Supporting Information

Derivation of the Smoluchowski equation for FB model : According to the Liouville theorem $(d\varphi/dt = 0)$ the time evolution of probability density $\varphi(x, r, t)$ in terms of x and r satisfies

$$\frac{\partial\varphi}{\partial t} = -\frac{\partial}{\partial x} \left(\frac{dx}{dt}\varphi\right) - \frac{\partial}{\partial r} \left(\frac{dr}{dt}\varphi\right).$$
(S1)

Insertion of two Langevin equations (Eq.(1) in the main text) for the fluctuating bottleneck model $\partial_t x = -\zeta^{-1}[\partial_x U_{\text{eff}}(x;r) + F_x(t)]$ and $\partial_t r = -\lambda r + F_r(t)$ into Eq.S1 leads to

$$\frac{\partial \varphi}{\partial t} = \frac{\partial}{\partial x} \left(\frac{1}{\zeta} \frac{dU_{\text{eff}}(x)}{dx} \varphi \right) + \frac{\partial}{\partial r} \left(\lambda r \varphi \right) - \frac{\partial}{\partial x} \left(\frac{1}{\zeta} F_x(t) \varphi \right) - \frac{\partial}{\partial r} \left(F_r(t) \varphi \right)$$
$$\equiv -\mathcal{L}\varphi - \frac{\partial}{\partial \vec{a}} \cdot \left(\vec{F}(t) \varphi \right) \tag{S2}$$

where $\vec{a} \equiv (x, r)$ and $\vec{F}(t) \equiv (\frac{1}{\zeta}F_x(t), F_r(t))$. Using the vector notation as in the second line of Eq.S2, one can formally solve for the probability density $\varphi(\vec{a}, t)$ as

$$\varphi(\vec{a},t) = e^{-t\mathcal{L}}\varphi(\vec{a},0) - \int_0^t ds e^{-(t-s)\mathcal{L}} \frac{\partial}{\partial \vec{a}} \cdot \left(\vec{F}(s)\varphi(\vec{a},s)\right)$$
(S3)

Averaging $\varphi(\vec{a}, t)$ over noise after iterating $\varphi(\vec{a}, t)$ into the noise related term in the integrand and exploiting the fluctuation-dissipation theorem, we obtain the Smoluchowski equation for $\varphi(x, r, t)$ in the presence of a reaction sink, $S(x, r) = k_r r^2 \delta(x - x_{\rm ts})$,

$$\frac{\partial \overline{\varphi}(x,r,t)}{\partial t} = \left[\mathcal{L}_x(x) + \mathcal{L}_r(r) - \mathcal{S}(x,r)\right] \overline{\varphi}(x,r,t),$$
(S4)

where $\mathcal{L}_x \equiv D\partial_x \left(\partial_x + (k_B T)^{-1} \partial_x U_{\text{eff}}(x)\right)$ and $\mathcal{L}_r \equiv \lambda \theta \partial_r \left(\partial_r + r/\theta\right)$. Integrating both sides of the equation over x by defining $\overline{C}(r,t) \equiv \int_{-\infty}^{\infty} dx \overline{\varphi}(x,r,t)$ leads to $\partial_t \overline{C} = \mathcal{L}_r \overline{C}(r,t) - k_r r^2 \overline{\varphi}(x_{\text{ts}},r,t)$. By setting $\overline{\varphi}(x_{\text{ts}},r,t) = \phi_x(x_{\text{ts}})\overline{C}(r,t)$ where $\phi(x_{\text{ts}}) = e^{-U_{\text{eff}}(x_{\text{ts}})/k_B T} / \int dx e^{-U_{\text{eff}}(x)/k_B T} \approx$

$$\sqrt{U_{\text{eff}}''(x_{\text{b}})/2\pi k_B T} e^{-(U_{\text{eff}}(x_{\text{ts}})-U_{\text{eff}}(x_{\text{b}}))/k_B T}, \text{ we get}$$
$$\partial_t \overline{C}(r,t) = \left[\lambda \theta \partial_r \left(\partial_r + r/\theta\right) - kr^2\right] \overline{C}(r,t), \quad (S5)$$

