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DETAILS OF MOLECULAR SIMULATIONS

In order to obtain initial conditions of serial simula-
tions of n=1,2 peptides, we ran 50 ns/replica parallel
tempering in well-tempered ensemble (PTWTE) [1, 2]
simulations for both n=1 and n=2 peptide, using 1.2
kJ/mol and 500 kJ/mol as the Gaussian height and
width, respectively. Eight replicas were used in a tem-
perature range from 300 K to 503 K, using a bias factor
of 8. We keep the 300 K replica neutral, i.e. no energy
bias is applied, while allowing it to exchange with the ad-
jacent replica (a similar application as in [3]). The last
24 frames of the 300 K replica were picked, which were
saved in every 2 ns, to serve as the initial conditions of
serial runs.

ff03* ff03w ff03ws
Peptide runs time/µs runs time/µs runs time/µs
AGQ1 24 2.4 24 2.4 24 2.4
AGQ2 24 4.8 24 4.8 24 4.8
AGQ3 8 7.9 8 7.6 8 7.6
AGQ4 8 7.8 8 7.5 8 7.4
AGQ5 8 7.7 8 7.5 8 7.5
AGQ6 5 4.4 5 4.2 10 9.6

TABLE I. Number of runs and total length of runs for each
force field and peptide

Initial conditions for peptides with n = 3 − 6 were
obtained by running a 200 ps constant pressure simu-
lation at 293 K to equilibrate the box size, followed by
a 20 ns constant volume simulation at 500 K. The last
frame of the 500 K run was used to initiate long runs
at constant pressure for computing the quenching rates.
Simulations were run in one of three force field combina-
tions: (i) Amber ff03*[4] with TIP3P water[5], (ii) Am-
ber ff03w[6] with TIP4P/2005 water [7], and (iii) Amber
ff0ws[8], also with TIP4P/2005 water. Molecular dynam-
ics simulations were run at constant pressure of 1 bar
using a Parinello-Rahman barostat with a coupling time
of 5 ps and a compressibility of 4.5 × 10−5 bar−1, and
constant temperature of 293 K using a velocity-rescaling
thermostat [9] with coupling time of 1 ps. This thermo-
stat was chosen because it should have a minimal effect
on the dynamics (compared to e.g. Langevin dynamics

at high friction). Lennard-Jones interactions were evalu-
ated every step for atoms separated by up to 0.9 nm and
every 10 steps for atoms separated by between 0.9 and 1.4
nm. Mean-field corrections to energy and pressure were
included for Lennard-Jones interactions beyond 1.4 nm.
Long-range electrostatics were included via the particle-
mesh Ewald scheme [10] with a grid spacing of ∼ 0.12
nm and a real-space cut-off of 0.9 nm. A summary of the
number of runs and cumulative simulation time for each
peptide and force field are listed in Table I.

DISTRIBUTION OF CONTACT
CONFIGURATIONS

To characterize the modes of association of Trp and
Cys, we determine the distribution of the position of the
Cys sulfur (SG) in a frame of reference defined by the
Trp. This frame has the origin at the Trp CG carbon
and the x-axis running through the CZ3 carbon. The
z-axis is parallel to the vector x × t, where t is the vec-
tor from the Trp CG to NE1, and y = z × x (Fig. 1
A). The corresponding distributions of spherical polar co-
ordinates suggest there is no strongly preferred contact
orientation (Fig. 1 B), and that Trp and Cys interact in
similar orientations in all peptides.

FITTING OF DIFFUSION MODELS USING
BAYESIAN METHOD

Fitting of the 1D diffusion model followed a similar
method to previous work [11–13]. The all-atom simula-
tion trajectories were projected onto the Trp-Cys dis-
tance rcw, which was then discretized into regularly
spaced bins spanning the populated range of that coor-
dinate. The number of bins used was 30 for n = 1 − 3
and 60 for n = 4 − 6. The increased number of bins
is required in order to described accurately the shorter
distances where contact formation occurs for the longer
peptides. Count matrices of the number of observations
Nij from bin j to bin i after a given lag time ∆t were con-
structed. Best-fit diffusion coefficients and free energies
were fitted to these data using the previously described
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FIG. 1. Distribution of Trp-Cys contact configurations. (A)
The position of the Cys SG is defined in a frame of refer-
ence relative to the Trp. (B) Distributions of spherical polar
coordinates for SG in this axis frame.

Bayesian procedure. A lag time of ∆t = 0.1 ns was used
for n = 1 − 2 and a lag time ∆t = 0.5 ns for n = 3 − 6,
in order that the resulting dynamics was approximately
Markovian. In Figure 2 we show the convergence of the
slowest relaxation time of the model with lag time. A
smoothing prior on the similarity of diffusion coefficients
Di, Di+1 for adjacent bins i, i+ 1 of the form

P (Di, Di+1) = exp
[
− (Di −Di+1)2

2γ2(min(Di, Di+1))2

]
(1)

was used. A stiffness coefficient of γ = 0.1 was chosen.
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FIG. 2. Convergence of relaxation times with lag time ∆t for
the diffusion model.

