) and Ce(NO3)3·6H2O 0.1 M (5.84 mL) were added in deionized water 
(7.29 ml) giving a cloudy yellow solution. The reaction mixture was heated at 90 °C 
for 30 min, during which time the cloudy yellow solution changed to dark blue. While 
the solution is still hot, 18 mL are removed from the bulk solution and subsequently 6 
mL of deionized water are added. The resulting solution was allowed to cool to room 
temperature and left undisturbed to crystallize for 1 week, after which time blue 
prismatic crystals suitable for X-ray diffraction analysis were obtained corresponding 
to {Mo120Ce6} (unit cell match). Yield: 0.046 g (4.02% based on Mo). The 
spectroscopic and crystallographic data of the isolated compound are identical to 
Method A. Elemental analysis calcd for: Na, 0.59; Ce, 3.59; Mo, 49.3 %. Found: Na, 
0.54; Ce, 3.96; Mo, 47.8 %. 

 

6. Algorithm principles, implementation, and simulations 

6.1 Principles 

Our key idea is to frame a problem of exploration of a crystallization zone as an 
active learning problem within a classification scenario. In machine learning, 
classification is the process of learning the mapping between observations and 
categories based on previously collected examples4. In our case, we want to learn to 
predict if crystal/no crystal will occur based on experimental parameters, here ratios 
of reagents. A classifier is a machine learning method able to learn such a mapping 
from a database of already performed experiments, called the training set, which is a 
list of experimental parameters associated with a label crystal/no crystal depending 
on the outcome of the experiment. 

We are interested in the acquisition of this training set. Can we acquire data in 
such a way that fewer experiments are needed to reach a good quality model? In 
other words, can we learn to classify between crystal and no crystal ‘zones’ faster 
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than by randomly accumulating experimental evidences? This concept has been 
framed in the 90’s and can be summarized as: “a machine can achieve greater 
accuracy with fewer training labels if it is allowed to choose the data from which it 
learns” 5. Because the machine learning algorithm ultimately builds the model, 
allowing it to query what information to collect next should improve the quality of the 
learning process. It also limits the amount of time spent performing costly 
experiments (in terms of human time and reagents) that were not always relevant for 
the derived model. This is particularly important in chemistry where each experiment 
can take hours to perform, wait for completion and analyse, as is the case for 
crystallization processes. 

In this work, we used the uncertainty sampling query strategy framework for active 
learning in classification scenarios6. The key idea is that the algorithm has access to 
a big list of potential experiments that could be performed on the system. It then 
uses its current knowledge to predict the outcome of such experiments (crystal/no 
crystal) and evaluate its certainty/confidence about those predictions. The algorithm 
then selects the experiment it is less confident about, which somehow lies at the 
believed boundary between crystal and no crystal zones. This experiment is then 
performed on the real system and the outcome (crystal/no crystal) is added to the 
training set, thus relieving the uncertainty about this particular experiment. The 
process is then repeated until a final criterion is reached (time or financial budget, 
model performance) and is illustrated in Figure S11. 
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Figure S11: Algorithm steps for active learning in a classification scenario. The 
algorithm needs a small set of initial data (A) to train a first model (B) and generates 
many possible experiments to do next (C). Given the learned classifier it predicts the 
outcome of those experiments (D), and selects the most uncertain experiment (E), 
i.e. the one for which it is the least confident about its own prediction. The selected 
experiment is performed on the real system (F), the result is added to the dataset 
(G), used to train a new classifier and the process is repeated again up to a given 
termination criterion (H). The final dataset should be of higher quality than if collected 
using a non-active acquisition method (I). 

In the following section, we will describe how we implemented each step of this 
algorithmic process in light with previous work and with respect to our particular 
setup and constraints inherent to chemical systems. The most important constrain 
being that performing and reading the outcome of an experiment takes one day, so 
we need to wait for crystallization to happen. Such extreme case is unusual and 
rarely considered in the machine learning community. As a result, we had to adapt 
the basic principle of uncertainty sampling to allow for sampling of 10 new 
experiments at each iteration, so we could perform more in one day. But a naive 
implementation would produce 10 very similar new experiments to perform, because 
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there is usually one dominant zone of high uncertainty for a given classifier. To avoid 
this, each experiment requested by the algorithm is reused and creates a repulsion 
area for the sampling of the next experiments. This is explained in more detail next, 
along with simulation results showing that our modified method (10 by 10 sampling) 
maintains comparable performances compared with the original (1 by 1 sampling) 
method. 

 

6.2 Uncertainty sampling: Implementation details and tailoring to our 
problem 

Link to implementation code: https://github.com/croningp/crystal_active_learning 

In this section, we explain how each step of the algorithm is implemented. We 
use both the mathematical description and some intuitive visualization. All our 
explanation will be done using a simple 2-dimensional problem, representative of our 
chemical problem (Figure S12). All the practical implementation details can be 
looked up on the GitHub repository whose link is provided above. 

 

Figure S12: Simple 2D problem representative of our chemical problem, see 
explanation in the text. 

Each of the three squares represents our experimental space; the x-axis (X1) 
represents for example the quantity of one of our reagents. Respectively, the y-axis 
represents the quantity of reagent X2. The colors green and purple represent the 
output of an experiment, in this example they can be of one two classes, green for 
no-crystal, and purple for crystal. [X1, X2] and green/purple are respectively 
parameters (input) and observations (output) of our system, for this example we 
simply created a simulated chemical problem, a thought experiment to guide our 

https://github.com/croningp/crystal_active_learning
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reader during the description of our algorithm. The plot on the left of Figure S12 
represents the true mapping between inputs (X1,X2) and outputs (green/purple), that 
is for example that an experiment with X1=0.2 and X2=0.2 (let us write this as 
[0.2,0.2]) produces no crystal (i.e. is in the green area). Similarly an experiment of 
[0.8, 0.5] is in the crystallization zone (i.e. in the purple circle). 

But that very nice map on the left is unknown to us as experimenters, it is how 
the world works, how our system behaves. Our only source of information comes 
from individual experiments we perform. Those experiments are our only window in 
to the real mapping between inputs (X1, X2) and outputs (crystal/no crystal). The 
middle graph shows a few experiments performed at random, the position of each 
point in space represents the experimental parameters, i.e. X1 and X2, while their 
colors represent the output of the experiment, i.e. crystal/no crystal. 

Those points are experiments that represent the initial data we start from, that 
is step (A) on Figure S11. Our goal now is to decide on which experiment to do next 
in order to improve our understanding of the world. Here, we want to select new 
points, new [X1, X2] pairs, and query their colours/properties. That is, we want to 
select new experimental parameters and observe if crystallization has happened. But 
we want to this with one aim in mind: to identify the boundary between the green and 
the purple area, that is to build a model of under which conditions our system forms 
crystal or not. 

The first step is to model that boundary, to try to infer from the data we have 
what the crystallization area looks like, i.e. what is its shape in the parameter space. 
This is visualized in the right graph of Figure S12 and is the step B of our algorithm 
protocol in Figure S11. This weird looking shape is what is learned by a classification 
algorithm from the data collected and shown in the middle graph of Figure S12. This 
approximate model has been learned using a Support Vector Machine (SVM) 
classifier7. 

Given this model, we need to select new experiments to perform to improve 
its quality. As explained before, we will use an active learning strategy called 
uncertainty sampling. The principle is very simple, visually we want to query the point 
at the boundary between what we believe gives crystals and what we believe gives 
no crystal. Such point lie in a zone where our model does not really know what to 
expect, hence by performing the experiment on the real system we alleviate this 
uncertainty, which in turns improves our model of the system. Those steps are really 
simple conceptually and represent steps C to G of our algorithm. In practice, 
implementing them on the computer requires some tricks and tips that we will explain 
in detail next, but first let us look at what happens if we query 10 more experiments 
using our uncertainty sampling method (Figure S13). 
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Figure S13: New model after sampling 10 new experiments selected by the 
uncertainty sampling algorithm were performed. 

