
Supplementary Note 1

This note proves two propositions regarding the marginal mean tensor.

Preliminaries: Given a data tensor X ∈ IRT×N×C , let x = vec(X) ∈ IRTNC be the

vectorized tensor (vec(.) is vectorization in the order from the first to the last tensor

mode). Define the matrix HT = 1
NC

(1C ⊗ 1N ⊗ IT ) ∈ IRTNC×T . HT computes the

marginal mean of the tensor X along the temporal mode (i.e., µT = HT
⊤x ∈ IRT ).

Similarly, define the matrices HN = 1
TC

(1C ⊗ IN ⊗ 1T ) ∈ IRTNC×N and HC = 1
TN

(IC ⊗

1N ⊗ 1T ) ∈ IRTNC×C , which map x to its other marginal means. Throughout, ⊗ is the

Kronecker product, ID is the identity matrix of size D ×D, and 1D is the ones vector of

size D.

We define a marginal mean tensor M ∈ IRT×N×C as any tensor that, when subtracted

from the data X , results in a tensor with zero marginal means; that is, X̄ = X −M has

HT
⊤x̄ = 0, HN

⊤x̄ = 0, HC
⊤x̄ = 0 or equivalently m = vec(M) has HT

⊤m = µT , etc.

The subspace M = {M ∈ IRT×N×C : HT
⊤m = µT , HN

⊤m = µN , HC
⊤m = µC} has

dimension TNC − (T + N + C). A procedure for creating a marginal mean tensor is

sequential mean subtraction: applying HT , HN , HC in a specified order, say:

x̄(1) = x− (NCHT )
(
HT

⊤x
)

x̄(2) = x̄(1) − (TCHN)
(
HN

⊤x̄(1)
)

x̄ = x̄(2) − (TNHC)
(
HC

⊤x̄(2)
)
.

Note that (NCHT ), (TCHN), and (TNHC) copy the measured marginal means into the

appropriate locations in the vectorized tensor. The resulting tensor X̄ has zero marginal

means with implied marginal mean tensor M̂ = X − X̄ . Note also by construction that
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M̂ ∈ M; that is, M̂ is a valid marginal mean tensor.

Proposition 1.1: The marginal mean tensor M̂ that results from sequential mean sub-

traction is invariant to the order in which the marginal means are subtracted.

Proof: Expand x̄ = vec(X̄) as:

x̄ =
(
ITNC − TNHCHC

⊤) (ITNC − TCHNHN
⊤) (ITNC −NCHTHT

⊤)x
=

(
(IC ⊗ IN ⊗ IT )−

(
IC ⊗ 1

N
1N1N

⊤ ⊗ 1

T
1T1T

⊤
))

(
(IC ⊗ IN ⊗ IT )−

(
1

C
1C1C

⊤ ⊗ IN ⊗ 1

T
1T1T

⊤
))

(
(IC ⊗ IN ⊗ IT )−

(
1

C
1C1C

⊤ ⊗ 1

N
1N1N

⊤ ⊗ IT

))
x

def
= PC PN PT x.

The order of mean subtraction is equivalent to the order of matrix multiplication of the

mean-centering matrices PC , PN , and PT . To show that that this mean subtraction is order

invariant, it is sufficient to show that PC , PN , and PT commute. From the mixed-product

property of the Kronecker product,AC⊗BD = (A⊗B)(C⊗D), this commutation can be

readily seen by noting that the multiplication of any pair of the matrices PC , PN , and PT

only involves the multiplication of the submatrices ( 1
T
1T1T

⊤, 1
N
1N1N

⊤, and 1
C
1C1C

⊤)

by themselves or by the (appropriately sized) identity matrix. Every matrix commutes

with itself and the identity; thus PC , PN , and PT commute, which completes the proof.

Proposition 1.2: Sequential mean subtraction produces the least norm marginal mean

tensor; that is, m̂ = vec(M̂) = argminm∈M ∥m∥22.

