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1 SUPPLEMENTARY RESULTS

1.1 Summary of presentation of results

To ease reading and the understanding of this study, a summary of how results
are presented in the main text is provided in Supplementary Fig. S1.

1.2 Choice of complexity of radiomic models

From the defined training set of this work (H&N1 and H&N2; n = 194) and
similarly to the methodology developed in the study of Vallières et al.1, all initial
radiomic feature sets (PET, CT and PETCT ) first underwent: I) feature set
reduction; and II) feature selection of models combining 1 to 10 variables via
logistic regression. Prediction performance was then estimated in the training
set in terms of the AUC632+ metric using the 0.632+ bootstrap resampling
technique2,3, for all the 10 different logistic regression models computed on each
of the initial feature sets (Supplementary Fig. S2).

One radiomic model was then chosen for each outcome and feature set, by
identifying the lowest number of variables in each model before the prediction
performance started reaching a plateau or decreasing (i.e., best parsimonious
models). These choices of radiomic model complexity are shown as circles in
Supplementary Fig. S2. The logistic regression coefficients forming the final
prediction models for these 9 different choices of radiomic models (3 feature sets
× 3 outcomes) were ultimately fitted using the whole training set.

1.3 Univariate analysis

Supplementary Table S1 shows the Spearman’s rank correlation coefficients (rs)
between the best PET/CT radiomics variables and the binary outcome vectors
for all patients of the four cohorts (H&N1, H&N2, H&N3 and H&N4; n = 300).
Supplementary Table S2 shows the Spearman’s rank correlation coefficients (rs)
between the clinical variables and the binary outcome vectors for all patients of
the four cohorts.
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Supplementary Figure S1. Summary of presentation of results. The boxes
identified by asterisks represent study checkpoints where only a subset of variables are retained
for the remainder of the study. (a) Univariate analysis results are computed using the four
patient cohorts (H&N1, H&N2, H&N3 and H&N4; n = 300) and are presented in the Results
section of the main text. (b) Clinical staging and radiomic feature selection processes are
performed using the patient cohorts forming the training set (H&N1 and H&N2; n = 194).
The clinical staging variables selected for the construction of prediction models are shown in
box (1) for each tumour outcome. Radiomic prediction models were selected and built for
three initial feature sets: I) PET radiomic features (PET ); II) CT radiomic features (CT );
and III) PET and CT radiomic features (PETCT ). Box (2) shows the radiomic models orders
(number of combined variables) chosen in Supplementary Fig. S2 for each feature set and
outcome. (c) Performance of prediction models, comparison with other prognostic factors
and risk assessment processes are carried out using the patient cohorts forming the testing set
(H&N3 and H&N4; n = 106). Prediction performance of all models selected and constructed
in the training stage is displayed in Fig. 3 of the main text, and the radiomic feature sets
with best prediction performance when combined with clinical variables are shown in box
(3) for each outcome. These radiomic + clinical models are further compared against other
prognostic factors (e.g. tumour volume, clinical variables alone, etc.) in Table 1. The final
three models with best overall prediction/prognostic performance for each outcome are shown
in box (4), and only these three models are used to perform outcome risk assessment in Fig.
4 of the main text.
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Supplementary Figure S2. Choice of complexity of radiomic models. Choice
of the lowest model order (number of combined variables) providing the combination of ra-
diomic variables with the best predictive properties (shown as circles) for each tumour outcome
and each of the three initial radiomic feature sets: I) PET radiomic features (PET ); II) CT
radiomic features (CT ); and III) PET and CT radiomic features (PETCT ). Prediction perfor-
mance is estimated in the training set (H&N1 and H&N2; n = 194) in terms of the AUC632+

metric using bootstrap resampling. Error bars represent the standard error of the mean over
100 bootstrap samples.

Supplementary Table S1. Univariate analysis of radiomics variables.

Metric Locoregional Distant Survival

Best PET (a) rs = −0.14, p = 0.02 (c) rs = 0.28, p = 5.8e− 07* (e) rs = 0.20, p = 3.6e− 04*
Best CT (b) rs = −0.15, p = 7.3e− 03 (d) rs = −0.29, p = 2.4e− 07* (f) rs = 0.24, p = 3.7e− 05*

* Significant associations after multiple testing corrections with a FDR of 10 %.

(a) PET-GLNGLSZM : Scale = 2 mm, Quant. algo = Uniform, Ng = 16.

(b) CT-LZHGEGLSZM : Scale = 5 mm, Quant. algo = Equal, Ng = 64.

(c) PET-BusynessNGTDM : Scale = 3 mm, Quant. algo = Uniform, Ng = 64.

(d) CT-ZSNGLSZM : Scale = 1 mm, Quant. algo = Uniform, Ng = 16.

(e) PET-CoarsenessNGTDM : Scale = 5 mm, Quant. algo = Uniform, Ng = 16.

(f) CT-GLVGLRLM : Scale = 1 mm, Quant. algo = Uniform, Ng = 16.

Supplementary Table S2. Univariate analysis of clinical variables.

Metric Locoregional Distant Survival

Age rs = 0.15, p = 7.5e− 03* rs = −0.03, p = 0.59 rs = −0.14, p = 0.01*
T-Stage rs = 0.11, p = 0.07* rs = 0.10, p = 0.09 rs = −0.21, p = 3.0e− 04*
N-Stage rs = −0.10, p = 0.08* rs = 0.18, p = 1.4e− 03* rs = −0.07, p = 0.20
TNM-Stage rs = −0.09, p = 0.13 rs = 0.09, p = 0.14 rs = −0.08, p = 0.15
HPV status rs = −0.39, p = 8.0e− 06* rs = −0.12, p = 0.19 rs = 0.23, p = 0.01*

* Significant associations after multiple testing corrections with a FDR of 10 %.
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1.4 Performance of prediction models

1.4.1 Complete results: AUC, sensitivity, specificity, accuracy

Figure S3a presents the prediction results obtained in the testing set (H&N3
and H&N4; n = 106) using the radiomics models, and Fig. S3b presents the
prediction results obtained in the testing set using the models formed from the
combination of radiomic and clinical variables (radiomics + clinical).
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Supplementary Figure S3. Prediction performance of selected models –
complete results. All prediction models were selected and built using the training set
(H&N1 and H&N2; n = 194) for three initial radiomic feature sets: I) PET radiomic features
(PET ); II) CT radiomic features (CT ); and III) PET and CT radiomic features (PETCT ).
The prediction performance is evaluated here for patients of the testing set (H&N3 and H&N4;
n = 106). (a) Prediction performance of radiomic models constructed using logistic regression.
(b) Prediction performance of radiomic models combined with clinical variables via random
forests. The models providing the best overall performance in terms of predictive power and
balance of classification of occurence of events and non-occurrence of events are identified with
stars.

For locoregional prediction, the model composed of three variables from the
PETCT radiomic feature set obtained the best overall performance in terms of
predictive power and balance of classification of occurrence of events and non-
occurrence of events, with an AUC of 0.64, a sensitivity of 0.56, a specificity of
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0.67 and an accuracy of 0.65. The addition of the clinical variables {Age, H &N
type, T-Stage, N-Stage} to this radiomic model via random forests reached an
AUC of 0.69, a sensitivity of 0.63, a specificity of 0.68 and an accuracy of 0.67.

For distant metastases prediction, the best overall performance was obtained
with the model composed of three variables from the CT radiomic feature set,
with an AUC of 0.86, a sensitivity of 0.79, a specificity of 0.77 and an accuracy
of 0.77. The addition of the clinical variables {Age, H &N type, N-Stage} to this
radiomic model reached and AUC of 0.86, a sensitivity of 0.86, a specificity of
0.76 and an accuracy of 0.77.

For overal survival prediction (death), the best overall performance was ob-
tained with the model composed of four variables from the PET radiomic feature
set, with an AUC of 0.62, a sensitivity of 0.58, a specificity of 0.66 and an ac-
curacy of 0.64. The addition of the clinical variables {Age, H &N type, T-Stage,
N-Stage} to this radiomic model reached and AUC of 0.74, a sensitivity of 0.79,
a specificity of 0.57 and an accuracy of 0.62.