On Figure S13, and compared with Figure S12, we can see how new 
experiments on the middle plot enhanced our current understanding of the 
crystallization area (right plot). What happens now if we follow this process until we 
have queried 100 new experiments ? 

 

Figure S14: Model after 100 experiments selected by the uncertainty sampling 
algorithm were performed. 

Figure S14 shows just that. It is really interesting to see how most of the 
experiments are performed at the boundary between the green and purple area, the 
algorithm somehow understood that this area is of particular interest to understand 
and better model the boundary between crystal and no crystal. As a result, our 
model (right) is now an extremely good approximation of our real system (left), and 
this despite most of the experiment performed being located in a small region of the 
chemical space. 

Finally, an important question will be to compare the performance of such 
active learning strategy with a control strategy, which for example could be selecting 
random experiments to cover the chemical space uniformly. On Figure S15 we can 
see how the distribution of experiments performed (middle) is a lot less structured 
and targeted than when using the uncertainty based algorithm. As a result, the 
model (right) is much less accurate. Random is the baseline we used in this work to 
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compare our algorithm, and we also interestingly compared with how human 
experimenters would select experiments. 

 

 

Figure S15: Results after 100 randomly sampled experiments. 

Let’s now explain in more depth the technicalities of implementing the uncertainty 
sampling. 

6.2.1 Uncertainty sampling 

In this subsection, we explain steps B to H of the algorithm protocol of Figure S11. 
As above, we will rely on simple visuals of our 2D simulated examples, along with 
some mathematical notation. Details of the practical implementation are available at: 

https://github.com/croningp/crystal_active_learning 

Each data point in our dataset can be represented as two entities, one is the 
experimental parameters, and the other is the label/class associated with the output 
of the experiment (e.g. crystal/no crystal). We note as 𝑥𝑥 a vector representing the 
experimental parameters, e.g. 𝑥𝑥 = [X1, X2] = [0.2, 0.2]. We note as 𝑦𝑦 an integer 
representing the label/class/output of the experiments, e.g. 𝑦𝑦 = 1 for crystal or 𝑦𝑦 = 0 
for no crystals. 

The aim of step B is to train a classifier based on a database of 𝑥𝑥 and 𝑦𝑦. In 
essence, we try to learn a function 𝑓𝑓 that maps 𝑥𝑥 into 𝑦𝑦 with the best possible 
accuracy, we try to learn 𝑓𝑓 in 𝑦𝑦 =  𝑓𝑓(𝑥𝑥) based on examples. When 𝑦𝑦 is a discrete 
variable, i.e. label/class, this process is called classification. There are many 
classification algorithms available. We decided to use the Support Vector Machine 
(SVM) classifier with a Radial Basis function kernel7. We chose it for its ability to 
capture non-linearity and because it has been shown to perform well in a variety of 
tasks7. It is important to understand that other classification algorithms exist and 
could replace the SVM classifier we use here depending on the properties of the 
targeted problem. Given a dataset of (𝑥𝑥, 𝑦𝑦) examples, and each time we recomputed 
a new classifier, we used 10-fold cross-validation to search the best 𝐶𝐶 and 𝛾𝛾 

https://github.com/croningp/crystal_active_learning
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parameters. 𝐶𝐶 is the regularization parameter and 𝛾𝛾 is the kernel coefficient of the 
radial basis function. We ran a cross-validation with all possible combination of 𝐶𝐶 and 
𝛾𝛾 within np.logspace(-5, 5, 21), that is [10-5, 10-4.5, 10-4, …, 104.5, 105] and selected 
the 𝐶𝐶 and 𝛾𝛾 values producing the smallest classification error, that is the most 
accurate model. We used the implementation provided in scikit-learn9, a machine 
learning library in Python. In the repository, the corresponding function is 
train_classifier in utils/classifier.py. 

At this stage, we have trained a generalized model of our system based on 
our dataset. We now need to estimate the uncertainty of this model, this implies to 
have access to a probabilistic prediction from our classifier. Probabilistic prediction 
for SVM has been developed by J. Platt8. A classifier that is uncertain of an 
experiment 𝑥𝑥 would predict the probability of each label as equal, i.e. 𝑝𝑝(𝑦𝑦 = 0|𝑥𝑥) =
 𝑝𝑝(𝑦𝑦 = 1|𝑥𝑥) =  0.5. The output of such a probabilistic classifier is a vector 𝑝𝑝𝑦𝑦  =
 [0.5, 0.5], where the first element is 𝑝𝑝(𝑦𝑦 = 0|𝑥𝑥) and the second is 𝑝𝑝(𝑦𝑦 = 1|𝑥𝑥). 
Reversely, an experiment whose result is predicted with extreme confidence would 
lead to a prediction of 𝑝𝑝𝑦𝑦  =  [1.0, 0.0]. A sensible way to measure the uncertainty of a 
particular experiment is to compute the Shannon entropy10 of the classifier 
prediction. That is 𝐻𝐻 =  −∑ 𝑝𝑝𝑖𝑖 logb 𝑝𝑝𝑖𝑖𝑖𝑖  with 𝑖𝑖 ∈ [𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐] and 𝑝𝑝𝑖𝑖 the 
probability of 𝑥𝑥 to be of class 𝑖𝑖, that is 𝑝𝑝(𝑦𝑦 = 𝑖𝑖 |𝑥𝑥). This is implemented by the 
compute_normalized_entropy function in utils/tools.py. 

Equipped with a method to measure the entropy of the prediction, that is the 
uncertainty of our model, we can now generate a lot of potential experiments and 
measure their uncertainty. Step C of Figure S11 consists of sampling randomly and 
in a uniform way 𝑁𝑁 potential experiments, i.e. 𝑁𝑁 vectors 𝑥𝑥. We then use the learned 
classifier from step B, produce probabilistic class prediction (step D) and transform 
such prediction into an uncertainty measure using Shannon entropy. We end up with 
a list of experiments associated with their uncertainty given our current model of the 
system (our classifier). Those steps are illustrated in Figure S16, where subplot A is 
the dataset of the experiments whose outcome is known, and subplot B are all the 
generated experiments colored by uncertainty value. Interestingly, the uncertainty 
area, i.e. the reddest points, lies at the boundary between the green and the purple 
experiments. 
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Figure S16: Visualization of the algorithmic steps for uncertainty sampling. See 
detailed explanation in the text. 

Given this map of possible experiments associated to their uncertainty 
(subplot B), we have to select the next experiment to be performed on the system, 
which is step E on Figure S11. While the most intuitive method would be to select 
the experiment with the highest uncertainty, a more flexible and robust method is to 
probabilistically sample the next experiment with a probability proportional to its 
associated uncertainty. The use of probabilistic techniques has become the 
dominant paradigm for algorithm design in many real word applications, were noise 
and uncertainty are paramount11. 

Thus, an important step is to define the probability distribution over the 
possible experimental set based on their respective uncertainty values. A simple 
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association where each experiment is given as weight its uncertainty value would not 
be efficient, the distribution would be too flat/uniform. Instead, we use the soft-max 
function to convert our uncertainty values into sampling probabilities, which is a well-

established method in machine learning11. This function is 𝑃𝑃(𝑤𝑤𝑖𝑖) =  𝑒𝑒𝑤𝑤𝑖𝑖/𝜏𝜏

∑ 𝑒𝑒𝑤𝑤𝑗𝑗/𝜏𝜏𝑀𝑀
𝑗𝑗=0

 where 𝑤𝑤 

is the vector of all uncertainty values, 𝑖𝑖 represents the 𝑖𝑖th element in that vector, 
𝑃𝑃(𝑤𝑤𝑖𝑖) is the resulting probability associated to that element, and 𝜏𝜏 is a temperature 
parameter. We note that this temperature is an internal parameter of our algorithm 
and it is by no means linked to the chemical experiment performed. Intuitively, the 
soft-max function will simply normalize any vector to sum to 1 with an exponential 
weighting on each element. The temperature parameter (𝜏𝜏) is used to bias the 
weighting towards a more uniform (for high value of 𝜏𝜏) or a more skewed distribution 
(for low value of 𝜏𝜏). 