12



Proof: We already have from above that m̂ ∈ M. The least norm solution is the orthog-

onal projection of the origin onto the feasible set M, and thus it is sufficient to show that

the difference between m̂ and any other feasible point m ∈ M is orthogonal to m̂, in

which case:

∥m∥22 = ∥m− m̂+ m̂∥22

= ∥m− m̂∥22 + ∥m̂∥22 (by orthogonality)

≥ ∥m̂∥22 .

Using the fact m̂ = x− x̄ = (I − PCPNPT )x (see proof of Proposition 1.1), we have:

m̂⊤(m̂−m) = m̂⊤m̂− m̂⊤m

= x⊤(I − PCPNPT )(I − PCPNPT )x− x⊤(I − PCPNPT )m

= x⊤(I − PCPNPT )x− x⊤(I − PCPNPT )m

= x⊤(I − PCPNPT )(x−m)

= x⊤(I − PCPNPT )x̄

= x⊤(x̄− x̄)

= 0.

The third equality is because (I − PCPNPT ) is idempotent. Further note that x̄ = x−m

has zero marginal means because both x and m satisfy the mean constraint (x,m ∈ M),

and the operation of PCPNPT is equivalent to sequentially subtracting the marginal means

of a tensor (see proof of proposition 1.1). As a result, PCPNPT x̄ = x̄ as the subtracted

marginal means are equal to zero in this case. Thus, m̂ ⊥ (m̂ − m) and consequently

∥m̂∥22 ≤ ∥m∥22 ∀m ∈ M, which completes the proof.
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Supplementary Note 2

This note proves a proposition regarding the constraint placed on the readout matrix K in

the CFR method, such that the application of K does not distort the marginal means. It

also discusses optimization practicalities.

Preliminaries: We have a surrogate dataset S̄0 ∈ IRT×N×C with zero marginal means

(see definitions and preliminaries in Supplementary Note 1), to which we apply the neural

readout matrix K ∈ IRN×N so that the resulting surrogate S̄ ∈ IRT×N×C , where S̄(t, :

, c) = K⊤S̄0(t, :, c) for condition c ∈ {1, . . . , C} and time t ∈ {1, . . . , T}, will have the

correct marginal covariances. Note that, for any K, the resulting surrogate S̄ will have

zero mean along the neural mode (µN = 0), if S̄0 has zero mean along the neural mode:

µN =
1

NC

T∑
t=1

C∑
c=1

S̄(t, :, c)

=
1

NC

T∑
t=1

C∑
c=1

K⊤S̄0(t, :, c)

= K⊤ 1

NC

(
T∑
t=1

C∑
c=1

S̄0(t, :, c)

)
= K⊤0N

= 0N .

However, the mean for the other tensor modes can be non-zero even when the mean of S̄0

is zero along these other modes.

Proposition 2.1: If the readout K has eigenvector 1N with a corresponding eigenvalue of

zero, the resulting surrogate S̄ will maintain the zero marginal means of S̄0.
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Proof: Write the tensor S̄ in a vector form as s̄ = (IC⊗K⊤⊗IT )s̄0, where s̄0 = vec(S̄0)

and s̄ = vec(S̄). Then:

µT = HT
⊤s̄

=
1

NC
(1C

⊤ ⊗ 1N
⊤ ⊗ IT )(IC ⊗K⊤ ⊗ IT )s̄0

=
1

NC
(1C

⊤IC ⊗ 1N
⊤K⊤ ⊗ IT IT )s̄0

=
1

NC
(1C

⊤ ⊗ (K1N)
⊤ ⊗ IT )s̄0

=
1

NC
(1C

⊤ ⊗ 01N
⊤ ⊗ IT )s̄0

= 0
1

NC
(1C

⊤ ⊗ 1N
⊤ ⊗ IT )s̄0

= 0T .

Exchanging HC for HT , the same result for µC is immediate, by the same steps, which

completes the proof.

Implementation Note: This eigenvector condition can be imposed on K by right multi-

plying
(
IN − 1

N
1N1N

⊤), a special case of the general fact that a zero eigenvalue can be

imposed via subtraction of a normalized rank-one outer product:

K

(
I − 1

∥v∥22
vv⊤

)
v = Kv − 1

∥v∥22
Kv

∥∥v2
2

∥∥ = 0.