1.4.2 Complete description of radiomic models

This section provides the complete description (specific features, texture ex-
traction parameters, logistic regression coefficients) of the three best radiomics
models of this work, one for each outcome. Significance of the variables in
the logistic regression models constructed from the training set (H&N1 and
H&N2; n = 194) was assessed using the Wald’s test implemented in the soft-
ware DREES4.

→ Locoregional recurrence

• PET-GLNGLSZM : Scale = 2 mm, Quant. algo = Uniform, Ng = 64

• CT-CorrelationGLCM : Scale = 1 mm, Quant. algo = Uniform, Ng = 16

• CT-LGZEGLSZM : Scale = 1 mm, Quant. algo = Equal, Ng = 8

• Significance of variables: p = 0.04, p = 0.004, p = 0.02

• Complete multivariable model response:

g(xi) = −350.1×PET-GLNGLSZM+7.42×CT-CorrelationGLCM+21.14×CT-LGZEGLSZM−0.635

→ Distant metastases

• CT-LRHGEGLRLM : Scale = 1 mm, Quant. algo = Equal, Ng = 8

• CT-ZSVGLSZM : Scale = 5 mm, Quant. algo = Equal, Ng = 8

• CT-ZSNGLSZM : Scale = 1 mm, Quant. algo = Uniform, Ng = 16

8



• Significance of variables: p = 0.03, p = 0.03, p = 0.03

• Complete multivariable model response:

g(xi) = 0.0233×CT-LRHGEGLRLM−226.7×CT-ZSVGLSZM−14.9×CT-ZSNGLSZM+1.21

→ Overall survival (death)

• PET-LGREGLRLM : Scale = 4 mm, Quant. algo = Equal, Ng = 64

• PET-SZEGLSZM : Scale = 3 mm, Quant. algo = Uniform, Ng = 16

• PET-HGZEGLSZM : Scale = 1 mm, Quant. algo = Uniform, Ng = 64

• PET-ZSNGLSZM : Scale = 1 mm, Quant. algo = Equal, Ng = 8

• Significance of variables: p = 0.2, p = 0.009, p = 0.04, p = 0.2

• Complete multivariable model response:

g(xi) = −136.8×PET-LGREGLRLM+11.49×PET-SZEGLSZM−0.0035×PET-HGZEGLSZM−25.91×PET-ZSNGLSZM+3.921
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1.5 Random forests: radiomic variables only

Supplementary Table S3. Performance of random forest classifiers constructed us-
ing radiomic variables only.

Outcome Selected featuresa
Prediction Prognosis

AUCb Sensitivityb Specificityb Accuracyb CIc p-valued

Locoregional
PET-GLNGLSZM

0.61 0.56 0.68 0.66 0.60 0.16CT-CorrelationGLCM

CT-LGZEGLSZM

Distant
CT-LRHGEGLRLM

0.86 0.79 0.77 0.77 0.88 0.000007CT-ZSVGLSZM

CT-ZSNGLSZM

Survival

PET-LGREGLRLM

0.60 0.71 0.45 0.51 0.58 0.28
PET-SZEGLSZM

PET-HGZEGLSZM

PET-ZSNGLSZM

a See Supplementary Results section 1.4.2 for the list of extraction parameters of texture
features.

b Binary prediction of outcome using random forest probability output.

c Concordance-index between random forest probability output and time to event.

d Log-rank test from Kaplan-Meier curves with a risk stratification into two groups
(probability threshold of 0.5).
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1.6 Final random forest models ans variable importance

In Supplementary Table S4, the features of the three final random forest models
developed in this work are listed by order of importance in the models. To
assess the importance of each feature in each model, an approach combining
random permutations and bootstrap resampling was used. First, 100 bootstrap
samples were drawn from the testing set (H&N3 and H&N4 cohorts; n = 106).
For each bootstrap sample, the feature values of all patients of the testing set
were permuted once (same permutation for all features). The average percent
AUC change over all permutations was then calculated by comparing random
permutation AUCs of each variable separately to the true bootstrap AUCs.
Significance of each variable in the model (p-value) was calculated by comparing
the distribution of true bootstrap AUCs to the distribution of permuted AUCs
via the Wilcoxon right-sided test. The more the AUC decreases as a result of
random permutations, the more important the variable is to the model.

Supplementary Table S4. Best predictive/prognostic and balanced random forest
models found in this work.

Outcome Selected featuresa AUC changeb p-valuec

Locoregional

Age −22.8% � 0.001
CT-LGZEGLSZM −16.3% � 0.001
PET-GLNGLSZM −16.1% � 0.001
CT-CorrelationGLCM −14.6% � 0.001
H&N type −14.2% � 0.001
N-Stage −13.4% � 0.001
T-Stage −12.3% � 0.001

Distant

CT-ZSNGLSZM −15.9% � 0.001
CT-ZSVGLSZM −7.7% � 0.001
CT-LRHGEGLRLM −3.1% 0.00002
H&N type +0.2% 0.40
N-Stage +2.7% 1
Age +3.5% 1

Survival

H&N type −13.8% � 0.001
T-Stage −9.9% � 0.001
Age −9.6% � 0.001
N-Stage −1.2% 0.30

a See Supplementary Results section 1.4.2 for the list of extraction parameters of texture
features.

b Average of (AUCperm - AUCtrue)/AUCtrue over all permutations. The more negative, the
more important the variable is in the model.

c Significance in the model via the Wilcoxon right-sided test.
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2 SUPPLEMENTARY METHODS

2.1 Imbalance-adjustment strategy

In Supplementary Fig. S4, the imbalance-adjustment strategy used in this work
is detailed. In our work, this strategy is combined to uniform bootstrap resam-
pling: every time a boostrap sample is created for prediction estimation using
logistic regression or for random forest construction, an ensemble of multiple
balanced classifiers is used (in contrast to using only one unbalanced classifier).

In Supplementary Fig. S4, please note that “[x]” refers to a rounding opera-
tion, “dxe” refers to a ceiling operation, and “bxc” refers to a floor operation.
For example, for N− = 56 and N+ = 11, 5 partitions would be created. All par-
titions would contain the initial 11 positive instances. The 56 negative instances
would be distributed between the 5 partitions such that the first 4 partitions
would contain 11 negative instances and the last one 12 negative instances.

N−

N+

DATASET

Unbalanced 

Data

PARTITIONS

N+ N+

n1− n2−

N+

n3−

N+

nP−

…

Over-represented data is randomly sampled without replacement

Under-represented data is copied

• Number of negative instances: N−, Number of positive instances: N+

• Number of partitions:  

• Number of negative instances in each partition:

� =  N−

N+

��− = 

N−

�       �� � ≤ N−

� − N−

�  × �     

       N−�       �� � > � − N−

� − N−

� × �
 ,  N− = 
 ��−

�

���

Supplementary Figure S4. Imbalance-adjustment strategy. Adapted from Schiller
et al.5
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2.2 Construction of radiomic models

2.2.1 General workflow

Supplementary Fig. S5 presents the general wokflow used to construct radiomic
models. For more details, please see the next two sections and the work of
Vallières et al.1

FEATURE 

SET

REDUCTION

FEATURE

SELECTION

PREDICTION

PERFORMANCE

ESTIMATION

FINAL MODEL 

COMPUTATION

(LR coefficients)

MULTIVARIABLE MODELING

(imbalance-adjusted) LOGISTIC REGRESSION

TESTING DATA SIMULATION

BOOTSTRAPPING

MODEL

CHOICE

- 5 SHAPE

- 10 INTENSITY

- 40 TEXTURES 

× 40 PARAMS

Supplementary Figure S5. Workflow of construction of radiomic models.

2.2.2 Feature set reduction

Feature set reduction is performed for each of the initial feature sets via a step-
wise forward feature selection scheme to create reduced feature sets containing
25 different scan-texture features (or non-texture features) balanced between
predictive power and non-redundancy. This procedure is carried out using the
following Gain equation:
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Ĝainj = γ · |r̂s(xj ,y)|

+ δa ·

[
f∑
k=1

(
2(f − k + 1)

f(f + 1)

)
P̂IC(xk,xj)

]

+ δb ·

[
1

F

F∑
l=1

P̂IC(xl,xj)

]
, (1)

where r̂s(xj ,y) =
1

B

B∑
b=1

rs(x
∗b
j ,y),

and P̂IC(xk,xj) =
1

B

B∑
b=1

PIC(x∗bk ,x
∗b
j ).

