Supplementary Information

Antagonistic interaction between jasmonic acid and cytokinin in xylem development

Geupil Jang¹, Sun Hyun Chang¹, Tae Young Um¹, Sangyool Lee¹, Ju-Kon Kim² and Yang Do Choi^{1,*}

¹Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea ²Graduate School of International Agricultural Technology and Crop Biotechnology Institute/Green BioScience and Technology, Seoul National University, Pyeongchang 232-916, Korea

Author for Correspondence:

Yang Do Choi

Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea Email: choiyngd@snu.ac.kr

Figure S1. Inhibition of apical root growth by JA and cytokinin.

Root growth of Col-0 grown in the indicated conditions for 7 days (MeJA; 10 μ M, cytokinin; 50 nM BAP, MeJA/cytokinin; 10 μ M MeJA and 50 nM BAP) (*n*>20). Error bars represent S.D and asterisks indicate statistically significant differences between the corresponding samples and their control (*p* < 0.01, *t*-test).

(a) Heat map showing distinct gene expression profiles between the indicated datasets. (b) Quantitative RT-PCR analysis of expression of *WOL*, *ARRs*, and *PIN7* in the Col-0 roots grown in the indicated conditions for 7 days (MeJA; 10 μ M, cytokinin; 50 nM BAP, MeJA/cytokinin; 10 μ M MeJA and 50 nM BAP). *GAPDH* was used as a reference gene. Error bars represent S.D and asterisks indicate statistically significant differences between the corresponding samples and their control (*p* < 0.01, *t*-test).

(a) Root vasculature of *opr3* mutant plants grown in 10 μ M MeJA or not treated for 7 days. (b) Quantification of extra xylem formation in these plants (*n*>15). Percentages were calculated by dividing the number of plants with extra xylem by the number of plants observed. Arrow indicates extra xylem. Scale bar = 20 μ m.

Quantification of the number of vascular tissue cells (**a**) and xylem cells (**b**) in the Col-0 roots grown in 1, 10 μ M MeJA or not treated for 7 days (*n*>30). Error bars represent S.D and asterisks indicate statistically significant differences between the corresponding samples and their control (*p* < 0.01, *t*-test).

Figure S5. JA reduces cytokinin response.

Confocal longitudinal (top) and cross (bottom) sectioning images showing that MeJA reduced cytokinin-responsive *WOL* expression in the root of Col-0, but not in *coi1-1* mutants. Dotted lines indicate the longitudinal position where confocal optical cross-sectioning was performed. Scale bar = $20 \mu m$.

Figure S6. GUS staining analysis of *AHP6::GUS* **plants.** GUS staining of two independent lines of *AHP6::GUS* plants grown in MS media for 7 days. Scale bars = 100 µm.

Analysis of *AHP6* expression patterns in Arabidopsis roots grown in 10 μ MMeJAuntreated and -treated conditions using GUS staining. GUS staining solution with 1 mM ferrocyanide/ferricyanide was used. Whole mounted (left), and cross-sectioning images (right). Scale bar = 100 μ m in whole mounted images and 20 μ m in others.

Figure S8. Expressions of Type-B ARRs in JA-treated Col-0 plants.

Quantitative RT-PCR analysis of expression of Type-B *ARRs* in the Col-0 roots grown in 10 μ M MeJA-untreated and -treated conditions for 7 days. *GAPDH* was used as a reference gene. Error bars represent S.D and asterisks indicate statistically significant differences between the corresponding samples and their control (*p* < 0.01, *t*-test).

Expression levels of *AHP6* (**a**) and cytokinin-induced genes (**b**) in the roots of *AHP6*overexpressing transgenic plants grown in MS media for 7 days. Line 1 and 2 indicate individual lines of *AHP6*-overexpressing transgenic plants. *GAPDH* was used as a reference gene. Error bars represent S.D and asterisks indicate statistically significant differences between the corresponding samples and their control (p < 0.01, *t*-test).