Therefore, an important step is to select a good value for 𝜏𝜏, too high and the 
distribution will be flat, meaning we will not explore the boundary; too low and the 
distribution will be too ‘spiky’ and we lose the advantage of probabilistic sampling. 
And often a unique 𝜏𝜏 might not be optimal all along an experiment because the 
distribution of uncertainty will evolve as we know more about our system. Hence, we 
used a self-tuning 𝜏𝜏 mechanism that consists of defining an aim on some properties 
of the probabilistic distribution and find among many possible 𝜏𝜏 the one matching 
best our objective. 

We defined our objective in such a way that the top 5% of the experiments 
should be assigned 95% of the probability. In other words, that we have 95 percent 
of chance to sample a point within the 5 percent best points ranked by uncertainty 
value. We then scan for the best 𝜏𝜏 within a large list of 100 different 𝜏𝜏 values, which 
in code was defined as np.logspace(-5, 1, 100). This process is implemented as the 
compute_best_temperature function in utils/uncertainty.py. 

This step of moving from uncertainty to sampling probability is illustrated on 
Figure S16 by the transition between subplot F and E as a map representation 
(colors represent the weights/probabilities). The raw weight to probability transition is 
also illustrated by the transition between subplot I and H. 

To select the next experiment we then sample a new experiment based on 
this probability distribution. This is illustrated by the transition from subplot E to D 
and from subplot H to G on Figure S16 and implemented in the probabilistic_choice 
function in utils/tools.py. 

The selected experiment is then executed on the system, for this SI this is our 
simple 2D circle world but in the work presented in this paper this is by running a 
crystallization experiment on the robotic platform. This is step F and G of Figure S11. 
And the process is repeated all over again. The entire procedure is implemented in 
the generate_next_samples function in utils/uncertainty.py. Figure S17 shows the 
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samples collected (A) and the uncertainty maps (B) after 50 iterations is our 2D circle 
problem. We note that the points and the uncertainty are grouped at the boundary 
between the two classes. 

 

Figure S17: Visualization for the algorithmic steps after 50 iterations of uncertainty 
sampling. See detailed explanation in the text. 

At this point, we understand how uncertainty sampling works and is implemented 
in practice. An important aspect is that new experiments are selected one by one, 
and should be tested on the system before being able to select a new experiment. 
This is not a problem for computer based experiments, e.g. simulated systems, but 
might become quickly problematic for real world experiments. Indeed, in our case, a 
crystallization experiment needs hours to crystallize and as a result if we were to use 
the algorithm as described, it would take us 100 days to run 100 experiments using 
this method, something that, needless to say, is not acceptable. In the next 
subsection, we present how the algorithm can be modified to select next 
experiments in batch while ensuring each batch is not composed of extremely similar 
experiments. 

 

6.2.2 Modification for batch sampling 

Our platform allows to run about 10 crystallization experiments per day, allowing 
for the night to crystallize our product. As such, we wanted to sample experiments in 
a batch of 10 from the algorithm. The problem is that the distribution from which we 
sample would not be updated in the meantime, meaning that all 10 experiments (or 
20, 30 depending on the application) would be sampled from the same distribution. 
Hence, given the nature of the classification algorithm, the samples in the batch 
would likely be made of similar experiments. 

To avoid this, we implemented a ‘rejection field’ around points already sampled in 
the current batch. Conceptually, this rejection field simply updates the sampling 
distribution of new experiments based on the experiments sampled before, so that 
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sampling a new point around already sampled points becomes less probable. We 
provide technical and practical details next. 

In a batch sampling, the first experiment sampled uses the exact protocol and 
implementation as described in the previous section. The subsequent experiments 
will be sampled by reusing the same entropy/uncertainty map as derived from the 
classifier trained on the available data, but superimposed with a repulsion map 
dependent on the previous experiments sampled in the current batch. 

To build the repulsion map we reuse the principles of the SVM algorithm and use 
the RBF kernel to define a repulsion function dependent on the position of each 
previously sampled point. The RBF kernel is described as 𝐾𝐾(𝑥𝑥, 𝑥𝑥′) = exp (−𝛾𝛾 ||𝑥𝑥 −
𝑥𝑥′||2) where ||𝑥𝑥 − 𝑥𝑥′||2 is the squared Euclidean distance and 𝛾𝛾 the kernel 
parameter. 𝛾𝛾 is chosen to be 10 times larger than the 𝛾𝛾 value selected during the 
cross validation procedure of the SVM classifier. Intuitively, it means the repulsion 
`radius` is smaller than the characteristic `radius` of the classifier. The logic behind 
this is to build a finer/local repulsion zone than the entropy map, which depends on 
the SVM classifier, allows. This is implemented in the 
compute_normalized_repulsion function in utils/uncertainty.py. 

In practise, to combine the uncertainty and the repulsion map on equal grounds 
and in a scalable manner, we ensure that both are bounded between 0 and 1. To do 
so, we simply normalize the entropy by the maximum of the entropy observed, and 
the repulsion map by its maximum. The final weights for the sampling process are 
computed as: 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ (1 − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟), so that the entropy is conserved 
when far away from repulsion area, and reduced in proximity of a repulsion area. 
This is implemented in the compute_weights function in utils/uncertainty.py. 

We illustrate this process with in Figure S18 for our 2D circle world simulation, 
which represents the sampling process for the first experiment of a batch sampling 
process. As this is the first experiment in the batch, the repulsion map (subplot C) is 
uniform/ not in use and the sampling of the new point (subplot D) depends only on 
the entropy maps (subplot B). 
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Figure S18: First point sampled in the batch version of our algorithm. The repulsion 
map (C) is not used and the sampling of the new point (D) depends only on the 
entropy maps (B). 

For sampling the second experiment, and as illustrated in the box (C) of 
Figure S19, the first experiment now creates a repulsion zone around itself. The 
entropy map (subplot B) is unchanged (although the position of the hypothetical 
experiments sampled/displayed is different). The repulsion map (subplot C) is now 
active with a repulsion area around the previously sampled experiment/point. The 
sampling distribution (subplot F) is thus biased away from the previously sampled 
point, clearly marked by the ‘hole’ in the ‘uncertainty ring’. The new sampled 
experiment is shown is (subplot D, red square). 
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Figure S19: Second point sampled in the batch version of our algorithm. The 
entropy map (B) is unchanged. The repulsion map (C) is now active with a repulsion 
area around the previously sampled point. The sampling distribution (F) is thus 
biased away from the previously sampled point, clearly marked by the ‘hole’ in the 
‘uncertainty ring’. The new sampled point is shown is (D). 

The process is repeated again with each new experiment sampled adding a 
repulsion zone. Figure S20 shows the sampling patterns for the 10th sample in the 
batch. The box (subplot D) shows how the batch points (all the squares red and 
grey) are sampled all around the uncertainty zone (subplot B), allowing to cover 
more uniformly the uncertainty zone despite the batch information requirements. 
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Figure S20: Sampling patterns for the 10th sample in the batch. 

 

6.2.3 Performances 

We now compare in simulation the performances of each version of the algorithm, 
namely: 

- Uncertainty single: is the original version where each experiment queried is 
tested immediately and added to the dataset. 

- Uncertainty batch: is the modified algorithm, where experiments are 
requested in batch of 10, then executed and added to the dataset. 

- Uncertainty batch – no repulsion: is the straightforward version of the batch 
algorithm, where experiments are requested in batch of 10 without any 
repulsion field. 

We also compare these versions to a random sampling strategy, which simply 
queries random experimental parameters, without any feedback from the data 
collected. 

All results are averaged over 100 simulations of our algorithm with each time a 
different starting dataset. The code to reproduce our results is available under the 
simulation folder of the associated repository. 
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Figure S21 shows that our batch version of the uncertainty sampling performs 
similarly to the original one by one uncertainty sampling. All uncertainty sampling 
methods outperform largely a random strategy. Our repulsion field based batch 
sampling slightly improves over a simple batch version. 