In equation (1), rs(xj ,y) is the Spearman’s rank correlation computed between
a given feature vector xj and an outcome vector y. PIC(xk,xj) is the poten-
tial information coefficient defined as PIC(xk,xj) = 1 − MIC(xk,xj), where
MIC(xk,xj) is the maximal information coefficient6 between feature k and j.
The sum over k is a sum over all f features that have already been chosen to be
part of the reduced feature set (employed in forward selection schemes), whereas
the sum over l is a sum over all F features that have not yet been removed from
a larger initial set (employed in backward selection schemes). The sum over the
k features is always done in order of appearance of the different features in the
reduced set in order to favour the features from the larger initial set with the
least dependence with the features chosen first in the reduced set. In this work,
γ was set to 0.5, δa to 0.5 and δb to 0. Every time a new feature was chosen
in the reduced set from a larger initial set, a new Gain was calculated for all
remaining features in the larger initial set using a different set of 100 bootstrap
samples (∗b, with b = 1, . . . , B). Note that equation (1) allows to rank specific
scan-texture-parameter features, as part 1 of the Gain equation uses Spearmans
rank correlations varying over the whole set of texture extraction parameters.
However, to speed up calculations, average scan-texture features over all tex-
ture extraction parameters were used in part 2 (and 3 if needed) of the Gain
equation.
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2.2.3 Feature selection

The feature selection step is first divided into 25 experiments. In each of these
experiments, a different feature from a given reduced set is used as a different
“starting feature”. For a given starting feature, all possible logistic regression
models of order 2 (i.e. combination of 2 variables) are created by combining
that feature with each of the remaining features in the reduced feature set still
available for that particular experiment. Bootstrap resampling (100 samples) is
performed for each of these models in order to calculate the 0.632+ bootstrap
AUC2,3, a process in which logistic regression models are trained in bootstrap
training samples and tested in corresponding bootstrap testing samples. Then,
the single remaining feature that maximizes the 0.632+ bootstrap AUC when
combined with the starting feature is selected, and the process is repeated up
to model order 10 for each experiment. Finally, for each model order, the
experiment that yields the highest 0.632+ bootstrap AUC is identified, and
combinations of features are thereby selected for model orders of 1 to 10.

Supplementary Figure S6. Radiomic feature selection.
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2.3 Random forest training

Supplementary Fig. S7 presents the methodology used in this work for ran-
dom forest training. Stratified random sub-sampling is used to estimate the
predictive properties of the random forests (e.g. estimating the best tumour
staging metric addition and positive instances weight in the forests by maximiz-
ing ÂUC). For each training sub-sample, boostrap resampling is used to grow
a single random forest to be tested in the corresponding testing sub-sample.
Through the imbalance-adjustment strategy, each bootstrap sample produces
multiple decision trees (one decision tree per partition) to be appended to the
random forest of the corresponding training sub-sample (in contrast to conven-
tionally producing a single decision tree per bootstrap sample).
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Supplementary Figure S7. Random forest training.
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2.4 Patient datasets

2.4.1 Head and Neck 1

→ Hôpital général juif, Montréal, QC

Supplementary Table S5. Characteristics of H&N1 cohort – HGJ

Characteristic Type No. of patients

Gender
Male 75 (82 %)
Female 17 (18 %)

Age
Range 18-84
Mean ± STD 61 ± 11

Tumour type

Oropharynx 56 (61 %)
Hypopharynx 4 (4 %)
Nasopharynx 14 (15 %)
Larynx 14 (15 %)
Unknown 4 (4 %)

T-Stage

T1 20 (22 %)
T2 20 (22 %)
T3 35 (38 %)
T4 13 (14 %)
Tx 4 (4 %)

N-Stage

N0 13 (14 %)
N1 18 (20 %)
N2 58 (63 %)
N3 3 (3 %)

TNM-Stage

Stage I 1 (1 %)
Stage II 5 (5 %)
Stage III 28 (30 %)
Stage IV 58 (63 %)

HPV status
Positive 30 (33 %)
Negative 25 (27 %)
N/A 37 (40 %)

Treatment
Radiation only 5 (5 %)
Chemo-radiation 87 (95 %)

Outcome
Locoregional recurrence 12 (13 %)
Distant metastases 16 (17 %)
Death 14 (15 %)

PATIENT POPULATION. This cohort is composed of 92 patients with pri-
mary squamous cell carcinoma of the head-and-neck (stage I-IVb) treated be-
tween 2006 and 2014 at Hôpital général juif, Montréal, QC. Included patients
were treated with curative intent with radiation alone or with chemo-radiation.
Patients with recurrent head-and-neck cancer or with metastases at presenta-
tion, and patients receiving palliative treatment were excluded from the study.
The median follow-up period of the cohort was 46 months (range: 11-112). Pa-
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tients that did not develop a locoregional recurrence or distant metastases during
the follow-up period and that had a follow-up time smaller than 24 months were
also excluded from the study. The study has been approved by the institutional
review board of Hôpital général juif. Detailed information about this patient
cohort is provided in Supplementary Table S5.

TREATMENT DETAILS. Patients with stage I-II disease were treated with
definitive radiotherapy alone while patients with stage III-IV disease were treated
using concurrent chemo-radiation. The radiotherapy regimen was planned us-
ing Volumetric Arc Modulated Radiotherapy Rapidarc planning system (Varian
Medical Systems). The radiotherapy regime consisted of hypofractionated frac-
tionated radiotherapy with simultaneous integrated boost where the GTV was
planned to receive a total of 67.5 Gy in fractions of 2.25 Gy over 6 weeks, while
CTV received a total of 54-60 Gy in fractions of 1.8-2 Gy over 30 fractions.
The treatment was delivered on a Linac equipped with HD120 Multileaf Colli-
mator, with Image Guided Radiotherapy using daily kv-kv imaging and weekly
Cone beam CT-scan (CBCT). Concomitant chemotherapy was given via weekly
administration of Carboplatin at AUC 2-3 and Paclitaxel at dose of 40 mg/m2.

FDG-PET/CT SCANS. All 92 eligible patients had FDG-PET and CT scans
done on a hybrid PET/CT scanner (Discovery ST, GE Healthcare) within
37 days before treatment (median: 14 days). For the PET portion of the
FDG-PET/CT scan, a median of 584 MBq (range: 368-715) was injected in-
travenously. Imaging acquisition of the head and neck was performed using
multiple bed positions with a median of 300 s (range: 180-420) per bed posi-
tion. Attenuation corrected images were reconstructed using an ordered subset
expectation maximization (OSEM) iterative algorithm and a span (axial mash)
of 5. The FDG-PET slice thickness resolution was 3.27 mm for all patients and
the median in-plane resolution was 3.52× 3.52 mm2 (range: 3.52-4.69). For the
CT portion of the FDG-PET/CT scan, an energy of 140 kVp with an exposure
of 12 mAs was used. The CT slice thickness resolution was 3.75 mm and the
median in-plane resolution was 0.98×0.98 mm2 for all patients. Contours defin-
ing the gross tumour volume (GTV) and lymph nodes were drawn by an expert
radiation oncologist in a radiotherapy treatment planning system. For 2 of the
92 patients, the radiotherapy contours were directly drawn on the CT scan of
the FDG-PET/CT scan. For 90 of the 92 patients, the radiotherapy contours
were drawn on a different CT scan dedicated to treatment planning. In the
latter case, the contours were propagated to the FDG-PET/CT scan reference
frame using deformable registration with the software MIM R© (MIM software
Inc., Cleveland, OH).
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Supplementary Table S6. Characteristics of H&N2 cohort – CHUS

Characteristic Type No. of patients

Gender
Male 74 (73 %)
Female 28 (27 %)