where $k \equiv k_r \sqrt{U''_{\text{eff}}(x_{\text{b}})/2\pi k_B T} e^{-\Delta U^{\dagger}/k_B T}$ with $\Delta U^{\ddagger} \equiv U(x_{\text{ts}}) - U(x_{\text{b}})$. In all likelihood, $k_r (= D \times \sqrt{U''_{\text{eff}}(x_{\text{ts}})/2\pi k_B T})$ represents the product of diffusion coefficient D associated with barrier crossing dynamics and the contribution of dynamics at the barrier top. Thus, under tension f, one can set $k \to k(f) = k_0 e^{f\Delta x^{\dagger}/k_B T}$ where $k_0 \equiv (\xi D \sqrt{U''_{\text{eff}}(x_{\text{b}})U''_{\text{eff}}(x_{\text{ts}})/2\pi k_B T})e^{-\Delta U^{\ddagger}/k_B T}$ and ξ describes the correction due to geometrical information of the cross section of bottleneck [1, 2]. Therefore, under tension f, Eq.S5 becomes Eq.(2) in the main text.

Solution of the Smoluchowski equation with time-dependent sink : For the problem with a constant loading rate, the sink function of our Smoluchowski equation becomes time-dependent, resulting in the following equation for the flux $\overline{C}(r,t)$,

$$\frac{\partial \overline{C}(r,t)}{\partial t} = \lambda \theta \frac{\partial}{\partial r} \left(\frac{\partial}{\partial r} + \frac{r}{\theta} \right) \overline{C}(r,t) - k_0 r^2 e^{t(\gamma \Delta x^{\dagger}/k_B T)} \overline{C}(r,t)$$
(S6)

with $\overline{C}(r, t = 0) = \sqrt{\frac{2}{\pi\theta}} e^{-r^2/2\theta}$. Although a time-dependent sink term, in general, makes Smoluchowski equations analytically intractable, the ansatz $\overline{C}(r,t) \sim e^{\nu(t)-\mu(t)r^2}$ used in the Ref. [1] allows us to solve the above problem exactly. Substitution of $\overline{C}(r,t) \sim e^{\nu(t)-\mu(t)r^2}$ leads to two ODEs for $\nu(t)$ and $\mu(t)$ (with ' denoting derivative

with respect to t),

$$\nu'(t) = -2\lambda\theta\mu(t) + \lambda \tag{S7}$$

and

$$\left(\mu(t) - \frac{1}{4\theta}\right)' = -4\lambda\theta \left(\mu(t) - \frac{1}{4\theta}\right)^2 + \frac{\lambda}{4\theta} \left(1 + \frac{4k_0\theta}{\lambda}e^{t\tilde{\gamma}}\right)$$
(S8)

with $\mu(0) = 1/2\theta$. The equation for $\mu(t)$ in Eq.S13 is the Riccati equation, $y' = q_0(t) + q_1(t)y + q_2(t)y^2$ with $y(t) \equiv \mu(t) - 1/4\theta$. In general, the Riccati equation can be reduced to a second order ODE. The variable is changed in two steps : (i) $v(t) = q_2(t)y(t)$ leads to $v' = v^2 + P(t)v + Q(t)$ where $Q = q_0q_2 = -\lambda^2 \left(1 + \frac{4k_0\theta}{\lambda}e^{t\tilde{\gamma}}\right)$ and $P = q_1 + q'_2/q_2 = 0$. (ii) Another substitution v(t) = -u'(t)/u(t) leads to u''(t) - P(t)u'(t) + Q(t)u(t) = 0, i.e.,

$$u''(t) - \lambda^2 \left(1 + \frac{4k_0\theta}{\lambda} e^{t\tilde{\gamma}} \right) u(t) = 0.$$
 (S9)

Introducing the variable $\rho = \frac{2\lambda}{\tilde{\gamma}} \sqrt{\frac{4k_0\theta}{\lambda}} e^{t\tilde{\gamma}/2} = \beta\kappa(t)$ with $\beta \equiv \frac{2\lambda}{\tilde{\gamma}}$ and $\kappa(t) \equiv \sqrt{\frac{4k_0\theta}{\lambda}} e^{t\tilde{\gamma}/2}$ one can modify the second-order ODE in Eq.S9 into a more familiar modified Bessel equation,

$$\rho^{2}U_{\rho\rho} + \rho U_{\rho} - \left[\beta^{2} + \rho^{2}\right]U = 0$$
 (S10)

where $u(t) = U(\rho)$. The solution of the above ODE is the linear combination of $I_{\pm\beta}(\rho)$ for non-integer β , and the linear combination of $I_{\beta}(\rho)$ and $K_{\beta}(\rho)$ when β is integer. Thus, the solution of Eq.S10 is

$$U(\rho) = \begin{cases} c_1 I_{\beta}(\rho) + c_2 I_{-\beta}(\rho) & \beta \neq n, \beta > 0\\ c_1 I_{\beta}(\rho) + c_2 K_{\beta}(\rho) & \beta = n \text{ where } n = 0, 1, 2 \cdots \end{cases}$$
(S11)