 

Figure S21: Evolution of the model quality through iterations for each algorithmic 
method (mean, 63% and 95 % confidence intervals out of 100 simulated 
experiments in the circle 2D world). An iteration represents 10 experiments. All 
uncertainty methods outperform random sampling. Our modified uncertainty 
sampling in batch improves slightly over the no_repulsion variant and reaches 
asymptotically the same performance of the one by one uncertainty sampling 
baseline method. 

 

6.3 A second example 

We now illustrate the same algorithmic principle to a different simple 2D problem 
to illustrate the flexibility of the method to different domains. This new domain 
considers two classes separated by a sinusoidal frontier. Figure S22 shows this 
domain and a typical starting dataset to explore and identify it. 
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Figure S22: The sinusoidal domain 

Figure S23 compares the performances of the sampling methods presented 
previously on this new domain and confirms the advantage of active learning 
methods over simpler random exploration methods. 

 

Figure S23: Evolution of the model quality through iteration for each algorithmic 
method (mean, 63% and 95 % confidence intervals out of 100 simulated experiment 
in the sinus 2D world). One iteration represents 10 experiments. All uncertainty 
methods outperform random sampling. Our modified uncertainty sampling in batch 
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improves slightly over the no_repulsion variant and reaches asymptotically the same 
performance of the one by one uncertainty sampling baseline method. 

Finally, Figure S24 shows a typical set of requested experiments and the 
result from the uncertainty sampling method after 10 iterations (or 100 experiments 
requested), and Figure S25 shows the same for the random sampling method. It is 
clear how the uncertainty sampling is more directed and targeted towards identifying 
the boundary between the two domains. 

 

Figure S24: Sampling and model after 100 points using the uncertainty sampling 
algorithm 

 

Figure S25: Results after 100 randomly sampled experiments. 

 

6.4 Limitations and Discussions 

The active learning algorithm and the specific uncertainty sampling 
implementation presented here are powerful tools for reducing the number of 
experiments needed to identify and characterize the boundary of various systems. A 
few limitations need to be considered. 

First, the algorithm will not make a difference between stochastic areas and 
uncertain areas, that is if the explored system is intrinsically stochastic, leading 50% 
of the time to crystal, and 50% to no crystal, and if this is modelled properly by the 
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underlying model, then the uncertainty sampling will consider this area of high 
interest because the entropy will be maximal. This can be annoying as the focus of 
the algorithm will be directed towards an area that is known to be stochastic, thus not 
providing more information to our model. 

Another limitation is that the algorithm will not look away from its currently known 
domain cluster. For example, if there are two different and non-connected clusters in 
the chemical space leading to crystals, the algorithm will not actively seek and 
discover them. Uncertainty sampling actually reduces the chances of doing so 
because it will focus its search on the boundaries of the already known cluster. 

 

7. Initial set of data 

As explained above an initial set of data need to be provided to bootstrap the 
search. The initial set of data (Figure S26) was obtained in two stages: a random 
search and a local search. The random search was used to gather data covering a 
wide range of experimental conditions (Table S3). Two experiments out of the 46 
performed lead to crystallization. Single crystal X-ray diffraction analysis confirmed 
that the main product is cluster (1). We then conducted 43 more experiments in the 
vicinity of the 2 successful experiments, all of which crystallized. As a result, the 
initial set of data consists of 89 points which was provided to each method as the 
starting information for their exploration. 

 

Figure S26: 3D graph of the initial set of data. Coloring code: crystals, red; non-
crystals, black 
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Table S3: Initial set of data. 

H2O 
[ml] 

HClO4 
[ml] 

NH2NH2.2HCl 
[ml] 

Ce(NO3)3.6H2O/Na2MoO4.2H2O[a] 
[ml] Crystals[b] 

3.583 3.658 5.913 1.846 0 
0.176 4.382 3.653 6.789 0 
4.65 2.382 2.621 5.347 0 
2.349 3.924 4.441 4.286 0 
2.244 9.303 1.983 1.47 0 
4.231 3.209 3.359 4.201 0 
8.177 3.487 3.214 0.122 0 
3.647 4.739 0.777 5.837 1 
5.329 5.701 2.344 1.626 0 
0.759 2.737 4.715 6.789 0 
0.719 3.515 0.055 10.711 0 
1.31 9.385 0.374 3.931 0 
3.185 4.714 5.327 1.775 0 
2.835 5.308 1.447 5.41 1 
1.339 5.337 5.759 2.565 0 
5.356 6.081 3.173 0.39 0 
4.898 3.161 6.03 0.911 0 
1.19 8.411 4.788 0.611 0 
4.995 2.403 3.356 4.246 0 
5.697 4.196 4.097 1.01 0 
4.606 7.952 2.176 0.266 0 
2.428 0.658 4.681 7.233 0 
3.27 3.855 4.561 3.314 0 
0.102 8.135 4.711 2.052 0 
0.548 1.646 9.445 3.361 0 
7.78 4.837 1.766 0.617 0 
6.193 4.182 3.479 1.147 0 
1.318 2.87 3.942 6.87 0 
0.579 0.037 7.406 6.978 0 
4.498 4.52 2.819 3.163 0 
4.552 2.08 4.473 3.895 0 
0.589 4.792 4.997 4.623 0 
5.16 4.667 0.467 4.707 1 
6.399 2.708 4.726 1.166 0 
4.771 4.561 2.262 3.407 0 
4.375 2.299 1.618 6.707 0 
0.015 1.113 5.87 8.002 0 
0.605 3.659 7.957 2.779 0 
2.098 6.769 2.706 3.427 0 
2.961 3.152 3.163 5.724 0 
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5.205 2.542 3.553 3.7 0 
3.973 3.615 4.196 3.216 0 
3.853 2.361 4.528 4.258 0 
3.461 2.005 4.828 4.706 0 
0.971 4.509 4.576 4.944 0 
4.401 5.659 1.969 2.971 0 
7.892 0.233 2.74 4.135 0 
2.405 7.939 1.46 3.196 0 
4.862 3.969 5.38 0.789 0 
3.647 4.739 0.777 5.837 1 
3.614 4.894 0.634 5.857 1 
3.648 4.696 0.77 5.885 1 
3.678 4.554 0.903 5.865 1 
3.677 4.597 0.909 5.817 1 
3.708 4.413 1.034 5.845 1 
3.707 4.455 1.04 5.797 1 
3.738 4.271 1.166 5.825 1 
3.739 4.228 1.16 5.873 1 
3.645 4.731 0.53 6.093 1 
3.589 4.855 0.75 5.806 1 
3.674 4.676 0.606 6.043 1 
3.647 4.72 0.95 5.683 1 
3.928 4.64 0.615 5.817 1 
3.932 4.62 0.789 5.659 1 
4.212 4.541 0.456 5.791 1 
3.774 4.591 0.924 5.711 1 
3.702 4.539 0.841 5.918 1 
3.572 4.687 0.691 6.05 1 
3.627 4.488 0.757 6.128 1 
3.642 4.674 0.772 5.913 1 
3.635 4.581 0.764 6.019 1 
3.638 4.628 0.768 5.966 1 
3.641 4.797 0.975 5.586 1 
3.697 4.705 0.809 5.789 1 
3.619 4.799 0.911 5.672 1 
3.614 4.854 1.101 5.431 1 
2.891 5.248 1.548 5.313 1 
2.861 5.423 1.288 5.428 1 
2.804 5.49 1.177 5.53 1 
2.776 5.374 1.337 5.513 1 
5.119 4.89 0.247 4.744 1 
5.063 4.631 0.693 4.613 1 
5.021 4.859 0.47 4.65 1 
4.964 4.603 0.914 4.52 1 
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5.005 4.37 1.145 4.48 1 
5.017 4.742 0.631 4.609 1 
4.919 4.712 0.853 4.516 1 
5.026 4.652 0.734 4.588 1 
4.973 4.682 0.793 4.552 1 
[a]: It represents the sum of two equal volumes. 
[b]: Absence of crystal is assigned the value zero (0). Presence of crystal is assigned 
the value (1). 