Age
Range 34-88
Mean ± STD 64 ± 10

Tumour type

Oropharynx 73 (72 %)
Hypopharynx 1 (1 %)
Nasopharynx 6 (6 %)
Larynx 22 (22 %)

T-Stage

T1 9 (9 %)
T2 45 (44 %)
T3 31 (30 %)
T4 17 (17 %)

N-Stage

N0 38 (37 %)
N1 11 (11 %)
N2 50 (49 %)
N3 3 (3 %)

TNM-Stage

Stage I 3 (3 %)
Stage II 17 (17 %)
Stage III 22 (22 %)
Stage IV 60 (59 %)

HPV status
Positive 26 (25 %)
Negative 13 (13 %)
N/A 63 (62 %)

Treatment
Radiation only 33 (32 %)
Chemo-radiation 69 (68 %)

Outcome
Locoregional recurrence 17 (17 %)
Distant metastases 10 (10 %)
Death 18 (18 %)
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2.4.2 Head and Neck 2

→ Centre hospitalier universitaire de Sherbooke, Sherbrooke, QC

PATIENT POPULATION. This cohort is composed of 102 patients with pri-
mary squamous cell carcinoma of the head-and-neck (stage I-IVb) treated be-
tween 2007 and 2014 at Centre hospitalier universitaire de Sherbooke, Sher-
brooke, QC. Included patients were treated with curative intent with radiation
alone or with chemo-radiation. Patients with recurrent head-and-neck cancer
or with metastases at presentation, and patients receiving palliative treatment
were excluded from the study. The median follow-up period of the cohort was 44
months (range: 8-93). Patients that did not develop a locoregional recurrence
or distant metastases during the follow-up period and that had a follow-up time
smaller than 24 months were also excluded from the study. The study has been
approved by the institutional review board of Centre hospitalier universitaire
de Sherbooke. Detailed information about this patient cohort is provided in
Supplementary Table S6.

TREATMENT DETAILS. All patients have had a pathological confirmation
of squamous cell carcinoma and imaging examination for tumor staging before
all treatments. All those patients have had a treatment position PET imaging
in our center. The PET images have been merged with dosimetry CT imaging,
and the dosimetry plan has been performed with teraplan for 3D-conformal
technique and pinnacle system for IMRT. The 3D-conformal technique has been
used for all patients before 2008, and since 2008, all patients have been treated
by IMRT. The treatment approaches consisted of either radiotherapy alone or
radiotherapy with concurrent chemotherapy or concurrent Cetuximab. The
treatment dose varied according to the tumor staging. The patients with T1
glottic laryngeal cancer have been treated mostly by 2.5 Gy daily for total dose
of 50Gy, some patients have been treated with daily dose of 2.25 Gy for 63 Gy
totally. All other patients with T1, T2, N0 cancers have been treated with
standard fractionated radiation schedules of 60-66 Gy; for the patients with T3-
4, or N+, the treatment dose varied from 68.8 Gy in 32 fractions to 70 Gy in
33 fractions. All treatments have been performed by 6 MV linear accelerator.
The concurrent chemotherapy was either cisplatin 100 mg/m2 at D1, D22 &
D43, or cisplatin 40 mg/m2, weekly. According to the consideration of the
oncologist, some patients have been treated by radiotherapy associated with
Cetuximab, due to the problems of kidney function, audition, elder or weak
general performance status. The treatment schedule of concurrent Cetuximab
was administrated according to the study of Bonner el al.7

FDG-PET/CT SCANS. All 102 eligible patients had FDG-PET and CT scans
done on a hybrid PET/CT scanner (GeminiGXL 16, Philips) within 54 days
before treatment (median: 19 days). For the PET portion of the FDG-PET/CT
scan, a median of 325 MBq (range: 165-517) was injected intravenously. Imag-
ing acquisition of the head and neck was performed using multiple bed posi-
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tions with a median of 150 s (range: 120-151) per bed position. Attenuation
corrected images were reconstructed using a LOR-RAMLA iterative algorithm.
The FDG-PET slice thickness resolution was 4 mm and the median in-plane res-
olution was 4×4 mm2 for all patients. For the CT portion of the FDG-PET/CT
scan, a median energy of 140 kVp (range: 12-140) with a median exposure of
210 mAs (range: 43-250) was used. The median CT slice thickness resolution
was 3 mm (range: 2-5) and the median in-plane resolution was 1.17×1.17 mm2

(range: 0.68-1.17). Contours defining the gross tumour volume (GTV) and
lymph nodes were drawn by an expert radiation oncologist in a radiotherapy
treatment planning system. For 91 of the 102 patients, the radiotherapy con-
tours were directly drawn on the CT scan of the FDG-PET/CT scan. For 11 of
the 102 patients, the radiotherapy contours were drawn on a different CT scan
dedicated to treatment planning. In the latter case, the contours were propa-
gated to the FDG-PET/CT scan reference frame using deformable registration
with the software MIM R© (MIM software Inc., Cleveland, OH).

2.4.3 Head and Neck 3

→ Hôpital Maisonneuve-Rosemont, Montréal, QC

PATIENT POPULATION. This cohort is composed of 41 patients with pri-
mary squamous cell carcinoma of the head-and-neck (stage II-IVb) treated be-
tween 2008 and 2014 at Hôpital Maisonneuve-Rosemont, Montréal, QC. In-
cluded patients were treated with curative intent with radiation alone or with
chemo-radiation. Patients with recurrent head-and-neck cancer or with metas-
tases at presentation, and patients receiving palliative treatment were excluded
from the study. The median follow-up period of the cohort was 38 months
(range: 6-70). Patients that did not develop a locoregional recurrence or distant
metastases during the follow-up period and that had a follow-up time smaller
than 24 months were also excluded from the study. The study has been approved
by the institutional review board of Hôpital Maisonneuve-Rosemont. Detailed
information about this patient cohort is provided in Supplementary Table S7.

TREATMENT DETAILS. The treatment options consisted of either definitive
radiotherapy alone or concurrent chemo-radiation. All patients received contin-
uous course of radiotherapy delivered by a 6 MV linear accelerator using 7 to 9
fields inverse planning IMRT. Only one patient was planned with 5 fields and
another was treated using 6 fields forward planning IMRT to the upper neck and
direct anterior field with a spinal cord block to the lower neck. For the patients
receiving radiotherapy alone, 4 patients had stage II disease including a T1N1
nasopharyngeal cancer and received a dose 69.96 Gy in 33 fractions, 2 oropha-
ryngeal and 1 hypopharyngeal cancer receiving altered fractionation with a dose
of 66 to 67.5 Gy in 30 fractions. The 3 patients were offered but declined the
chemotherapy and received 69.36 Gy in 33 fractions. Among patients receiving
chemo-radiation, the radiation fractionation mostly used was 69.96 Gy in 33
fractions (n = 31) and the remaining received 70 Gy in 35 fractions (n = 2).
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Supplementary Table S7. Characteristics of H&N3 cohort – HMR

Characteristic Type No. of patients

Gender
Male 31 (76 %)
Female 10 (24 %)

Age
Range 49-85
Mean ± STD 67 ± 9

Tumour type

Oropharynx 19 (46 %)
Hypopharynx 7 (17 %)
Nasopharynx 6 (15 %)
Larynx 9 (22 %)

T-Stage

T1 2 (5 %)
T2 17 (41 %)
T3 9 (22 %)
T4 12 (29 %)
Tx 1 (2 %)

N-Stage

N0 5 (12 %)
N1 4 (10 %)
N2 27 (66 %)
N3 5 (12 %)

TNM-Stage

Stage I 0 (0 %)
Stage II 3 (7 %)
Stage III 5 (12 %)
Stage IV 33 (80 %)

HPV status
Positive 2 (5 %)
Negative 0 (0 %)
N/A 39 (95 %)

Treatment
Radiation only 7 (17 %)
Chemo-radiation 34 (83 %)

Outcome
Locoregional recurrence 9 (22 %)
Distant metastases 11 (27 %)
Death 19 (46 %)
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The concurrent chemotherapy was in most cases cisplatin 100 mg/m2 i.v. every
3 weeks.