For simplicity, we use the notation $Q_{\beta}(\rho)$ to represent either $I_{-\beta}(\rho)$ or $K_{\beta}(\rho)$,

$$\mathcal{Q}_{\beta}(\rho) = \begin{cases} I_{-\beta}(\rho) & \beta \neq n, \beta > 0\\ K_{\beta}(\rho) & \beta = n \text{ where } n = 0, 1, 2 \cdots \end{cases}$$
(S12)

Thus one obtains $\mu(t)$ using $y(t) = -\frac{u'(t)}{q_2(t)u(t)}$.

$$\mu(t) = \frac{1}{4\theta} + \frac{\kappa(t)}{4\theta} \left(\frac{I'_{\beta}(\rho) + c\mathcal{Q}'_{\beta}(\rho)}{I_{\beta}(\rho) + c\mathcal{Q}_{\beta}(\rho)} \right).$$
(S13)

Note that $I'_{\beta}(\rho) \equiv dI_{\beta}(\rho)/d\rho$. The initial condition $\mu(0) = 1/2\theta$ determines the constant *c* in Eq.S13

$$c = \frac{I_{\beta}'(\rho_0) - [\kappa(0)]^{-1} I_{\beta}(\rho_0)}{[\kappa(0)]^{-1} \mathcal{Q}_{\beta}(\rho_0) - \mathcal{Q}_{\beta}'(\rho_0)}.$$
 (S14)
where $\rho_0 \equiv \beta \kappa(0)$. Thus, one obtains

$$\frac{\mu(t)}{\mu(0)} = \frac{1}{2} \left[1 + \kappa(t) \frac{\mathcal{I}'(\rho)}{\mathcal{I}(\rho)} \right]$$
(S15)

where $\mathcal{I}(\rho) \equiv \left(I'_{\beta}(\rho_0)\mathcal{Q}_{\beta}(\rho) - \mathcal{Q}'_{\beta}(\rho_0)I_{\beta}(\rho)\right) - [\kappa(0)]^{-1} \{I_{\beta}(\rho_0)\mathcal{Q}_{\beta}(\rho) - \mathcal{Q}_{\beta}(\rho_0)I_{\beta}(\rho)\}$. Recall that $\rho \equiv \beta\kappa(t)$ with $\beta \equiv 2\lambda/\tilde{\gamma}, \ \kappa(t) \equiv \sqrt{\frac{4k_0\theta}{\lambda}}e^{t\tilde{\gamma}/2}$, and $\rho_0 \equiv \rho(0)$. Note that $\kappa(0)(\mathcal{I}'(\rho_0)/\mathcal{I}(\rho_0)) = 1$ is satisfied. Integration of Eq.S7 with t using Eq.S15 and change of variable $d\rho = \frac{\beta\tilde{\gamma}}{2}\kappa(t)dt = \lambda\kappa(t)dt$ results in the expression for $\nu(t)$:

$$\nu(t) = \frac{\lambda t}{2} - \frac{1}{2} \log\left(\frac{\mathcal{I}(\rho)}{\mathcal{I}(\rho_0)}\right).$$
(S16)

With $\mu(t)$ (Eq.S15) and $\nu(t)$ (Eq.S16) in hand, we can solve

$$\overline{C}(r,t) = \sqrt{\frac{2}{\pi\theta}} \left[\frac{\mathcal{I}(\rho)}{\mathcal{I}(\rho_0)} \right]^{-1/2} \exp\left[\frac{\lambda t}{2} - \frac{r^2}{4\theta} \left\{ 1 + \kappa(t) \frac{\mathcal{I}'(\rho)}{\mathcal{I}(\rho)} \right\} \right],\tag{S17}$$

from which the survival probability is obtained as

$$\Sigma_{\lambda}^{\gamma}(t) = \int_{0}^{\infty} dr \overline{C}(r,t) = \frac{1}{\sqrt{2\theta}} \frac{e^{\nu(t)}}{\sqrt{\mu(t)}} = \sqrt{2} e^{\frac{\lambda t}{2}} \left[\frac{\mathcal{I}(\rho)}{\mathcal{I}(\rho_0)} \right]^{-1/2} \left[1 + \kappa(t) \frac{\mathcal{I}'(\rho)}{\mathcal{I}(\rho)} \right]^{-1/2}.$$
 (S18)