As seen on Table S3, when suggesting the new set of experiments, all 
methods should provide us with a list of four volume parameters corresponding to 
the addition of five reagents in the manner of H2O, HClO4 1 M, NH2NH2·2HCl 0.25 M 
and Na2MoO4·2H2O 1 M /Ce(NO3)3·6H2O 0.1 M. Because of the 1:1 volume ratio, 
the latter is expressed as the sum of two equal volumes. 

 

8. Analysis of experiments performed between methods 

 

Throughout this section, a coloring scheme is applied for all experimental data 
representing the categories of their respective crystallization events as follows: 

 

8.1 Visualization of crystallization methods 

In Figure S27 we illustrate in a simplified 2D representation our qualitative 
observations about the strategies used by the human experimenters and the 
algorithm. We can observe a more polar search of the algorithm (bottom, left) and a 
more directional exploration from the human experimenters (bottom, right). 
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Figure S27: 2D conceptual scheme of the exploration. 

In Figure S28 we can see the actual data from our experiments in a 3D 
representation. Figure S28 plots the experiments performed in 3D graphs having as 
axes: first, the volume of HClO4 (in mL); second, the volume of NH2NH2.2HCl (in mL) 
and third, the combined volume of Na2MoO4.2H2O and Ce(NO3)3.6H2O (in mL). We 
can observe the similarities with our illustration in Figure S27. 
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Figure S28: 3D conceptual scheme of the exploration 

 

8.2 Experimental protocol as developed by the human experimenters 

In this study, the human experimenters were aware of the chemical formula of 
compound (1), the reagents, the reaction conditions (temperature and reaction time), 
the platform and the initial set of data. They were not aware of the overall aim of 
comparing strategies among procedures. Each human experimenter was instructed 
to develop their own strategy given the objective to identify the range of experimental 
conditions where compound (1) can be isolated. 

Human experimenter 1 

Human experimenter 1 initially used six 2D graphs to visualize the initial set of 
data for both the crystallizing and the non-crystallizing mixtures for the following 
ratios: Na2MoO4.2H2O/Ce(NO3)3.6H2O over HClO4, Na2MoO4.2H2O/Ce(NO3)3.6H2O 
over NH2NH2.2HCl and NH2NH2.2HCl over HClO4. 

a. Na2MoO4.2H2O/Ce(NO3)3.6H2O over HClO4 
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Figure S29: 2D representation of a) the crystallizing mixture and b) the non-
crystallizing mixture. 

 

b. Na2MoO4.2H2O/Ce(NO3)3.6H2O over NH2NH2.2HCl 

 

Figure S30: 2D representation of a) the crystallizing mixture and b) the non-
crystallizing mixture. 

c. NH2NH2.2HCl over HClO4 
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Figure S31: 2D representation of a) the crystallizing mixture and b) the non-
crystallizing mixture. 

Human experimenter 1 observed that the crystallizing reactions are clustered 
in regions of reaction space very closely (Figures S29a, S30a, S31a) whilst the non-
crystallizing are broadly spread out around these regions (Figures S29b, S30b, 
S31b). From each graph separately, human experimenter 1 estimated the values of 
reagent volume roughly 10% removed outwards from the crystallizing regions in 
order to determine the next 10 reactions: four reactions for Figure S29, four reactions 
for Figure S30 and two for Figure S31 since this ratio seemed to be the least 
important, which was further confirmed through the experiments and it was later 
completely abandoned. After each series of ten reactions the additional data was 
added to the original plot of the initial data set. 

The graphs produced for the non-crystallizing reactions were only used as a 
control in order to avoid replication of a previously given reaction. That is because 
the volume of the third reagent was plotted in these graphs, which volume was not 
represented on the 2D graphs. 

For the volume of the third reagent an average of the successful values for 
each reagent from all of the crystal yielding reactions was used. The volumes of the 
reagents from the successful data have a relatively narrow window so this was 
deemed adequate by the human experimenter 1. 

Human experimenter 2 

Human experimenter 2 used Table S3 to initially determine the rough 
boundaries of the concentration of reagents used for the initial data. The findings are 
summarized below: 

Reagents Boundaries [M] 



 
 

S38 
 

Molybdenum/reducing agent 6.86 – 38 
Molybdenum 0.15 – 0.36 
Acid 0.28 – 0.36 
Acid/Molybdenum 1.43 – 2.08 
 

Subsequently, human experimenter 2 generated a plan in which the three 
variables to be explored were the acid (HClO4 1M), the Mo and Ce content 
(Na2MoO4.2H2O 1M/Ce(NO3)3.6H2O 0.1M) and the reducing agent (NH2NH2.2HCl 
0.25 M). Two of these variables were kept constant at any time and the third was 
allowed to change. In general, the ratios for the experiments were calculated 
following this plan: 

 
1st day 2nd day 3rd day 4th day 5th day 6th day 7th day 8th day 9th day 10th day 

Mo/reducing 
agent [M] 5.5-45 7.5-24 6.7-24.9 15 15 15 15 15 15 15 

Mo [M] 0.2 0.2 0.2 0.2 0.2 0.2 0.1-0.3 0.11-0.21 0.2 0.18 

Acid [M] 0.3 0.3 0.28-0.4 0.30-0.345 0.285-0.385 0.27-0.45 0.48-0.54 0.46-0.47 0.3-0.465 0.3 

Acid/Mo [M] 1.5 1.5 1.4-2.0 1.5-1.725 1.425-1.925 1.95-2.25 1.11-3 1.4-2.3 1.525-2.325 0.5 

 

8.3 Results 

In this section we have the comparison between the two runs for all three 
methods. The results shown are after the end of the 100 experiments mark 
requested in the beginning of our study. 

1. Human experimenters 

General overview 
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Figure S32: 3D graph of the data from experimenter 1 (left) and experimenter 2 
(right). 

 

View along the acid and reducing agent plane 

 

Figure S33: 3D graph of the data from experimenter 1 (left) and experimenter 2 
(right). 
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View from the acid perspective 

 

Figure S34: 3D graph of the data from experimenter 1 (left) and experimenter 2 
(right). 

 

View from the reducing agent perspective 

 

Figure S35: 3D graph of the data from experimenter 1 (left) and experimenter 2 
(right).  
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2. Random search 

General overview 

 

Figure S36: 3D graph of the data from random 1 (left) and random 2 (right). 

 

View along the acid and reducing agent plane 

 

Figure S37: 3D graph of the data from random 1 (left) and random 2 (right). 

 

View from the acid perspective 
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Figure S38: 3D graph of the data from random 1 (left) and random 2 (right). 

 

View from the reducing agent perspective 

 

Figure S39: 3D graph of the data from random 1 (left) and random 2 (right). 

 

3. Algorithm 

General overview 
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Figure S40: 3D graph of the data from algorithm run 1 (left) and algorithm run 2 
(right). 

 

View along the acid and reducing agent plane 

 

Figure S41: 3D graph of the data from algorithm run 1 (left) and algorithm run 2 
(right). 

 

View from the acid perspective 
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Figure S42: 3D graph of the data from algorithm run 1 (left) and algorithm run 2 
(right).  

 

View from the reducing agent perspective 

 

Figure S43: 3D graph of the data from algorithm run 1 (left) and algorithm run 2 
(right).  

 

9. Single-crystal X-ray diffraction validation of the products observed in the 
crystallization boundaries 
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In section 8, we were able to identify the crystallization boundaries of {Mo120Ce6} 
(1) based on an optical confirmation of the presence of crystals under strong light 
(white light emitting diode, 3300-3500 lux at a distance of 5 cm). As a next step, we 
wanted to characterize if by moving outwards to the boundaries of crystallization we 
keep obtaining compound (1) or if we observe the formation of new compounds. For 
this reason, we performed a series of 12 experiments as seen on Table S5 and 
depicted on Figure S44 with the aim of using single-crystal X-ray and ICP analysis. 

Table S5: Experiments performed for the single-crystal X-ray and ICP analysis 
validation. 