CALCULATION OF RATES FROM DIFFUSION
MODEL USING SSS THEORY

Given the one-dimensional D(rcw) and equilib-
rium distribution peq(rcw), the Szabo-Schulten-Schulten
theory[14] allows the rate of diffusion-limited contact for-
mation kD+ to be calculated as [15] (for instantaneous
quenching at rc):

k−1D+ =

∫ rmax

rc

[ ∫ rmax

r
peq(s)ds

]2
D(r)peq(r)

dr (2)

For a distance-dependent reaction rate q(rcw), the
diffusion-limited rate can be estimated via:

k−1D+ = k−2R

∫ rmax

0

[ ∫ rmax

r
(q(s)− kR)peq(s)ds

]2
D(r)peq(r))

dr (3)

where kR is the reaction-limited rate:

kR =

∫ rmax

0

peq(r)q(r)dr (4)

The above integrals were evaluated over the discretized
bins of the diffusion model, counting for the first bin only
the range between rc and the outer edge of the bin.

Lastly, we note that experimental data are usually
fit, for simplicity, to a model with a constant, position-
independent, diffusion coefficient Dconst, i.e. D(r) ≡
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FIG. 3. Position-dependent diffusion coefficients from
Bayesian fit. Vertical broken lines give the approximate max-
imum extension for each length nb, given by 0.35 nb nm.

Dconst. In order to facilitate comparison with experi-
ment, we can determine the effective Dconst that would
result in the same diffusion-limited quenching rate as we
obtain with our distance-dependent D(r), by defining
Dconst via:

1

Dconst

∫ rmax

0

[ ∫ rmax

r
(q(s)− kR)peq(s)ds

]2
peq(r))

dr (5)

=

∫ rmax

0

[ ∫ rmax

r
(q(s)− kR)peq(s)ds

]2
D(r)peq(r))

dr

Essentially, we apply the experimental analysis to our
simulated data: we treat our rates calculated from the
full distance-dependent diffusion model as experimental
data, and use our simulated peq(r) as the Trp-Cys distri-
bution, allowing an effective constant diffusion coefficient
to be obtained.

FITTING OF DISTANCE-DEPENDENT
QUENCHING RATES TO EXPERIMENTAL

DATA

Our initial model for the distance-dependent quench-
ing rate was a step function with parameters taken from
the literature [16]. Since this is a fairly strong assump-
tion about the distance dependence, we also tried a more
realistic alternative. Assuming that the quenching mech-
anism can be described as electron transfer, we modelled
the distance-dependent rate q(rcw) with an exponential
function:

q(rcw) = k0 exp[β(rcw − rc)] (6)

We chose a contact distance of rc = 0.4 nm as before;
the choice is quite arbitrary as an equivalent expression
could be obtained with a different choice, by appropri-
ately scaling k0. We used the data reported by Lapidus et
al. [17] to determine the optimal parameters. The main
difference from their work is that we use a pair distance
distribution function determined from molecular simula-
tion rather than a uniform distribution. We ran a 1 µs of
a single N-acetyl tryptophanamide (NATA) and zwitte-
rionic cysteine in water. We did not attempt to include
trehalose due to the requirement to have a suitable force
field for it, as well as the difficulty of sampling such a
system; we instead assume that the distribution in water
is sufficiently similar. The probability density is shown
in Fig. 4. Note that we have not attempted to normalize
by the available volume at each distance as for a regular
pair distribution function, because that operation is not
easily defined for the minimum Trp-Cys distance we use
as a coordinate. Instead, we use observed density of dis-
tances p(rcw) directly; the drop-off at larger rcw due to
the finite system size is unimportant since the quenching
is so short ranged.

We fit the absorbance decays from Lapidus et al. [17]
to the function

A(t) = A0L(t) exp
[
− Q

Q0

∫ rmax

0

peq(r)[1− S(t|r)]dr
]
(7)

where L(t) is the experimentally determined triplet life-
time in the absence of Cys, A0 is a scaling coefficient
for fitting, Q and Q0 are the concentration in the exper-
iment and the NATA-Cys simulation respectively, and
S(t|r) = exp[−q(r)t].

We systematically varied the two free parameters β
and k0 on a grid, obtaining an overall χ2 surface shown in
Fig. 5. While there is clearly a lot of correlation between
the parameters, we picked the values at the center of
the optimal region as optimal values. Using these values
(k0 = 1.0× 108 s−1, β = 33.333 nm−1), we indeed find a
very good fit to the experimental data, as shown directly
in Fig. 6. There is some discrepancy at long times for the
lower concentration, which has been explained in terms
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FIG. 4. Distribution function p(rcw) for the minimum dis-
tance between N-acetyltryptophanamide (NATA) and zwitte-
rionic cysteine from simulation in explicit water (black) and
distance-dependence of fitted quenching rate (blue).

of very slow diffusion within the glass [17], however this
effect is less important at the higher concentration.
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FIG. 5. χ2 surface for fit to Trp-Cys quenching data in a
room temperature trehalose glass. Red cross indicates chosen
“optimal” parameters.
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FIG. 6. Fit to raw data for Trp-Cys quenching from Lapidus
et al.[17]. Green curve shows the survival L(t) of the Tryp-
tophan triplet in the absence of Cysteine, black curve is the
experimental data in the presence of Cysteine concentration
shown, red curve is the fit with the optimal parameters for
the distance dependence of the quenching rate.
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