FDG-PET/CT SCANS. All 41 eligible patients had FDG-PET and CT scans
done on a hybrid PET/CT scanner (Discovery STE, GE Healthcare) within
60 days before treatment (median: 34 days). For the PET portion of the
FDG-PET/CT scan, a median of 475 MBq (range: 227-859) was injected in-
travenously. Imaging acquisition of the head and neck was performed using
multiple bed positions with a median of 360 s (range: 120-360) per bed posi-
tion. Attenuation corrected images were reconstructed using an ordered subset
expectation maximization (OSEM) iterative algorithm and a median span (axial
mash) of 5 (range: 3-5). The FDG-PET slice thickness resolution was 3.27 mm
for all patients and the median in-plane resolution was 3.52× 3.52 mm2 (range:
3.52-5.47). For the CT portion of the FDG-PET/CT scan, a median energy of
140 kVp (range: 120-140) with a median exposure of 11 mAs (range: 5-16) was
used. The CT slice thickness resolution was 3.75 mm for all patients and the
median in-plane resolution was 0.98 × 0.98 mm2 (range: 0.98-1.37). For all 41
patients, the radiotherapy contours defining the gross tumour volume (GTV)
and lymph nodes were drawn by an expert radiation oncologist on a different
CT scan dedicated to treatment planning. The contours were then propagated
to the FDG-PET/CT scan reference frame using deformable registration with
the software MIM R© (MIM software Inc., Cleveland, OH).

2.4.4 Head and Neck 4

→ Centre hospitalier de l’Université de Montréal, Montréal, QC

PATIENT POPULATION. This cohort is composed of 65 patients with pri-
mary squamous cell carcinoma of the head-and-neck (stage II-IVb) treated be-
tween 2009 and 2013 at Centre hospitalier de l’Université de Montréal, Montréal,
QC. Included patients were treated with curative intent with radiation alone or
with chemo-radiation. Patients with recurrent head-and-neck cancer or with
metastases at presentation, and patients receiving palliative treatment were
excluded from the study. The median follow-up period of the cohort was 40
months (range: 11-66). Patients that did not develop a locoregional recurrence
or distant metastases during the follow-up period and that had a follow-up time
smaller than 24 months were also excluded from the study. The study has been
approved by the institutional review board of Centre hospitalier de l’Université
de Montréal. Detailed information about this patient cohort is provided in
Supplementary Table S8.

TREATMENT DETAILS. Most patients (94 %) underwent concurrent plat-
inum based chemotherapy and radiotherapy. All patients received an IMRT
type radiation (sliding window IMRT or tomotherapy) consisting of 70 Gy of
radiation in 33 fractions. Immobilisation device included a thermoplastic mask
of the head and shoulder fixed to the treatment table.
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Supplementary Table S8. Characteristics of H&N4 cohort – CHUM

Characteristic Type No. of patients

Gender
Male 49 (75 %)
Female 16 (25 %)

Age
Range 44-90
Mean ± STD 63 ± 9

Tumour type

Oropharynx 58 (89 %)
Hypopharynx 0 (0 %)
Nasopharynx 2 (3 %)
Larynx 0 (0 %)
Unknown 5 (8 %)

T-Stage

T1 8 (12 %)
T2 28 (43 %)
T3 19 (29 %)
T4 5 (8 %)
Tx 5 (8 %)

N-Stage

N0 4 (6 %)
N1 8 (12 %)
N2 45 (69 %)
N3 8 (12 %)

TNM-Stage

Stage I 0 (0 %)
Stage II 2 (3 %)
Stage III 7 (11 %)
Stage IV 54 (83 %)
N/A 2 (3 %)

HPV status
Positive 21 (32 %)
Negative 3 (5 %)
N/A 41 (63 %)

Treatment
Radiation only 4 (6 %)
Chemo-radiation 61 (94 %)

Outcome
Locoregional recurrence 7 (11 %)
Distant metastases 3 (5 %)
Death 5 (8 %)
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FDG-PET/CT SCANS. All 65 eligible patients had FDG-PET and CT scans
done on a hybrid PET/CT scanner (Discovery STE, GE Healthcare) within
66 days before treatment (median: 12 days). For the PET portion of the
FDG-PET/CT scan, a median of 315 MBq (range: 199-3182) was injected in-
travenously. Imaging acquisition of the head and neck was performed using
multiple bed positions with a median of 300 s (range: 120-420) per bed posi-
tion. Attenuation corrected images were reconstructed using an ordered subset
expectation maximization (OSEM) iterative algorithm and a medianspan (ax-
ial mash) of 3 (range: 3-5). The median FDG-PET slice thickness resolution
was 4 mm (range: 3.27-4) and the median in-plane resolution was 4 × 4 mm2

(range: 3.52-5.47). For the CT portion of the FDG-PET/CT scan, a median
energy of 120 kVp (range: 120-140) with a median exposure of 350 mAs (range:
5-350) was used. The median CT slice thickness resolution was 1.5 mm (range:
1.5-3.75) and the median in-plane resolution was 0.98× 0.98 mm2 (range: 0.98-
1.37). All patients received their FDG-PET/CT scan dedicated to the head and
neck area right before their planning CT scan, in the same position with the
immobilisation device. Contours defining the gross tumour volume (GTV) and
lymph nodes were drawn by an expert radiation oncologist on the planning CT
scan. The contours were then propagated to the FDG-PET/CT scan reference
frame using deformable registration with the software MIM R© (MIM software
Inc., Cleveland, OH) to ensure proper coverage.
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2.5 Description of 3D radiomic features

In this work, a total of 10 first-order statistics (intensity) features, 5 morpholog-
ical (shape) features and 40 texture features extracted using 40 different param-
eters were computed for both the separate PET and CT volumes of diagnostic
FDG-PET/CT scans (unless otherwise noted). The definition of the region
of interest (ROI) on both PET and CT volumes was the original sub-volume
“GTVprimary + GTVlymph nodes” as drawn on CT planning scans for radiother-
apy purposes and deformably registered to the diagnostic FDG-PET/CT scans.

It is recommended to extract all radiomic features from an input volume with
isotropic voxel size (prior resampling may be required) in order for the number
of voxel measurements and distance parameters used for feature extraction to
be meaningful in 3D space and for the orientation dependence of the tumour to
be minimized.

2.5.1 First-order statistics (intensity) features

Let P define the first-order histogram of a volume V (x, y, z) with isotropic voxel
size. P (i) represents the number of voxels with gray-level i, and Ng represents
the number of gray-level bins set for P . The ith entry of the normalized his-
togram is then defined as:

p(i) =
P (i)∑Ng

i=1 P (i)
.

The first-order statistics features (10) are then defined as:

• Variance:

σ2 =

Ng∑
i=1

(i− µ)2 p(i)

• Skewness:

s = σ−3
Ng∑
i=1

(i− µ)3 p(i)

• Kurtosis:

k = σ−4
Ng∑
i=1

[
(i− µ)4 p(i)

]
− 3

• SUVmax: Maximum SUV of the tumour region. Extracted from PET
scans and not used in the CT feature set.

• SUVpeak: Average of the voxel with maximum SUV within the tumour
region and its 26 connected neighbours. Extracted from PET scans and
not used in the CT feature set.
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• SUVmean: Average SUV value of the tumour region. Extracted from
PET scans and not used in the CT feature set.

• AUC-CSH: Area under the curve of the cumulative SUV-volume his-
togram describing the percentage of total tumour volume above a per-
centage threshold of maximum SUV, as defined by van Velden et al.8

Extracted from PET scans and not used in the CT feature set.

• TLG: Total lesion glycolysis. Defined as SUVmean × total volume of the
tumour region. Extracted from PET scans and not used in the CT feature
set.

• Percent Inactive: Percentage of the tumour region that is inactive. As
defined by Vallières et al.1, a threshold of 0.01× (SUVmax)

2
followed by

closing and opening morphological operations were used to differentiate
active and inactive regions on FDG-PET scans. Extracted from PET
scans and not used in the CT feature set.

• gETU: Generalized effective total uptake, with parameter a = 0.25 as
defined by Rahim et al.9 Extracted from PET scans and not used in the
CT feature set.