The λ -dependent unbinding time distribution $P_{\lambda}(t)$ are obtained from the relation $P_{\lambda}(t) = -d\Sigma_{\lambda}^{\gamma}(t)/dt$,

$$P_{\lambda}(t) = \frac{\lambda e^{\lambda t/2}}{\sqrt{2}} \left[\kappa^2(t) \frac{\mathcal{I}''(\rho)}{\mathcal{I}(\rho)} + \frac{1}{\beta} \kappa(t) \frac{\mathcal{I}'(\rho)}{\mathcal{I}(\rho)} - 1 \right] \left[\frac{\mathcal{I}(\rho)}{\mathcal{I}(\rho_0)} \right]^{-1/2} \left[1 + \kappa(t) \frac{\mathcal{I}'(\rho)}{\mathcal{I}(\rho)} \right]^{-3/2}.$$
 (S19)

Transformation to the unbinding force distribution $P_{\lambda}(\tilde{f}) \left[= \tilde{\gamma}^{-1} P_{\lambda}(t)\right]$ is made through the relationship between dimensionless scaled-force (\tilde{f}) and time t: $\tilde{f} = \tilde{\gamma}t$ with $\tilde{\gamma} = \gamma \Delta x^{\dagger}/k_B T$.

Illustration using synthetic data : Although $P_{\lambda}(\tilde{f})$ in Eq.S19 is complicated, the familiar expression used in the Dynamic Force Spectroscopy (DFS) for P(f) is restored when $\lambda \to \infty$ (see below). In order to obtain insight into the behavior of $P_{\lambda}(\tilde{f})$ we generated several synthetic distributions for varying λ values and loading rates. We find that $P_{\lambda}(\tilde{f})$ with varying $\tilde{\gamma}(=\gamma\Delta x^{\dagger}/k_BT)$ shows the standard pattern of force distribution in DFS (Fig.S1-A, B) [2, 3]. The

effect of varying λ on $P_{\lambda}(\tilde{f})$ is shown in Fig.S1-C, D. It is of particular interest that if $\tilde{\gamma} \gg k_0 \theta$ then the most probable forces f_{λ}^* from $P_{\lambda}(\tilde{f})$ are insensitive to the variation in λ even though the shapes of $P_{\lambda \to 0}(\tilde{f})$ and $P_{\lambda \to \infty}(\tilde{f})$ are very different from each other (Fig.S1-C). However, when $\tilde{\gamma} \sim k_0 \theta$, \tilde{f}_{λ}^* changes with λ (Fig.S1-E) and the shape of $P_{\lambda \to 0}(\tilde{f})$ differs from $P_{\lambda \to \infty}(\tilde{f})$ qualitatively (Fig.S1-D).

Asymptotic behavior at $\lambda/\tilde{\gamma} \to \infty$: To obtain the asymptotic behavior we will use the following uniform asymptotic expansion of the modified Bessel function for large orders ($\nu \to \infty$) [4].

$$I_{\nu}(\nu z) \sim \frac{1}{\sqrt{2\pi\nu}} \frac{e^{\nu\eta}}{(1+z^2)^{1/4}} \left(1 + \mathcal{O}(\nu^{-1})\right)$$

$$K_{\nu}(\nu z) \sim \sqrt{\frac{\pi}{2\nu}} \frac{e^{-\nu\eta}}{(1+z^2)^{1/4}} \left(1 + \mathcal{O}(\nu^{-1})\right)$$

$$I_{\nu}'(\nu z) \sim \frac{1}{\sqrt{2\pi\nu}} \frac{(1+z^2)^{1/4}}{z} e^{\nu\eta} \left(1 + \mathcal{O}(\nu^{-1})\right)$$

$$K_{\nu}'(\nu z) \sim -\sqrt{\frac{\pi}{2\nu}} \frac{(1+z^2)^{1/4}}{z} e^{-\nu\eta} \left(1 + \mathcal{O}(\nu^{-1})\right)$$
(S20)

where $I'_{\nu}(\nu z) \equiv \frac{d}{d(\nu z)} I_{\nu}(\nu z)$ and $\eta = \sqrt{1+z^2} + \log\left(\frac{z}{1+\sqrt{1+z^2}}\right)$