Sample H2O 
[ml] 

HClO4 
[ml] 

NH2NH2.2HCl 
[ml] 

Ce(NO3)3.6H2O/Na2MoO4.2H2O 
[ml] 

s1 3.237 4.5 1.263 6 
s2 3.088 4.5 1.411 6 
s3 3.175 5.025 0.8 6 
s4 2.875 5.325 0.8 6 
s5 2.575 5.625 0.8 6 
s6 2.05 6.15 0.8 6 
s7 1.6 6.6 0.8 6 
s8 1.15 7.05 0.8 6 
s9 1.373 5.878 1.36 6.389 
s10 1.541 6.331 0.342 6.786 
s11 0.221 6.099 2.423 6.256 
s12 0.008 5.574 1.662 7.755 

 

 

Figure S44: 3D graph of the experiments performed for the single-crystal X-ray and 
ICP (part 9) validation analysis. Coloring code: crystals from initial conditions, red; 
non-crystals from initial conditions, black; crystals for validation, orange. 
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Unfortunately, as seen on Table S6, the quality of the crystalline material that 
we obtained was low and single-crystal X-ray analysis was difficult to reliably 
perform. 

Table S6: Single-crystal X-ray results. 

Sample Compound observed Resolution 
[Å] 

Number of 
reflections 

2theta 
[°] 

s1 {Mo120Ce6} 1.2 1071 34.88 
s2 Weak diffraction 1.4 250 30.18 
s3 Powder material none none none 
s4 Powder material none none none 
s5 Powder material none none none 
s6 Weak diffraction 3.5 160 11.51 
s7 Unreliable unit cell 

measurement 2.8 
353 14.88 

s8 Small crystals/ Weak 
diffraction none none none 

s9 Weak diffraction 3.4 132 11.98 
s10 Weak diffraction none none none 
s11 Powder material none none none 
s12 Powder material none none None 
Measured at 15 sec exposure time; detector distance 60 mm 

 

For our investigation of what compounds crystallize in the boundaries we repeated 
the following selected reactions: 

1. From the human experimenters 

In this batch of experiments we observed the presence of compound (1) in an 
experiment belonging to the third area of crystallization. This area has been 
discovered from one of the human experimenters and from both the uncertainty 
algorithms. 

Table S7: Single-crystal X-ray results for selected reactions from the human 
experimenters. 

Sample H2O 
[ml] 

HClO4 
[ml] 

NH2NH2.2HCl 
[ml] 

Ce(NO3)3.6H2O/Na2MoO4.2H2O 
[ml] Compound observed 

s1 3.891 5.75 0.859 4.5 Weak diffraction 

s2 1.641 5.75 0.859 6.75 {Mo120Ce6} 

s3 3.891 5.25 0.859 5 Small crystals/ Weak 
diffraction 

s4 2.141 5.25 0.859 6.75 Small crystals/ Weak 
diffraction 
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s5 6.641 4 0.859 3.5 Small crystals/ Weak 
diffraction 

s6 3.3 4.5 1.2 6 Weak diffraction 

s7 1.15 7.05 0.8 6 Weak diffraction 

s8 5.5 4.5 0.8 4.2 Small crystals/ Weak 
diffraction 

s9 2.725 5.475 0.8 6 Small crystals/ Weak 
diffraction 

s10 2.81 4.5 1.69 6 Weak diffraction 
Measured at 15 sec exposure time; detector distance 60 mm 

 

Figure S45: 3D graph of the selected experiments repeated from the human 
experimenters. Coloring code: crystals from initial conditions, red; non-crystals from 
initial conditions, black; crystals for validation, orange; crystals confirmed as 
{Mo120Ce6} by single-crystal X-ray analysis, magenta. 

 

2. From the random search 

In an experiment far away from the crystallization boundaries of compound (1) we 
observed the presence of {Mo154}. 

Table S8: Single-crystal X-ray results for selected reactions from the random search. 
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Sample H2O 
[ml] 

HClO4 
[ml] 

NH2NH2.2HCl 
[ml] 

Ce(NO3)3.6H2O/Na2MoO4.2H2O 
[ml] Compound observed 

s1 4.706 6.733 0.213 3.348 {Mo154} 

s2 3.923 5.487 0.821 4.769 Microcrystalline 
material 

s3 2.045 5.814 1.401 5.74 Small crystals/ Weak 
diffraction 

s4 6.231 3.947 0.621 4.201 Small crystals/ Weak 
diffraction 

s5 4.378 4.049 1.296 5.277 Powder material 
s6 3.897 4.685 1.035 5.383 Powder material 

Measured at 15 sec exposure time; detector distance 60 mm 

 

Figure S46: 3D graph of the selected experiments repeated from the random 
search. Coloring code: crystals from initial conditions, red; non-crystals from initial 
conditions, black; crystals for validation, orange; crystals confirmed as {Mo154} by 
single-crystal X-ray analysis, magenta. 

 

3. From the algorithm 

In this batch of selected experiments we observed not only the presence of 
{Mo120Ce6} in the third region of crystallization, as mentioned before and in the main 
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manuscript, but also the inability of single-crystal X-ray diffraction to confirm the 
presence of a different product. 

Table S9: Single-crystal X-ray results for selected reactions from the algorithm. 

Sample H2O 
[ml] 

HClO4 
[ml] 

NH2NH2.2HCl 
[ml] 

Ce(NO3)3.6H2O/Na2MoO4.2H2O 
[ml] Compound observed 

s1 1.373 5.878 1.36 6.389 {Mo120Ce6} 

s2 3.954 4.438 2.369 4.239 Microcrystalline 
material 

s3 2.905 4.345 1.649 6.101 Small crystals/ Weak 
diffraction 

s4 0.991 7.043 0.583 6.382 Small crystals/ Weak 
diffraction 

s5 5.211 4.279 1.572 3.937 Microcrystalline 
material 

s6 4.582 3.672 2.021 4.724 Small crystals/ Weak 
diffraction 

s7 5.55 4.673 1.067 3.71 Microcrystalline 
material 

s8 1.282 6.515 0.773 6.429 Unreliable new unit 
cell[a] 

s9 6.814 4.292 0.632 3.263 Microcrystalline 
material 

s10 2.65 6.315 0.455 5.581 Small crystals/ Weak 
diffraction 

Measured at 15 sec exposure time; detector distance 60 mm 
[a]: Resolution at 1.8 Å; a=29.26 Å, b=50.21 Å, c=52.82 Å, α=90.06°, ϐ=94.66°, 
γ=90.01°, V=77354 Å3 
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Figure S47: 3D graph of the selected experiments repeated from the algorithm. 
Coloring code: crystals from initial conditions, red; non-crystals from initial conditions, 
black; crystals for validation, orange; crystals confirmed as {Mo120Ce6} by single-
crystal X-ray analysis, magenta; crystals with unreliable unit cell, blue. 

 

10. ICP validation of the products observed in the crystallization boundaries 

The ICP analysis was performed on an Agilent Technologies 5100 ICP-OES for 
molybdenum, cerium and sodium. 

As observed from part 9, when we are in the boundaries of crystallization, it is 
difficult to isolate and characterize products with single-crystal X-ray diffraction 
because of the low crystal quality of the material. 

For this reason, we decided to use ICP as a qualitative and quantitative 
assessment tool. We performed the ICP analysis in the experiments described in 
Table S5 and depicted in Figure S44. Based on the formula 
Na6[Mo120Ce6O366H12(H2O)78]·200H2O (1) we calculate the following ratios: 

Table S10: Theoretical percentages of Mo, Ce and Na based on the formula 
Na6[Mo120Ce6O366H12(H2O)78]·200H2O (1). 

Compound (1) % Mo % Ce % Na % Mo/% Ce 
49.268 3.598 0.59 13.69 
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The results of this validation can be summarized on Table S11. 

Table S11: ICP analysis validation. 