2.5.2 Morphological (shape) features

The morphological features (5) are defined as:

• Volume: Number of voxels in the tumour region multiplied by the di-
mension of voxels. Extracted from CT scans and used in all feature sets.

• Size: Maximum diameter of the tumour region. Extracted from CT scans,
used in all feature sets.

• Solidity: Ratio of the number of voxels in the tumour region to the
number of voxels in the 3D convex hull of the tumour region (smallest
polyhedron containing the tumour region). Extracted from CT scans and
used in all feature sets.

• Eccentricity: The ellipsoid that best fits the tumour region is first com-
puted using the framework of Li & Griffiths10. The eccentricity is then

given by
[
1− a× b/c2

]1/2
, where c is the longest semi-principal axes of

the ellipsoid, and a and b are the second and third longest semi-principal
axes of the ellipsoid. Extracted from CT scans and used in all feature sets.

• Compactness:

compactness =
V√
πA3/2

Where V denotes the volume and A the surface area of the ROI. Extracted
from CT scans and used in all feature sets.

27



2.5.3 Texture features

In this work, a total of 40 different texture features were extracted from both the
PET and CT volumes: 9 GLCM texture features, 13 GLRLM texture features,
13 GLSZM texture features and 5 NGTDM texture features. All 40 texture
features from both PET and CT volumes were extracted using 40 different
parameters. These 40 texture extraction parameters constitutes all possible
combinations of the following different parameter values from 3 parameter types:

• Isotropic voxel size (5): This parameter is denoted as “Scale”. Prior
to the computation of texture features, all volumes were resampled to an
isotropic voxel size set to a desired resolution using cubic interpolation
and ROI masks using nearest neighbour interpolation. Scale values of
1 mm, 2 mm, 3 mm, 4 mm and 5 mm were tested in this work. For
example, if the desired Scale was set to 5 mm, a PET volume with voxels
of size 5.47×5.47×3.27 mm3 was isotropically resampled to voxels of size
5× 5× 5 mm3.

• Quantization algorithm (2): This parameter is denoted as “Quant.
algo.” Prior to the computation of texture features, the full range of gray
levels of the tumour region was quantized to a smaller number of gray
levels Ng. Equal-probability and Uniform quantization algorithms were
implemented in this work. Equal-probability quantization attempts to de-
fine decision thresholds in the volume such that the number of voxels is the
same for all different gray levels. An in-house algorithm was implemented
in MATLAB R© using the function histeq.m to ensure a monotonic trans-
formation of the intensity histograms. Uniform quantization is common
practice in texture analysis: it uniformly divides the range of intensities
in the volume into Ng gray-level bins.

• Number of gray levels (4): This parameter is denoted as “Ng”. It
represents the final number of gray levels in the quantized volume. Ng
values of 8, 16, 32 and 64 were tested in this work.

More details about texture extraction parameters can also be found in the
work of Vallières et al.1.

Gray-Level Co-occurence Matrix (GLCM) features
Let P define the GLCM of a quantized volume V (x, y, z) with isotropic voxel
size. P (i, j) represents the number of times voxels of gray-level i were neighbours
with voxels of gray-level j in V , and Ng represents the pre-defined number of
quantized gray-levels set in V . Only one GLCM of size Ng × Ng is computed
per volume V by simultaneously adding up the frequency of co-occurences of all
voxels with their 26-connected neighbours in 3D space, with all voxels (including
the peripheral region) considered once as a center voxel (as defined by Haralick et
al.11, thus always using d = 1). To account for discretization length differences,
neighbours at a distance of

√
3 voxels around a center voxel increment the
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GLCM by a value of
√

3, neighbours at a distance of
√

2 voxels around a center
voxel increment the GLCM by a value of

√
2, and neighbours at a distance of

1 voxel around a center voxel increment the GLCM by a value of 1 (as initially
suggested by Vallières et al.1). The entry (i, j) of the of the normalized GLCM
is then defined as:

p(i, j) =
P (i, j)∑Ng

i=1

∑Ng

j=1 P (i, j)
.

The following quantities are also defined:

µi =

Ng∑
i=1

i

Ng∑
j=1

p(i, j), µj =

Ng∑
j=1

j

Ng∑
i=1

p(i, j),

σi =

Ng∑
i=1

(i− µi)2
Ng∑
j=1

p(i, j), σj =

Ng∑
j=1

(j − µj)2
Ng∑
i=1

p(i, j).

The GLCM texture features (9) are then defined as:

• Energy11:

energy =

Ng∑
i=1

Ng∑
j=1

[p(i, j)]
2

• Contrast11:

contrast =

Ng∑
i=1

Ng∑
j=1

(i− j)2 p(i, j)

• Correlation (adapted from ref.11):

correlation =

Ng∑
i=1

Ng∑
j=1

(i− µi) (j − µj) p(i, j)
σi σj

• Homogeneity (adapted from ref.11):

homogeneity =

Ng∑
i=1

Ng∑
j=1

p(i, j)

1 + |i− j|

• Variance (adapted from ref.11):

variance =
1

Ng ×Ng

Ng∑
i=1

Ng∑
j=1

[
(i− µi)2 p(i, j) + (j − µj)2 p(i, j)

]
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• Sum Average (adapted from ref.11):

sum average =
1

Ng ×Ng

Ng∑
i=1

Ng∑
j=1

[i p(i, j) + j p(i, j)]

• Entropy11:

entropy = −
Ng∑
i=1

Ng∑
j=1

p(i, j) log2
(
p(i, j)

)
• Dissimilarity12:

dissimilarity =

Ng∑
i=1

Ng∑
j=1

|i− j| p(i, j)

• Autocorrelation13:

autocorrelation =

Ng∑
i=1

Ng∑
j=1

ij p(i, j)

Gray-Level Run-Length Matrix (GLRLM) features
Let P define the GLRLM of a quantized volume V (x, y, z) with isotropic voxel
size. P (i, j) represents the number of runs of gray-level i and of length j in
V , Ng represents the pre-defined number of quantized gray-levels set in V , and
Lr represents the length of the longest run (of any gray-level) in V . Only one
GLRLM of size Ng × Lr is computed per volume V by simultaneously adding
up all possible longest run-lengths in the 13 directions of 3D space (one voxel
can be part of multiple runs in different directions, but can be part of only
one run in a given direction). A MATLAB R© toolbox created by Xunkai Wei14

computes GLRLMs from 2D images, and it can be used to facilitate the com-
putation of GLRLMs from 3D volumes. To account for discretization length
differences, runs constructed from voxels separated by a distance of

√
3 incre-

ment the GLRLM by a value of
√

3, runs constructed from voxels separated by
a distance of

√
2 increment the GLRLM by a value of

√
2, and runs constructed

from voxels separated by a distance of 1 increment the GLRLM by a value
of 1 (as initially suggested by Vallières et al.1). The entry (i, j) of the of the
normalized GLRLM is then defined as:

p(i, j) =
P (i, j)∑Ng

i=1

∑Lr

j=1 P (i, j)
.