The asymptotic behavior at large negative orders can be obtained by using the relation $I_{-\nu}(z) = \frac{2}{\pi} \sin(\nu \pi) K_{\nu}(z) + I_{\nu}(z)$

$$I_{-\nu}(\nu z) \sim \left(\frac{2}{\sqrt{2\pi\nu}}\sin\left(\nu\pi\right)\frac{e^{-\nu\eta}}{(1+z^2)^{1/4}} + \frac{1}{\sqrt{2\pi\nu}}\frac{e^{\nu\eta}}{(1+z^2)^{1/4}}\right)\left(1 + \mathcal{O}(\nu^{-1})\right)$$
$$I_{-\nu}'(\nu z) \sim \left(-\frac{2}{\sqrt{2\pi\nu}}\sin\left(\nu\pi\right)\frac{(1+z^2)^{1/4}}{z}e^{-\nu\eta} + \frac{1}{\sqrt{2\pi\nu}}\frac{(1+z^2)^{1/4}}{z}e^{\nu\eta}\right)\left(1 + \mathcal{O}(\nu^{-1})\right)$$
(S21)

Using these asymptotics, we obtain the following relations at $\beta = 2\lambda/\tilde{\gamma} \to \infty$.

$$\lim_{\beta \to \infty} \mathcal{I}(\rho) \sim 2 \left(\frac{\sin \beta \pi}{\beta \pi} \right) \frac{1}{\kappa(0)} \left[e^{\beta(\eta - \eta_0)} \left(1 + \frac{1}{S(t)} \right) + e^{-\beta(\eta - \eta_0)} \left(1 - \frac{1}{S(t)} \right) \right]$$
$$\lim_{\beta \to \infty} \mathcal{I}'(\rho) \sim 2 \left(\frac{\sin \beta \pi}{\beta \pi} \right) \frac{1}{\kappa(0)\kappa(t)} \left[e^{\beta(\eta - \eta_0)} \left(S(t) + 1 \right) - e^{-\beta(\eta - \eta_0)} \left(S(t) - 1 \right) \right]$$
(S22)

where $S(t) \equiv (1 + \kappa^2(t))^{1/2}$. Therefore

$$\lim_{\beta \to \infty} \frac{\mathcal{I}'(\rho)}{\mathcal{I}(\rho)} = \frac{S(t)}{\kappa(t)} \left[\frac{(S(t)+1) - (S(t)-1)e^{-2\beta(\eta-\eta_0)}}{(S(t)+1) + (S(t)-1)e^{-2\beta(\eta-\eta_0)}} \right]$$
(S23)

FIG. S1: **A-D** Rupture force distributions, $P(\tilde{f})$, under varying loading rates $(\tilde{\gamma})$ and the gating frequency (λ) characterizing the disorder. **E.** \tilde{f}^* vs $\tilde{\gamma}$ plot under two limiting values of λ .

and

$$\lim_{\beta \to \infty} \frac{\mathcal{I}(\rho)}{\mathcal{I}(\rho_0)} = e^{\beta(\eta - \eta_0)} \left[\frac{(S(t) + 1) - (S(t) - 1)e^{-2\beta(\eta - \eta_0)}}{2S(t)} \right].$$
 (S24)

With $\lim_{\tilde{\gamma}\to 0} S(t) = S$ and $\lim_{\tilde{\gamma}\to 0} \beta(\eta - \eta_0) = \lambda St$ where $S \equiv \left(1 + \frac{4k_0\theta}{\lambda}\right)^{1/2}$, it is now easy to show

$$\lim_{\tilde{\gamma}\to 0} \frac{\mu(t)}{\mu(0)} = \frac{1}{2} \left[1 + S \frac{(S+1) - (S-1)e^{-2\lambda St}}{(S+1) + (S-1)e^{-2\lambda St}} \right]$$
(S25)

and

$$\lim_{\tilde{\gamma} \to 0} \nu(t) = -\frac{\lambda t}{2} (S-1) + \log \left[\frac{(S+1) - (S-1)e^{-2\lambda St}}{2S} \right]^{-1/2}.$$
(S26)