This linear projection integrates easily into the optimization by using a projected gradient:

instead of optimizing f(K) with gradient steps η∇Kf (η: step size), we take projected
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gradient steps ηGKf = η∇Kf
(
I − 1

∥v∥22
vv⊤

)
to remain in the feasible set:

Ki+1 = (Ki − ηi∇Ki
f)

(
I − 1

∥v∥22
vv⊤

)

= Ki

(
I − 1

∥v∥22
vv⊤

)
− ηi∇Ki

f

(
I − 1

∥v∥22
vv⊤

)

= Ki − ηi∇Ki
f

(
I − 1

∥v∥22
vv⊤

)
= Ki − ηiGKi

f.

The advantage here is that we do not need to impose the constraint once we have this

form of the projected gradient: the projected gradient can be used directly with any un-

constrained optimization package, and it will yield solutions that satisfy the constraints if

K is initialized properly (i.e., K0 satisfy the constraint).
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Supplementary Note 3

This note provides the main proof of the form of the maximum entropy distribution used

in TME. To proceed in full generality with respect to the number of tensor modes, we

require additional notation:

⊕: Kronecker sum (i.e., A⊕B = A⊗ I + I ⊗B).

n: index over tensor modes (n ∈ {1, . . . , N}).

n̄: all tensor modes except the nth mode.

Dn: dimensionality of a tensor along the nth mode (number of elements).

Dn̄: the product of the dimensionalities of all tensor modes except the nth mode.

ZDn: matrix unfolding of Z ∈ IRD1×...×DN along the nth mode, namely XDn ∈ IRDn×Dn̄ .

Σ(n): the marginal Dn × Dn covariance of X along the nth mode (note by necessity we

have switched notation from the preceding, where this matrix was denoted Σn; e.g., ΣT ).

Throughout we will assume without loss of generality that all modal means are 0 (with

mean treatment as discussed in the main text).

Theorem 3.1 Given tensor dataX ∈ IRD1×...×DN with marginal covariances Σ(1), . . . ,Σ(N)

that factorize as Σ(n) = Q(n)S(n)Q(n)⊤ (svd), the maximum entropy problem

maximize
p

−
∫
p(Z)log p(Z)dZ

subject to
∫
p(Z)dZ = 1

p(Z) ≥ 0

Ep

(
ZDn

Z⊤
Dn

)
= Σ(n) ∀n ∈ {1, ..., N}
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has solution p̂(Z), a tensor variate probability distribution, with density on z = vec(Z):

p̂(z) = N
(

0 ,
1

2

(
⊗N

n=1Q
(n)
) (

⊕N
n=1Λ

(n)
)−1 (⊗N

n=1Q
(n)
)⊤ )

,

where the Λ(n) = diag{λ(n)1 , . . . , λ
(n)
dn

} are a function of S(n) = diag{s(n)1 , . . . , s
(n)
dn

},

solving the system of equations:

s
(1)
d1

=
1

2

D2∑
d2=1

. . .

DN∑
dN=1

1

λ
(1)
d1

+ λ
(2)
d2

+ . . .+ λ
(N)
dN

, ∀d1 ∈ {1, . . . , D1}

...

s
(N)
dN

=
1

2

D1∑
d1=1

. . .

DN−1∑
dN−1=1

1

λ
(1)
d1

+ λ
(2)
d2

+ . . .+ λ
(N)
dN

, ∀dN ∈ {1, . . . , DN}.

Proof: Optimization of the Lagrangian in the standard fashion, with Lagrange multiplier

matrices L(n), yields the expected exponential family form:

p̂(z) ∝ exp

{
−

N∑
n=1

tr
(
L(n)⊤ZDn

Z⊤
Dn

)}
.