The following quantities are also defined:

µi =

Ng∑
i=1

i

Lr∑
j=1

p(i, j), µj =

Lr∑
j=1

j

Ng∑
i=1

p(i, j).
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The GLRLM texture features (13) are then defined as:

• Short Run Emphasis (SRE)15:

SRE =

Ng∑
i=1

Lr∑
j=1

p(i, j)

j2

• Long Run Emphasis (LRE)15:

LRE =

Ng∑
i=1

Lr∑
j=1

j2 p(i, j)

• Gray-Level Nonuniformity (GLN) (adapted from ref.15):

GLN =

Ng∑
i=1

 Lr∑
j=1

p(i, j)

2

• Run-Length Nonuniformity (RLN) (adapted from ref.15):

RLN =

Lr∑
j=1

 Ng∑
i=1

p(i, j)

2

• Run Percentage (RP) (adapted from ref.15):

RP =

∑Ng

i=1

∑Lr

j=1 p(i, j)∑Lr

j=1 j
∑Ng

i=1 p(i, j)

• Low Gray-Level Run Emphasis (LGRE)16:

LGRE =

Ng∑
i=1

Lr∑
j=1

p(i, j)

i2

• High Gray-Level Run Emphasis (HGRE)16:

HGRE =

Ng∑
i=1

Lr∑
j=1

i2 p(i, j)

• Short Run Low Gray-Level Emphasis (SRLGE)17:

SRLGE =

Ng∑
i=1

Lr∑
j=1

p(i, j)

i2j2
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• Short Run High Gray-Level Emphasis (SRHGE)17:

SRHGE =

Ng∑
i=1

Lr∑
j=1

i2 p(i, j)

j2

• Long Run Low Gray-Level Emphasis (LRLGE)17:

LRLGE =

Ng∑
i=1

Lr∑
j=1

j2 p(i, j)

i2

• Long Run High Gray-Level Emphasis (LRHGE)17:

LRHGE =

Ng∑
i=1

Lr∑
j=1

i2j2 p(i, j)

• Gray-Level Variance (GLV) (adapted from ref.18):

GLV =
1

Ng × Lr

Ng∑
i=1

Lr∑
j=1

(i p(i, j)− µi)2

• Run-Length Variance (RLV) (adapted from ref.18):

RLV =
1

Ng × Lr

Ng∑
i=1

Lr∑
j=1

(j p(i, j)− µj)2

Gray-Level Size Zone Matrix (GLSZM) features
Let P define the GLSZM of a quantized volume V (x, y, z) with isotropic voxel
size. P (i, j) represents the number of 3D zones of gray-levels i and of size j in
V , Ng represents the pre-defined number of quantized gray-levels set in V , and
Lz represents the size of the largest zone (of any gray-level) in V . One GLSZM
of size Ng × Lz is computed per volume V by adding up all possible largest
zone-sizes, with zones constructed from 26-connected neighbours of the same
gray-level in 3D space (one voxel can be part of only one zone). The entry (i, j)
of the normalized GLSZM is then defined as:

p(i, j) =
P (i, j)∑Ng

i=1

∑Lz

j=1 P (i, j)
.

The following quantities are also defined:

µi =

Ng∑
i=1

i

Lz∑
j=1

p(i, j), µj =

Lz∑
j=1

j

Ng∑
i=1

p(i, j).

The GLSZM texture features (13) are then defined as:
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• Small Zone Emphasis (SZE)15,18:

SZE =

Ng∑
i=1

Lz∑
j=1

p(i, j)

j2

• Large Zone Emphasis (LZE)15,18:

LZE =

Ng∑
i=1

Lz∑
j=1

j2 p(i, j)

• Gray-Level Nonuniformity (GLN) (adapted from refs.15,18):

GLN =

Ng∑
i=1

 Lz∑
j=1

p(i, j)

2

• Zone-Size Nonuniformity (ZSN) (adapted from refs.15,18):

ZSN =

Lz∑
j=1

 Ng∑
i=1

p(i, j)

2

• Zone Percentage (RP) (adapted from refs.15,18):

ZP =

∑Ng

i=1

∑Lz

j=1 p(i, j)∑Lz

j=1 j
∑Ng

i=1 p(i, j)

• Low Gray-Level Zone Emphasis (LGZE)16,18:

LGZE =

Ng∑
i=1

Lz∑
j=1

p(i, j)

i2

• High Gray-Level Zone Emphasis (HGZE)16,18:

HGZE =

Ng∑
i=1

Lz∑
j=1

i2 p(i, j)

• Small Zone Low Gray-Level Emphasis (SZLGE)17,18:

SZLGE =

Ng∑
i=1

Lz∑
j=1

p(i, j)

i2j2
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• Small Zone High Gray-Level Emphasis (SZHGE)17,18:

SZHGE =

Ng∑
i=1

Lz∑
j=1

i2 p(i, j)

j2

• Large Zone Low Gray-Level Emphasis (LZLGE)17,18:

LZLGE =

Ng∑
i=1

Lz∑
j=1

j2 p(i, j)

i2

• Large Zone High Gray-Level Emphasis (LZHGE)17,18:

LZHGE =

Ng∑
i=1

Lz∑
j=1

i2j2 p(i, j)

• Gray-Level Variance (GLV) (adapted from ref.18):

GLV =
1

Ng × Lz

Ng∑
i=1

Lz∑
j=1

(i p(i, j)− µi)2

• Zone-Size Variance (ZSV) (adapted from ref.18):

ZSV =
1

Ng × Lz

Ng∑
i=1

Lz∑
j=1

(j p(i, j)− µj)2

Neighbourhood Gray-Tone Difference Matrix (NGTDM) features
Let P (i) define the NGTDM of a quantized volume V (x, y, z) with isotropic
voxel size. P (i) represents the summation of the gray-level differences between
all voxels with gray-level i and the average gray-level of their 26-connected
neighbours in 3D space. Ng represents the pre-defined number of quantized
gray-levels set in V , and (Ng)eff is the effective number of gray-levels in V ,
with (Ng)eff < Ng (let the vector of gray-levels values in V be denoted as
g = g(1), g(2), . . . , g(Ng); some gray-levels excluding g(1) and g(Ng) may not
appear in V due to different quantization schemes). One NGTDM of size Ng×1
is computed per volume V . To account for discretization length differences, all
averages around a center voxel located at position (j, k, l) in V are performed
such that the neighbours at a distance of

√
3 voxels are given a weight of 1/

√
3,

the neighbours at a distance of
√

2 voxels are given a weight of 1/
√

2, and the
neighbours at a distance of 1 voxel are given a weight of 1 (as initially suggested
by Vallières et al.1). The ith entry of the NGTDM is then defined as:

P (i) =

{∑
all voxels∈{Ni} |i−Ai| if Ni > 0,

0 if Ni = 0.
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where {Ni} is the set of all voxels with gray-level i in V (including the peripheral
region), Ni is the number of voxels with gray-level i in V , and Ai is the average
gray-level of the 26-connected neighbours around a center voxel with gray-level
i and located at position (j, k, l) in V such that:

Ai = A(j, k, l) =

∑m=1
m=−1

∑n=1
n=−1

∑o=1
o=−1 wm,n,o · V (j +m, k + n, l + o)∑m=1

m=−1
∑n=1
n=−1

∑o=1
o=−1 wm,n,o

,

where wm,n,o =


1 if |j −m|+ |k − n|+ |l − o| = 1,
1√
2

if |j −m|+ |k − n|+ |l − o| = 2,
1√
3

if |j −m|+ |k − n|+ |l − o| = 3,

0 if V (j +m, k + n, l + o) is undefined.

The following quantity is also defined:

ni =
Ni
N
.

where N is the total number of voxels in V .

The NGTDM texture features (5) are then defined as:

• Coarseness19:

coarseness =

ε+

Ng∑
i=1

ni P (i)

−1

where ε is a small number to prevent coarseness becoming infinite.

• Contrast19:

contrast =

 1

(Ng)eff
[
(Ng)eff − 1

] Ng∑
i=1

Ng∑
j=1

ni nj (i− j)2
 1

N

Ng∑
i=1

P (i)


• Busyness19:

busyness =

∑Ng

i=1 ni P (i)∑Ng

i=1

∑Ng

j=1(i ni − j nj)
, ni 6= 0, nj 6= 0

• Complexity19:

complexity =

Ng∑
i=1

Ng∑
j=1

|i− j|
[
ni P (i) + nj P (j)

]
N (ni + nj)

, ni 6= 0, nj 6= 0
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• Strength19:

strength =

∑Ng

i=1

∑Ng

j=1(ni + nj) (i− j)2[
ε+

∑Ng

i=1 P (i)
] , ni 6= 0, nj 6= 0

where ε is a small number to prevent strength becoming infinite.