Figure S10. Overexpression *AHP6* tends to increase the number of xylem cells. Quantification of the number of vascular tissue cells (**a**) and xylem cells (**b**) in the roots of *35S::AHP6* plants roots grown in JA-untreated conditions for 7 days (*n*>30). Error bars represent S.D.

Quantification of the number of vascular tissue cells (**a**) and xylem cells (**b**) in the roots of *wol* mutant plants grown in 10 μ M MeJA or not treated for 7 days (*n*>13). Error bars represent S.D and asterisks indicate statistically significant differences between the corresponding samples and their control (*p* < 0.01, *t*-test).

(a) *ARR5* expression was analyzed in *jar1-1* plants by qRT-PCR. Seven-day-old *jar1-1* and Col-0 seedlings were transferred to MS media containing 2 μ M BAP and incubated for the indicated time. Total RNA was extracted from these roots. (b) Expression levels of *ARR5* in the roots of *myc2-3* mutants treated or untreated with 2 μ M BAP for 3 hrs. *GAPDH* was used as a reference gene. Error bars represent S.D.

Figure S14. MYC2 does not bind to the AHP6 promoter.

(a) Schematic of the *AHP6* promoter containing a putative MYC2-binding site (CACATG), and yeast one-hybrid results. Regions 1, 2, 3, and 4 indicate DNA fragments of the *AHP6* promoter inserted into the pAbAi bait plasmid. A full-length *MYC2* cDNA was inserted into the pGADT7 prey plasmid. -Ura -Leu + Abs A (150 μ M aureobasidin A) media were used to test the interaction between the the *AHP6* promoter and MYC2. (b) Chromatin immunoprecipitation (ChIP) assay using plants expressing *35S::MYC2-GFP* and GFP antibody. Plants were treated with MeJA for 4 hrs by transferring 7-day-old *35S::MYC2-GFP* seedlings into MS media containing 100 μ M MeJA. Enrichment of the indicated regions was analyzed by qPCR. *18S rRNA* was used as a reference gene. Error bars represent S.D.

Root growth (**a**) vascular morphology (**b**) of Col-0 plants grown PEG-infused MS media. Four-day-old seedlings germinated on MS media were transferred to the control media (1/2 MS medium (Water potential = -0.25 MPa) and PEG-containing media (Water potential = -0.70 MPa), respectively. After 8 days, roots were collected from these plants and sectioned transversly. The red dotted line indicates a xylem axis. Arrow indicates an extra xylem (**c**) Quantification of extra xylem formation in these plants (*n*>15). Percentages were calculated by dividing the number of plants with extra xylem by the number of plants observed. Scale bar = 1 cm in (a) and 20 μ m in (b).

Locus Name	Position	Strand	Sequence	Silmilar Score
AT1G32640	-1623	+	CACATg	1
AT1G32640	-1482	+	ATACGaat	0.75
AT1G32640	-1482	-	ataCGAAT	0.75
AT1G32640	-1342	-	aaaAGTAT	0.75
AT1G32640	-1336	+	ATATGttt	0.75
AT1G32640	-1079	+	ATACGtgc	0.88
AT1G32640	-987	-	tcaCGTAA	0.75
AT1G32640	-963	+	ATACAttt	0.75
AT1G32640	-669	+	ATACGagg	0.75
AT1G32640	-384	-	agaTGTAT	0.75
AT1G32640	-215	+	ATACTtgt	0.88
AT1G32640	-53	+	ATACCtct	0.75

 Table S1. Putative MYC2-binding sites in the AHP6 promoter.