Sample % Mo % Ce % Na % Mo/% Ce 

s1 52.181 3.654 0.832 14.281 
s2 52.874 3.849 0.646 13.735 
s3 49.430 3.495 0.803 14.144 
s4 51.554 3.809 0.852 13.534 
s5 50.732 3.849 0.732 13.177 
s6 50.08 3.545 0.658 14.127 
s7 51.229 2.925 0.894 17.512 
s8 52.164 2.276 0.835 22.919 
s9 53.784 3.869 0.651 13.9 
s10 49.977 3.689 1.025 13.548 
s11 53.447 2.097 0.927 25.483 
s12 51.245 3.845 0.617 13.327 

 

We can observe that samples s7, s8 and s11 have higher values of 
%Mo/%Ce. In Figure S48 we can observe that these three experiments are located 
in the outer edges of the boundaries. Additionally, the relevant Ce is lower than both 
the theoretical value and the values observed in the other samples, something that 
can be an indication of the existence of Mo species such as {Mo154} which has 
already been observed (see Figure S46). 

 

Figure S48: 3D graph of the experiments performed for ICP validation analysis. 
Coloring code: crystals from initial conditions, red; non-crystals from initial conditions, 
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black; crystals validated as {Mo120Ce6} by ICP, orange; crystals of samples s7, s8 
and s11, blue 

In order to check for the stability of our samples in time we performed two 
experiments; conditions of A belong to the first and bigger cluster of crystallized 
experiments and conditions of B belong to the second, smaller cluster of crystallized 
experiments. These samples were left for one day, one week and one month and 
subsequently ICP analysis was carried out. As we can see from Table S12, the 
%Mo/%Ce remains relatively constant in time. In sample A after one month, we can 
observe an increase in %Mo/%Ce and %Na while in the same time there is a 
decrease in %Ce. This can indicate that after compound (1) is finished precipitating, 
then different compounds like the {Mo154} discussed before can start precipitating. 

Table S12: ICP analysis results over a period of time of one day, one week and one 
month. 

Sample % Mo % Ce % Na % Mo/% Ce Time 

A 49.986 3.818 0.482 13.09 1 day B 49.771 3.777 0.439 13.18 
A 49.652 3.881 0.543 12.79 1 week B 50.453 3.902 0.494 12.93 
A 50.127 3.118 0.776 16.08 1 month B 48.956 3.596 0.555 13.61 
A: H2O, 3.647 ml; HClO4, 4.739 ml; NH2NH2.2HCl, 0.777 ml; Ce(NO3)3.6H2O and 
Na2MoO4.2H2O 5.837 ml & B: H2O, 5.017 ml; HClO4, 4.742 ml; NH2NH2.2HCl, 0.631 
ml; Ce(NO3)3.6H2O and Na2MoO4.2H2O 4.609 ml 

We also performed ICP analysis in samples from the modified synthesis from 
the platform in bench: 

Table S13: ICP analysis results from modified bench synthesis 

Modified 
synthesis 

% Mo % Ce % Na % Mo/% Ce 
47.769 3.961 0.542 12.059 

 

11. Quantitative analysis of the strategies 

11.1 Principles 

In this section we go beyond the qualitative description of the strategies 
developed by each method and define metrics to quantify: (a) how much each 
method was able to explore the crystallization zone and (b) how good the data 
acquired were for building a model, which is to predicting crystallization of future 
experiments. 
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This analysis will be based on the data acquired by each method and how criteria 
of exploration and model quality evolved as more data were acquired. 

- To quantify exploration we will only consider the crystals found and estimate 
how widespread they are distributed in the chemical space. We used two 
main techniques. The first one, studies the minimal convex volume 
encompassing the found crystals in the chemical space. The second 
technique attempts to estimate how similar or different the experiments 
leading to crystallization were, based on a distance metric in the chemical 
space. 
 

- To quantify the data quality and their ability to model the crystallization 
domain, we measure the evolution of the prediction accuracy of a classifier 
trained using the data acquired by each method. An efficient method will 
increase its accuracy with less data. We tested different classification 
algorithms to ensure results are not specific to the SVM classifier used by the 
algorithm method. 

Implementation details can be found on the online code repository: 
https://github.com/croningp/crystal_active_learning 

11.2 Explored space 

11.2.1. Number of crystals found 

First, we plot how many experiments leading to crystals have been performed 
(Figure S49) by each method and for each run. This is not directly informative of 
exploration but provides some useful information when put in perspective with other 
metrics. We observe that Random runs 1 and 2 found about 5 crystals out of 100 
experiments, suggesting that it is not easy to find experiments leading to crystals by 
mere chance. We also observed that the Human run 1 leaded to almost 50 crystals 
experiments out of 100. While this might look good, when put in perspective with our 
analysis of Section 6 it mostly indicates that the experiments were really 
conservative and close to already known crystallized experiments. 

https://github.com/croningp/crystal_active_learning
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Figure S49: Number of experiments leading to new crystals. 

11.2.2. Volume exploration: Convex hull method 

Considering the crystallization area as a volume in the parameter space of 
chemical involved in the experiments, a valuable metric is to estimate how much of 
the crystallization volume has been explored by each method. But this true volume is 
unknown to us. An alternative is to compute the volume created by the experiments 
leading to crystals. One could argue that the bigger this volume, the better the 
algorithm is at exploring the boundaries between crystal and no-crystal zones. 

To do so we compute the volume of the convex hull formed by the 
experiments leading to crystals. The convex hull is the smallest convex volume that 
encompasses all of the experimental points in our chemical space. In a 2D space, 
this process can be illustrated as in Figure 50 and in a 3D space as in Figure S51. 
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Figure S50: 2D convex hull method visualization. 

 

Figure S51: 3D convex hull method visualization. An n-dimensional polyhedron is 
created by the crystal points, where n is the number of experimental parameters 
taking part in the system under study. In our case, n=4 representing the volumes of 
H2O, HClO4 1 M, NH2NH2·2HCl 0.25 M and Na2MoO4·2H2O 1 M /Ce(NO3)3·6H2O 0.1 
M. In the picture n=3 for visualization purposes. The cube represents a chemical 
space formed by three chemicals, e.g. chemical A, chemical B and chemical C. 
These chemicals react and in certain ratios they form crystals. The coordinates of 
these formulations can be formulated as a vector of quantities for [A, B, C] and are 
strickly enclosed by the polyhedron representing the convex hull. 

This method was implemented using the scipy.spatial module and its practical 
implementation can be found in the 
analysis/explored_volume/convex_hull_method.py file. The results are shown in 
Figure S52 where the y axis corresponds to a 4-dimensional volume of the convex 
hull of all crystals points in the parameter space of our 4 reagents. As each 
parameter is in mL units, strictly speaking the y-axis unit is mL4, but this has no 
intuitive meaning and therefore results should simply be interpreted relatively to each 
other and not as absolute values. The Figure S52 shows that for the Algorithm 
method, run 1 and run 2 lead to a much wider exploration of the crystallization zone. 
The human method led also to a wider exploration than a simple random exploration. 
This is to put in perspective with Figure S49 where the Human method tends to 



 
 

S56 
 

produce more or similar amount of crystals experiments, yet these experiments 
seem to be located in a narrow part of the chemical space. The Algorithm seems to 
be bolder, reaching and finding crystals further out in the chemical space. 

 

Figure S52: Evolution of the volume of the convex hull of the experiments leading to 
crystals for each method. 

One main limitation of this method is that it considers the volume as convex 
with all points belonging to a single cluster. In addition, the space of chemicals being 
4-dimensional magnifies any differences in terms of volumes, which might explain 
the substantial difference between methods. For these reasons, we tested a different 
approach using a similarity metric between experiments forming crystals. 

 

11.2.3. Similarity between experiments 

Ideally, we would like to estimate exactly the volume explored by each 
method. One way is to assign a radius of influence for each point and compute the 
union of all such n-dimensional spheres. This, however, is a very hard problem and 
computationally expensive process, especially in a 4-dimensional space as the one 
of our reagents space12. 