Thus, substituting Eq.S25 and S26 into $\Sigma(t) = \int_0^\infty dr \overline{C}(r,t) = \frac{1}{\sqrt{2\theta}} \frac{e^{\nu(t)}}{\sqrt{\mu(t)}}$ recovers the previous result for survival probability in Zwanzig's FB model [1]

$$\lim_{\tilde{\gamma} \to 0} \Sigma(t) = \exp\left(-\frac{\lambda}{2}(S-1)t\right) \left[\frac{(S+1)^2 - (S-1)^2 E}{4S}\right]^{-1/2}.$$
(S27)

For $\lambda \to \infty$ and $\lambda \to 0$, $\lim_{\lambda\to\infty} \lim_{\tilde{\gamma}\to 0} \Sigma(t) = \exp(-k\theta t)$ and $\lim_{\lambda\to 0} \lim_{\tilde{\gamma}\to 0} \Sigma(t) = (1+2k\theta t)^{-1/2}$, respectively.

Survival probability $(\Sigma(\tilde{f}))$ and rupture force distribution $(P(\tilde{f}))$ for $\lambda \to \infty$ and $\lambda \to 0$: For

 $\lambda \to \infty$, taking $\int_0^\infty dr(\cdots)$ on Eq.S6 with pre-averaged rate constant $k(t)\theta$ and transforming t into \tilde{f} , we obtain $\tilde{\gamma}\partial_{\tilde{f}}\Sigma_{\lambda\to\infty}(\tilde{f}) = -k(\tilde{f})\theta\Sigma_{\lambda\to\infty}(\tilde{f})$, which leads to

$$\Sigma_{\lambda \to \infty}(\tilde{f}) = \exp\left[-\frac{1}{\tilde{\gamma}} \int_0^{\tilde{f}} d\tilde{f}k(\tilde{f})\theta\right]$$
(S28)

and the rupture force distribution $(P(\tilde{f}) = -d\Sigma(\tilde{f})/d\tilde{f})$

$$P_{\lambda \to \infty}(\tilde{f}) = \frac{1}{\tilde{\gamma}} k(\tilde{f}) \theta \Sigma_{\lambda \to \infty}(\tilde{f})$$
(S29)

The most probable force (\tilde{f}^*) is obtained using $[\partial_{\tilde{f}}P_{\lambda\to\infty}]_{\tilde{f}=\tilde{f}^*} = 0$, which is equivalent to $\tilde{\gamma}[\partial_{\tilde{f}}k(\tilde{f})]_{\tilde{f}=\tilde{f}^*} = [k(\tilde{f})]_{\tilde{f}=\tilde{f}^*}^2 \theta$. Using $k(\tilde{f}) = k_0 e^{\tilde{f}}$, one can easily show that

$$\tilde{f}^*_{\lambda \to \infty} = \log \left[\tilde{\gamma} / (k_0 \theta) \right]. \tag{S30}$$

This expression is equivalent to the standard DFS theory except for the presence of the θ term. The fast variation of *r*-coordinate effectively modifies the reactivity $k_0 r^2$ into $k_0 \theta$.

For $\lambda \to 0$ the bottleneck radius is quenched to a single value, say, r_0 . In this case the noise-averaged probability of the molecule found at the configuration of r_0 at force \tilde{f} , $\overline{C}(r_0, \tilde{f}) = \exp\left(-\frac{1}{\tilde{\gamma}}\int_0^{\tilde{f}} d\tilde{f}k(\tilde{f})r_0^2\right)$, should be weighted by $\phi(r_0) \left[=\sqrt{\frac{2}{\pi\theta}}e^{-r_0^2/2\theta}\right]$ as $\Sigma_{\lambda\to 0}(\tilde{f}) = \int_0^\infty dr_0\overline{C}(r_0,\tilde{f})\phi(r_0)$ to give the survival probability,

$$\Sigma_{\lambda \to 0}(\tilde{f}) = \left[1 + \frac{2\theta}{\tilde{\gamma}} \int_0^{\tilde{f}} d\tilde{f} k(\tilde{f})\right]^{-1/2}.$$
 (S31)

A similar procedure as in Eqs. S29 and S30 leads to

$$P_{\lambda \to 0}(\tilde{f}) = \frac{1}{\tilde{\gamma}} k(\tilde{f}) \theta \left[\Sigma_{\lambda \to 0}(\tilde{f}) \right]^3$$
(S32)

and

$$\tilde{f}^*_{\lambda \to 0} = \log \left\{ \left(\tilde{\gamma} / k_0 \theta \right) \left(1 - 2k_0 \theta / \tilde{\gamma} \right) \right\}.$$
(S33)