2.5.4 Online resources

MATLAB R© software code for computing radiomic features is freely shared un-
der the GNU General Public License at: https://github.com/mvallieres/

radiomics.
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2.6 Computation of the radiomic signature

2.6.1 Original radiomic signature

This section details how the original radiomic signature proposed by Aerts &
Velazquez et al.13 was computed from CT scans in the current work. In their
original work, Aerts & Velazquez et al.13 extracted the four features of the
radiomic signature on CT images with voxels of size 1 × 1 × 3 mm3. In the
current work, the CT images were thus first resampled to the same voxel size
of 1 × 1 × 3 mm3 using cubic interpolation. The four features of the radiomic
signature were then computed from the region of interest of the tumour as
defined by the “GTVprimary + GTVlymph nodes” contours (ROI) as follows:

1. Energy
Let X define the vector of Hounsfield Units (HUs) from CT scans for the
N voxels of the ROI. The feature energy is then defined as:

energy =

N∑
i=1

X(i)2

2. Compactness

Let V be the volume in mm3 and A be the surface area in mm2 of the
ROI. The feature compactness is then defined as:

compactness =
V√
πA2/3

3. GLN
To compute the Gray-Level Nonuniformity (GLN) texture feature simi-
larly to the work of Aerts & Velazquez et al.13, the ROI was first quan-
tized to a number of gray levels Np

g different for each patient p. For
CT scans, bins of 25 HUs were created using a lower limit of 0 HU to
the intensity range of the bins such that all voxels within the ROI with
−1000 ≤ HU < 25 were assigned to gray-level 1, all voxels within the ROI
with 25 ≤ HU < 50 were assigned to gray-level 2, etc.

Then, let Pδ(i, j) define the directional GLRLM of the quantized ROI,
where δ denotes one of the 13 directions around a center voxel in 3D space.
Similarly to what is described in the previous section, Pδ(i, j) represents
the number of runs of gray-level i and of length j, and Lr represents the
length of the longest run (of any gray-level) in the quantized ROI for
direction δ. The GLNδ for direction δ is then defined as:

GLNδ =

∑Np
g

i=1

(∑Lr

j=1 Pδ(i, j)
)2

∑Np
g

i=1

∑Lr

j=1 Pδ(i, j)
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Finally, the GLN texture feature is calculated as:

GLN =
1

13

13∑
δ=1

GLNδ

4. GLN HLH
This texture feature is obtained by computing the GLN texture feature
described above (feature 3) in the HLH sub-band of the first decomposition
level of the 3D undecimated discrete wavelet transform performed using
the wavelet basis function “Coiflet 1”.

The HLH wavelet decomposition is traditionally obtained by applying
a high-pass filter in the x-direction, a low-pass filter in the y-direction and
a high-pass filter in the z-direction. For medical images, standard prac-
tice is to consider the reference coordinate system (RCS) of the DICOM
protocol in order to unambiguously define the filter directions. Hence, for
an axial CT volume of a patient in the DICOM RCS, the HLH wavelet
decomposition would be obtained by applying a high-pass filter in the lef-
right direction, a low-pass filter in the anterior-posterior direction and a
high-pass filter in the inferior-superior direction.

However, in their original work, Aerts & Velazquez et al.13 considered
the MATLAB R© conventions to define the directions of the filters. As a
result, the HLH wavelet decomposition was obtained by applying a high-
pass filter in the anterior-posterior direction, a low-pass filter in the left-
right direction and a high-pass filter in the inferior-superior direction of
axial CT images. The same filter directions as defined by MATLAB R©

conventions were thus also used for CT images in the current work.

Practically speaking, in this work, the undecimated wavelet transform
was applied on the original ROI using the function swt2 and the wavelet
basis function “Coiflet 1” of MATLAB R©. To achieve a 3D decomposi-
tion, the 2D undecimated discrete wavelet transform obtained with the
swt2 function was successively applied for all image planes of the ROI
in the x-, y- and z-directions of the RCS, and the corresponding wavelet
coefficients of all image planes were averaged. The resulting wavelet coeffi-
cients of the ROI corresponding to the HLH sub-band were then uniformly
quantized to the same number of gray levels Np

g (for a given patient p)
as obtained with the computation of the standard GLN texture feature
described above (feature 3). Finally, the GLN HLH texture feature was
obtained by computing the same GLN texture feature described above
(feature 3) to the quantized ROI of the HLH wavelet sub-band.

COMPLETE MODEL. In one instance in our work, we directly tested in the
testing set (H&N3 and H&N4; n = 106) a Cox regression model constructed
using the original coefficients and median hazard ratio trained in the Lung1
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cohort of the original work of Aerts & Velazquez et al.13. This complete Cox
regression model λ(xi) was applied as follows in our work:

λ(xi) =

− 2.42e-11× CT-Energy

+ 5.38e-03× CT-Compactness

+ 1.47e-04× CT-GLNGLRLM

− 9.39e-06× CT-GLN HLHGLRLM

with a median hazard ratio of 0.1191567. The greater λ(xi), the worst the
chanches of survival are.

2.6.2 Revised version of the radiomic signature

This section details three modifications applied to the original radiomic signa-
ture in order to obtain a revised version (other than the following modifications,
the computation remained the same as described in the previous section):

1. CT resampling
In order to obtain isotropic voxel size, the CT images were resampled to
a voxel size of 1× 1× 1 mm3 using cubic interpolation.

2. Compactness

The definition of compactness in the original radiomic signature uses A2/3

in the denominator. This is most likely an error in the original paper of
Aerts & Velazquez et al.13, as A3/2 is required to create a dimensionless
feature. The feature compactness is thus hereby defined as:

compactness =
V√
πA3/2

3. Computation of GLN and GLN HLH

• Only one GLRLM is computed per CT volume by simultaneously
adding up the 13 GLRLMs of all 3D directions. The GLRLM av-
eraging technique used for the original radiomic signature basically
results in an average of limited run-length measurements.

• A normalized version of the GLN feature is used in this work. This
feature is defined in section 2.5.3 of this document under the “GLRLM”
heading. The original GLN feature as defined by Galloway15 is not
properly normalized and is thus dependent on the total number of
runs in a given volume.

39



References

1. Vallières, M., Freeman, C. R., Skamene, S. R. & El Naqa, I. A radiomics
model from joint FDG-PET and MRI texture features for the prediction
of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med.
Biol. 60, 5471–5496 (2015).

2. Efron, B. & Tibshirani, R. Improvements on cross-validation: the 632+
bootstrap method. Journal of the American Statistical Association 92,
548–560 (June 1, 1997).

3. Sahiner, B., Chan, H.-P. & Hadjiiski, L. Classifier performance prediction
for computer-aided diagnosis using a limited dataset. Med. Phys. 35, 1559–
1570 (Apr. 1, 2008).

4. El Naqa, I. et al. Dose response explorer: an integrated open-source tool for
exploring and modelling radiotherapy dose-volume outcome relationships.
Phys. Med. Biol. 51, 5719–5735 (2006).

5. Schiller, T. W., Chen, Y., El Naqa, I. & Deasy, J. O. Modeling radiation-
induced lung injury risk with an ensemble of support vector machines.
Neurocomputing 73, 1861–1867 (2010).

6. Reshef, D. N. et al. Detecting novel associations in large data sets. Science
334, 1518–1524 (Dec. 16, 2011).

7. Bonner, J. A. et al. Radiotherapy plus cetuximab for squamous-cell carci-
noma of the head and neck. N. Engl. J. Med. 354, 567–578 (2006).

8. Van Velden, F. H. P. et al. Evaluation of a cumulative SUV-volume his-
togram method for parameterizing heterogeneous intratumoural FDG up-
take in non-small cell lung cancer PET studies. Eur. J. Nucl. Med. Mol.
Imaging 38, 1636–1647 (2011).

9. Rahmim, A. et al. A novel metric for quantification of homogeneous and
heterogeneous tumors in PET for enhanced clinical outcome prediction.
Phys. Med. Biol. 61, 227 (2016).

10. Li, Q. & Griffiths, J. G. Least squares ellipsoid specific fitting in Proceedings
of the Geometric Modeling and Processing 2004. International Conference
on Geometric Modeling and Processing (GMP 04) (Beijing, China, 2004),
335–340.

11. Haralick, R. M., Shanmugam, K. & Dinstein, I. Textural features for im-
age classification. IEEE Transactions on Systems, Man, and Cybernetics
SMC-3, 610–621 (1973).

12. Thibault, G. Indices de formes et de textures: de la 2D vers la 3D. PhD
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