Name	Sequence		
ARR1 RT 5 for	CACATCAGGACTCAGAATCC		
ARR1 RT 3 rev	CGTCTGCATAAACCTGATG		
ARR10 RT 5 for	GGGATTTGGATGGTTTAGCTC		
ARR10 RT 3 rev	CAGAGAAGAGAAGAAGACAG		
ARR12 RT 5 for	GGAGGAGATTTGGGATATGG		
ARR12 RT 3 rev	CTAAATTGCTAGAACCAGTGGG		
ARR5 RT 5 for	GCACAAGAGAGAGCTTGAAGC		
ARR5 RT 3 rev	TCAGGACATGCATGTGTG		
ARR6 RT 5 for	GTTCACTCGCAGCTCAAAC		
ARR6 RT 3 rev	GGCGAGAATCATCAGTGTAG		
ARR7 RT 5 for	CCTCTTCTTGGAACCAATCTG		
ARR7 RT 3 rev	CATCGACGGCAAGAACATG		
ARR15 RT 5 for	GAGAGGTGGTGAAGCTGAAG		
ARR15 RT 3 rev	GTCGTCATCAAGGGAGGAAAC		
WOL RT 5 for	GCCGAGAAAGATCGATTTTTGG		
WOL RT 3 rev	GCTTTTGGTAACAATGCTCGATG		
PIN3 RT 5 for	GCCCTTTGTGTTTGCGAAG		
PIN3 RT 3 rev	CAATTGACTCTTTCTCGGGG		
PIN7 RT 5 for	CATCCCGCAATCTTGAGTAC		
PIN7 RT 3 rev	CCTCTTCAGCCAAGCAGAAC		
AHP6 RT 5 for	GTGCTTGAGAGGACTGGAGG		
AHP6 RT 3 rev	TACATTGGATATCTGACTCCTG		
LOX2 RT 5 for	GAGCCTGTTATCAATGCTGCA		
LOX2 RT 3 rev	ATTCCGGTAACACCATGCTCA		
JR2 RT 5 for	CAGTCAGAAGAACTGGTTGAG		
JR2 RT 3 rev	AGGCAAATAACCATATTGACCC		
ACT2 RT 5 for	CTTGCACCAAGCAGCATGAA		
ACT2 RT 5 for	CCGATCCAGACACTGTACTTCC		
GAPDH RT 5 for	GCATTGAGCGACAAGTTTGTG		
GAPDH RT 3 rev	AGTACGAACTCAACCACACAC		
ChIP R1 5 for	GTCAAAGCAAAGGAATGACGAA		
ChIP R1 3 rev	TGTCTCATTCGTATGTCATGC		
ChIP R2 5 for	GCGATGTGATACCAATATACCA		
ChIP R2 3 rev	GGCCTTTCTCTCGATCTA		
ChIP R3 5 for	GGGGGAAAAAGGTAACCTGAC		
ChIP R3 3 rev	TCGGCTTGAAGCCGGTCCAC		

Table S2. Primers used in this study.

ChIP JAZ1 5 for	TTCAAAGAAACGGAAAGC
ChIP JAZ1 3 rev	CTACCTCCAATATAACAAAGC
18 rRNA 5 for	TACCGTCCTAGTCTCAACCA
18 rRNA 3 rev	AACATCTAAGGGCATCACAG
Bait R1 5 for	ATAAAGCTTATCTCAATGACTCAT
Bait R1 3 rev	ATAGTCGACGGAACAAACAACTAG
Bait R2 5 for	ATAAAGCTTTACTACTCTGA
Bait R2 3 rev	ATAGTCGACCGAATAAAGTAAAAA
Bait R3 5 for	ATAAAGCTTATAGTTAAGAGGACT
Bait R3 3 rev	ATAGTCGACTTCTTTTATCAGGTC
Bait R4 5 for	ATAAAGCTTTGTTATATGATTATA
Bait R4 3 rev	ATAGTCGACCCACAACGGCACACC
Prey MYC2 5 for	ATACATATGATGACTGATTACCGG
Prey MYC2 3 rev	ATAATCGATTTAACCGATTTTTGA
AHP6 cDNA 5 for	GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGTTGGGGTTGGGTGTG GA
AHP6 cDNA 3 rev	GGGGACCACTTTGTACAAGAAAGCTGGGTCTTACATTGGATATCTGACTC CTG
AHP6 pro 5 for	TACGCCAAGCTTGGCTGCAGATCTCAATGACTCATCATATC
AHP6 pro 3 rev	AAAACGACGGCCAGTGAATTCCCACAACGGCACACCCGT