Rearranging the exponent and factorizing L(n) = U (n)Λ(n)U (n)⊤ (which must be symmet-

ric to produce a positive definite quadratic form, required for p̂ to integrate to 1) produces:

N∑
n=1

tr
(
L(n)⊤ZDn

Z⊤
Dn

)
= tr

(
Z⊤

D1
L(1)ZD1

)
+ . . .+ tr

(
Z⊤

DN
L(N)ZDN

)
= z⊤(IDN

⊗ . . .⊗ L(1))z+ . . .+ z⊤(L(N) ⊗ . . .⊗ ID1)z

= z⊤
(
L(N) ⊕ . . .⊕ L(1)

)
z

= z⊤
(
U (N)Λ(N)U (N)⊤ ⊕ . . .⊕ U (1)Λ(1)U (1)⊤) z

= z⊤
(
⊗N

n=1U
(n)
) (

⊕N
n=1Λ

(n)
) (

⊗N
n=1U

(n)
)⊤

z,
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where the last line is technically involved; we prove it in Proposition 4.1. This quadratic

form makes apparent the anticipated Gaussian p̂(z) = N (0,Ψ), with covariance:

Ψ =
1

2

(
⊗N

n=1U
(n)
) (

⊕N
n=1Λ

(n)
)−1 (⊗N

n=1U
(n)
)⊤
, (1)

proving the form of the distribution as stated in the theorem. What remains then is to

choose the U (n) and Λ(n) such that this distribution has marginal covariances Σ(n) =

Q(n)S(n)Q(n)⊤. Without loss of generality (since we can always consider a different tensor

mode and vectorize the tensor starting with that mode), we consider the first marginal

covariance Ψ(1) of this distribution, which is the sum of the D1 × D1 main-diagonal

blocks of Ψ (a technical detail proven in Proposition 4.2). To consider the form of these

blocks, we write

Ψ =
1

2
(U (1̄) ⊗ U (1))


Λ1

Λ2

. . .
ΛD1̄


−1

(U (1̄) ⊗ U (1))⊤,

where Λi ∈ IRD1×D1 is the ith diagonal block of the inverse of the (diagonal) eigenvalue

matrix
(
⊕N

n=1Λ
(n)
)

(note the critical notational distinction between Λi, the blocks of this

Kronecker sum matrix, and Λ(n), the constituents of the Kronecker sum that arise from

the Lagrange multipliers). Proposition 4.3 shows the form of the ith main-diagonal block

of Ψ to be
∑D1̄

d=1

(
U

(1̄)
i,d

)2
U (1)Λ−1

d U (1)⊤, and thus Ψ(1), the sum of these blocks, is:

Ψ(1) =
1

2

D1̄∑
i=1

D1̄∑
d=1

(
U

(1̄)
i,d

)2
U (1)Λ−1

d U (1)⊤

= U (1)

(
1

2

D1̄∑
d=1

Λ−1
d

D1̄∑
i=1

(
U

(1̄)
i,d

)2)
U (1)⊤

= U (1)

(
1

2

D1̄∑
d=1

Λ−1
d

)
U (1)⊤,
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where the last line results because U (1̄) is an orthogonal matrix. This is a key result, in so

much as we aimed to set Ψ(n) to Σ(n) = Q(n)S(n)Q(n)⊤ (the constraint); it is now proven

that the Lagrange multiplier eigenvectors U (n) are each equal to Q(n), the given eigenvec-

tors of the marginal covariance constraints, which is then substituted into Equation 1 to

give the eigenvector form in the theorem statement, completing that piece of the proof.

Further, we also see that the Lagrange multiplier eigenvalues Λ(n) are the solutions to

S(n) = 1
2

∑Dn̄

d=1 Λ
−1
d , where S(n) are the given eigenvalues of the marginal covariance

constraints. Explicitly, the expression for the dnth element of the nth constraint eigenvalue

(a form which is detailed in Proposition 4.4) is, for all dn ∈ {1, ..., Dn}:

s
(n)
dn

=
1

2

D1∑
d1=1

. . .

Dn−1∑
dn−1=1

Dn+1∑
dn+1=1

. . .

DN∑
dN=1

1

λ
(1)
d1

+ . . .+ λ
(n−1)
dn−1

+ λ
(n)
dn

+ λ
(n+1)
dn+1

+ . . . λ
(N)
dN

,

which is the eigenvalue form in the theorem statement, thus completing the proof.