To get around this issue, we flip the problem and count the average number 
of points within a specific distance of all other points. That is, given an experimental 
point, how many other experiments lie within a specific radius in the parameters 
space, measured as a Euclidean distance. This distance is a similarity measure 
between experiments, a small value indicates similar experiments. First, we need to 
define a value for the radius parameter, to do so we computed the average ratio of 
crystals within radius of other crystals over the total number of crystals for each 
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method and for many radii (Figure S53) on the final dataset, i.e. once all the 100 
experiments were collected. First, we observe that for a small value of radii (R), this 
ratio is close to 0, because two experiments are never exactly the same. Similarly for 
large values of R, the ratio is 1 because all points are within a contained space. The 
interesting radii are the ones which are able to capture a difference between each 
method. We finally note that this plot confirms that the Algorithm 1 and 2 and Human 
1 explore more widely the crystallization space. Indeed, the points are on average 
further away from each other as indicated by, for a given radius, the lower average 
number of points within a radius of each other. 

 

Figure S53: Comparison of numbers of crystals found within a given radius of 
another crystal. 

To select a good value for R, we arbitrarily decided to use the standard 
deviation of our measure between each method as our metric. The logical is that the 
radius for which the standard deviation is higher indicates it can capture finer 
variations between methods. This is because as the standard deviation increases, 
the different runs of our experiment start to be separated from each other. At the 
end, a larger deviation from the average value means better separation. Figure S54 
shows this measure and indicates that a radius of 2 is optimal given our metrics. We 
use R=2 in the following to study in more detail the evolution of our similarity 
measure as our experiments unfold. 
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Figure S54: Correlation between radius and standard deviation. 

Figure S55 shows the evolution of the average ratio of crystals found within a 
given distance of other crystals as more experiments are performed by each method. 
First, we note that in the initial set 90% of the data are within a radius of 2 in the 
parameter space. This is in line with the visual observation of the initial dataset of 
section 7. We can observe that Algorithm runs 1 and 2 reduce this ratio quicker than 
any other method indicating a wider exploration thus less data points in the vicinity of 
each other. The Human run 1 has a similar dynamic while the Human run 2 is closer 
to our Random method indicating a rather conservative exploration as has also been 
noted in section 10. 
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Figure S55: Comparison of numbers of crystals found within a given distance of 
another crystal. 

A final way to represent this similarity analysis is to plot a histogram of the 
distance between experimental points leading to crystals. For that we compute a 
matrix of all distances between pairs of experiments leading to crystal in the 
experimental space. We then plot the distribution of such distances. Intuitively, a 
better exploration algorithm will have a stronger tail towards higher distances, 
meaning points are on average more distant from each other. Figure S56 confirms 
these tendencies shown in previous analysis with the Algorithm 1 and 2 and Human 
1 having stronger tailed distribution compared to the other 3 runs. 

 

Figure S56: Comparison of the distribution of euclidean distance to neighbours 
among the three methods 
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11.3 Data and modelling quality 
 

We define the set of initial experiments as I. A1, A2, H1, H2, R1, R2 are the set of 
data collected respectively under the Algorithm, the Human and the Random method 
for both runs 1 and 2. We further define IA1, IA2, IH1, IH2, IR1, and IR2 the 
respective datasets composed of the initial data plus the subsequent data gathered 
during an experimental run (i.e. IA1 = {I, A1}). Finally, we define as T the dataset of 
all experiments performed on the platform that is T = {I, A1, A2, H1, H2, R1, R2}. 

11.3.1. Principles and biases 

The stated goal of this research is to show how active learning algorithms 
inspired by research in the field of machine learning can be useful to explore a 
chemical space in a more cost- and time-effective manner. For completeness, we 
compared with human experimenters and a baseline random method. Hence, the 
most important metric is to measure how good the data acquired were to model the 
area leading to crystals or to no-crystals. 

As these areas are not known theoretically our only option is to rely on the 
data acquired all along our experiments as a way to test the quality of a model. In 
essence, and with respect to Algorithm run 1, we will train a model using IA1 (all the 
data collected by Algorithm run 1 and the initial data) and test this model on T (the 
set of all data ever acquired on the platform). This allows us to test how good our 
model is to predict the experimental outcome of experiments it has never seen 
before and that it has never used to infer the model. 

In practice, this is implemented by training a classifier on IA1 and testing the 
percentage of good predictions made on T. The higher the accuracy of the classifier 
on T, the better the model, hence the more representative and useful the data used 
to train it. 

But such measurements can be biased by the ratio of points representing 
each class in the testing set (T). For example, in our case T included 181 
experiments leading to crystals and 508 experiments that do not lead to crystals (see 
Table S4), that is about 74% of the test set being of class `no-crystal`. This means 
that a dummy classifier that predict that all experiments lead to ‘no-crystal’ will in 
practice have a prediction accuracy of 74% on T. The distribution of labels in T would 
thus be biasing our metrics towards the deceptive classifier. The solution is to 
compute two different prediction measurements, one of the class `crystal` and one 
for the class `no-crystal`, and then average the two to get a single, unbiased, 
estimate of the accuracy of our model/classifier. In the example above, the dummy 
always ‘no-crystal’ classifier would have 0% accuracy on ‘crystal’ and 100% 
accuracy on ‘no-crystal’ for a global accuracy of 50%, something that is no better 
than pure luck. 
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Table S4: Summary of crystallization data obtained from the experiments 

 Initial data Uncertainty 
algorithm Random search Human 

experimenter 

crystals no-
crystals crystals no-

crystals crystals no-
crystals crystals no-

crystals 
Run 1 43 46 27 73 4 96 26 74 
Run 2 32 68 2 98 47 53 

In total: 689 experiments/ 181 crystals/ 508 non-crystals; for each procedure 
(algorithm, humans, random) and at each run, 100 experiments were performed with 
the platform 

All results reported are corrected for this bias, hence any value above 50% 
indicates that the classifier/model captures at least some relevant aspects of the 
system. The higher the prediction accuracy is, the better the model/classifier, hence 
the better/more representative the data. 

11.3.2. Comparing methods 

We compared three different classifiers: SVM with RBF kernel7, 
RandomForest13, and Adaboost14 on DecisionTree15; all implemented within the 
scikit-learn python library9. All three classifiers are able to capture non-linear 
decision lines between classes. It is also important to check other classifiers than the 
SVM because SVM was used in the active learning algorithm method described in 
Section 6, therefore we might have collected data solely tailored to the model built by 
the SVM classifier. Using two other classifiers allows us to verify that the data 
gathered are actually useful and meaningful for other modelling methods. 

Figures S57, S58, S59 show, respectively for SVM, RandomForest and 
Adaboost, the evolution of the prediction accuracy of each classifier trained on the 
data collected by each method for each run. 10-fold cross validation on the full 
dataset was used to select the set of parameters for each classifier (see Table S14). 
The same trends appear on all three plots; the machine-learning algorithm was able 
to collect better quality data and improved its classification accuracy the most. In 
comparison, the humans showed a less significant improvement and the random did 
not improve in accuracy. The fact that the model computed using the human method 
improves less than with the algorithm indicate that the humans did not collect as 
useful information as the algorithm. This is even more striking with the random 
method that provided no additional information. 
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Figure S57: Average for the prediction accuracies between the classes of crystals 
and non-crystals for the three methods using grid searching of the best set of 
parameters in the full data set. 

 

Figure S58: Average for the prediction accuracies between the classes of crystals 
and non-crystals for the three methods using grid searching of the best set of 
parameters in the full data set. 
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Figure S59: Average for the prediction accuracies between the classes of crystals 
and non-crystals for the three methods using grid searching of the best set of 
parameters in the full data set. 

Table S14: Prediction quality at the end of 100 experiments for three methods. 

 SVM[a] Adaboost[b] Random Forest[c] 

Algorithm_0 0.813 0.793 0.831 
Algorithm _1 0.819 0.802 0.817 
Human_0 0.753 0.760 0.753 
Human_1 0.734 0.779 0.734 
Random_0 0.721 0.711 0.701 
Random_1 0.702 0.659 0.673 
[a] kernel: rbf; C: 100.0; gamma: 10-3/2, [b] number of estimators: 50, [c] number of 
estimators: 100 
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