Comparison between $P_{\lambda\to\infty}(\tilde{f})$ and $P_{\lambda\to0}(\tilde{f})$ **onedimensional models**: Asymptotic behaviors of P(f) with two limiting λ values at large $\tilde{f} \gg \tilde{f}^*$, $P_{\lambda\to\infty}(\tilde{f})$ and $P_{\lambda\to0}(\tilde{f})$ are obtained by using the Bell model for $k(\tilde{f})$. Comparison between $P_{\lambda\to\infty}(\tilde{f})$ and $P_{\lambda\to0}(\tilde{f})$ can be made by using the explicit form of $k(\tilde{f}) = k_0 e^{\tilde{f}}$.

$$P_{\lambda \to \infty}(\tilde{f}) = \frac{k_0 \theta}{\tilde{\gamma}} \exp\left[\tilde{f} - \frac{k_0 \theta}{\tilde{\gamma}} (e^{\tilde{f}} - 1)\right]$$
(S34)

and

$$P_{\lambda \to 0}(\tilde{f}) = \frac{k_0 \theta}{\tilde{\gamma}} \exp\left(\tilde{f}\right) \left[1 + 2\frac{k_0 \theta}{\tilde{\gamma}} (e^{\tilde{f}} - 1)\right]^{-3/2}.$$
(S35)

For $\tilde{f} \to \infty$, $P(\tilde{f})$ behaves as

$$\lim_{\tilde{f} \to \infty} \log P_{\lambda \to \infty}(\tilde{f}) \sim \tilde{f} - \frac{k_0 \theta}{\tilde{\gamma}} \exp\left(\tilde{f}\right)$$
$$\lim_{\tilde{f} \to \infty} \log P_{\lambda \to 0}(\tilde{f}) \sim -\tilde{f}/2.$$
(S36)

It is worth noting that depending on the λ value ($\lambda \rightarrow \infty$ or 0) $P_{\lambda}(\tilde{f})$ differs in its asymptotic behavior with respect to \tilde{f} (see Eqs.S35 and S36).

The asymptotic behavior of the so-called microscopic model [5, 6], whose force range is limited by the critical force $(f < f_c = \Delta G^{\ddagger}/\nu \Delta x^{\ddagger})$, is reduced to that of Gumbel distribution only if $f^* < f \ll f_c$. If $f^* <$ $f \rightarrow f_c$ then the unbinding force distribution decays precipitously to zero as $\sim (1 - f/f_c)^{1/\nu-1}(\nu = 2/3:$ cubic potential) and linearly $(\nu = 1/2:$ harmonic cusp potential) $(\lambda \rightarrow \infty \text{ corresponds to the Bell model}).$ Note that the model in [5, 6] corresponds to $\lambda \rightarrow \infty$.

In contrast, for $\tilde{f} \to 0$,

$$\begin{split} &\lim_{\tilde{f}\to 0} P_{\lambda\to\infty}(\tilde{f}) \sim \frac{k_0\theta}{\tilde{\gamma}} \times \exp\left[\left(1 - \frac{k_0\theta}{\tilde{\gamma}}\right)\tilde{f}\right] \\ &\lim_{\tilde{f}\to 0} P_{\lambda\to0}(\tilde{f}) \sim \frac{k_0\theta}{\tilde{\gamma}} \times \left[1 + \left(1 - 3\frac{k_0\theta}{\tilde{\gamma}}\right)\tilde{f} + \mathcal{O}(\tilde{f}^2)\right]. \end{split}$$
(S37)

The initial slope of $P(\tilde{f})$ is determined by the value of $k_0\theta/\tilde{\gamma}$.

- [1] R. Zwanzig, J. Chem. Phys. 97, 3587 (1992).
- [2] C. Hyeon and D. Thirumalai, J. Phys.: Condens. Matter 19, 113101 (2007).
- [3] E. Evans, Annu. Rev. Biophys. Biomol. Struct. 30, 105 (2001).
- [4] M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover Publications, 1972).
- [5] A. Garg, Phys. Rev. B. 51, 15592 (1995).
- [6] O. K. Dudko, G. Hummer, and A. Szabo, Phys. Rev. Lett. 96, 108101 (2006).