Optimization Note: The above system of equations has no closed form solution, but there

is a bijection between the set of s(n)dn
eigenvalues (given) and the set of λ(n)dn

eigenvalues

(unknown). Accordingly we numerically optimize the squared error objective over these

D1 + ...+DN variables:

min
λ
(1)
1 ...λ

(N)
DN

D1∑
d1=1

(
s
(1)
d1

− 1

2

D2∑
d2=1

. . .

DN∑
dN=1

1

λ
(1)
d1

+ λ
(2)
d2

+ . . .+ λ
(N)
dN

)2

+

. . .+

DN∑
dN=1

s(N)
dN

− 1

2

D1∑
d1=1

. . .

DN−1∑
dN−1=1

1

λ
(1)
d1

+ λ
(2)
d2

+ . . .+ λ
(N)
dN

2

.

This objective is fast to compute and can be readily differentiated. When the S(n) matrices

are well conditioned, optimizing this objective converges quickly to the global optimum
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(namely 0, up to machine precision). When the given S(n) are poorly conditioned (i.e.,

close to low rank), we found that optimization can be sped up significantly by instead

defining the objective as the squared loss of the log eigenvalues, namely:

min
ν
(1)
1 ,...,ν

(N)
DN

D1∑
d1=1

(
log s(1)d1

− log
D2∑

d2=1

. . .

DN∑
dN=1

0.5

eν
(1)
d1 + eν

(2)
d2 + . . .+ e

ν
(N)
dN

)2

+

. . .+

DN∑
dN=1

log s(N)
dN

− log
D1∑

d1=1

. . .

DN−1∑
dN−1=1

0.5

eν
(1)
d1 + eν

(2)
d2 + . . .+ e

ν
(N)
dN

2

,

which optimizes quickly to machine precision in all situations we have tested.
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Supplementary Note 4

This note provides supporting technical proofs that are necessary for the main proof that

precedes (Supplementary Note 3).

Proposition 4.1: L(N) ⊕ . . . ⊕ L(1) = (U (N) ⊗ . . . ⊗ U (1))(Λ(N) ⊕ . . . ⊕ Λ(1))(V (N) ⊗

. . .⊗ V (1))⊤ where L(n) = U (n)Λ(n)V (n)⊤ (svd) for n ∈ {1, . . . , N}.

Proof: We will leverage the following known linear algebraic properties:

• property 1: exp(A⊕B) = exp(A)⊗ exp(B)

• property 2: exp (Z) = UZ exp (SZ)V
⊤
Z where Z = UZSZV

⊤
Z

• property 3: AC ⊗BD = (A⊗B)(C ⊗D)

Then consider the matrix exponential:

exp(L(N) ⊕ . . .⊕ L(1))

= exp(L(N))⊗ . . .⊗ exp(L(1)) (property 1)

= U (N) exp(Λ(N))V (N)⊤ ⊗ . . .⊗ U (1) exp(Λ(1))V (1)⊤ (property 2)

= (U (N) ⊗ . . .⊗ U (1))
(
exp(Λ(N))⊗ . . .⊗ exp(Λ(1))

)
(V (N) ⊗ . . .⊗ V (1))⊤ (property 3)

= (U (N) ⊗ . . .⊗ U (1)) exp(Λ(N) ⊕ . . .⊕ Λ(1))(V (N) ⊗ . . .⊗ V (1))⊤. (property 1)

From property 2, the left singular vectors, right singular vectors, and singular values

of (L(N) ⊕ . . . ⊕ L(1)) are equal to (U (N) ⊗ . . . ⊗ U (1)), (V (N) ⊗ . . . ⊗ V (1)), and

(Λ(N) ⊕ . . .⊕ Λ(1)), respectively, which completes the proof.
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Proposition 4.2: Let Z ∈ IRD1×...×DN and Ψ = E
(
zz⊤

)
∈ IRD1...DN×D1...DN for

z = vec(Z). Then Ψ(1) = E
(
ZD1

Z⊤
D1

)
∈ IRD1×D1 is the sum of the D1 × D1 diag-

onal blocks of Ψ.

Proof: Denote the dth column of ZD1 by vd ∈ IRD1 for d ∈ {1, . . . , D1̄} , then z =

[v1
⊤, . . . ,vD1̄

⊤]⊤. We then write:

Ψ(1) = E
(
ZD1

Z⊤
D1

)
= E

[v1 . . . vD1̄

]  v⊤
1
...

v⊤
D1̄




=

D1̄∑
d=1

E
(
vdv

⊤
d

)
,

the summands of which each correspond to a D1 × D1 diagonal block of Ψ, which thus

completes the proof.

Proposition 4.3: Given a matrix Ψ with singular value decomposition

Ψ = (UB ⊗ UA)


Φ1

Φ2

. . .
ΦDB

 (UB ⊗ UA)⊤,

where the Φi are the DB main-diagonal blocks of size DA × DA, the ith diagonal block

of Ψ has the form UA
(∑DB

d=1

(
UB
i,d

)2
Φd

)
UA⊤.
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Proof: Considering first the left multiplication of
(
UB ⊗ UA

)
,

(
UB ⊗ UA

)

Φ1

Φ2

. . .
ΦDB

 =

 UB
1,1U

A . . . UB
1,DB

UA

...
. . .

...
UB
DB ,1U

A . . . UB
DB ,DB

UA



Φ1

Φ2

. . .
ΦDB


=

 UB
1,1U

AΦ1 . . . UB
1,DB

UAΦDB

...
. . .

...
UB
DB ,1U

AΦ1 . . . UB
DB ,DB

UAΦDB

 .

By repeating the steps for the right multiplication of
(
UB ⊗ UA

)⊤, the ith block along

the main diagonal is seen to be
∑DB

d=1(U
B
i,d)

2UAΦdU
A⊤, which completes the proof.

Proposition 4.4: Let Ψ(1) = 1
2

∑D1̄
d=1 Λ

−1
d ∈ IRD1×D1 , where Λd is the dth main-diagonal

block of Λ = Λ(N) ⊕ . . . ⊕ Λ(1), and Λ(n) is a diagonal matrix with Dn elements. Then

ψ
(1)
d1

, the d1th diagonal element of Ψ(1), is equal to 1
2

∑DN

dN=1 . . .
∑D2

d2=1
1

λ
(1)
d1

+λ
(2)
d2

+...+λ
(N)
dN

.

Proof: Note that the Kronecker sum of diagonal matrices Λ(N), . . . ,Λ(1) (i.e., Λ) can be

seen as a counting system where the most to least significant digit goes from elements of

Λ(N) to the elements of Λ(1), and those elements are then added to form the entry in the

matrix. Λ−1 then simply inverts each entry. For example, if N = 2, then:

(Λ(2) ⊕ Λ(1))−1 =




1

λ
(1)
1 +λ

(2)
1

. . .
1

λ
(1)
D1

+λ
(2)
1


. . . 

1

λ
(1)
1 +λ

(2)
D2

. . .
1

λ
(1)
D1

+λ
(2)
D2




.
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We can see from the above example that the entry in the dith position of each of the

D1 ×D1 main-diagonal blocks share the λ(1)di
element in the entry’s denominator, and the

other elements of that denominator change systematically (in the counting fashion) as we

move down along the main-diagonal blocks. Accordingly,

ψ
(1)
d1

=
1

2

D1̄∑
d=1

Λ−1
d =

1

2

DN∑
dN=1

. . .

D2∑
d2=1

1

λ
(1)
d1

+ λ
(2)
d2

+ . . .+ λ
(N)
dN

,

which completes the proof. In full generality for the dnth eigenvalue of Ψ(n), for all

dn ∈ {1, ..., Dn}, the same steps show that

ψ
(n)
dn

=
1

2

D1∑
d1=1

. . .

Dn−1∑
dn−1=1

Dn+1∑
dn+1=1

. . .

DN∑
dN=1

1

λ
(1)
d1

+ . . .+ λ
(n−1)
dn−1

+ λ
(n)
dn

+ λ
(n+1)
dn+1

+ . . . λ
(N)
dN

.
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