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Derivation of the Smoluchowski equation for
FB model : According to the Liouville theorem
(dϕ/dt = 0) the time evolution of probability density
ϕ(x, r, t) in terms of x and r satisfies

∂ϕ

∂t
= − ∂

∂x

(
dx

dt
ϕ

)
− ∂

∂r

(
dr

dt
ϕ

)
. (S1)

Insertion of two Langevin equations (Eq.(1) in the
main text) for the fluctuating bottleneck model ∂tx =
−ζ−1[∂xUeff(x; r) + Fx(t)] and ∂tr = −λr + Fr(t) into
Eq.S1 leads to

∂ϕ

∂t
=

∂

∂x

(
1
ζ

dUeff(x)
dx

ϕ

)
+

∂

∂r
(λrϕ)− ∂

∂x

(
1
ζ
Fx(t)ϕ

)
− ∂

∂r
(Fr(t)ϕ)

≡ −Lϕ− ∂

∂~a
·
(
~F (t)ϕ

)
(S2)

where ~a ≡ (x, r) and ~F (t) ≡ ( 1
ζFx(t), Fr(t)). Using

the vector notation as in the second line of Eq.S2, one
can formally solve for the probability density ϕ(~a, t)
as

ϕ(~a, t) = e−tLϕ(~a, 0)−
∫ t

0

dse−(t−s)L ∂
∂~a
·
(
~F (s)ϕ(~a, s)

)
(S3)

Averaging ϕ(~a, t) over noise after iterating ϕ(~a, t) into
the noise related term in the integrand and exploit-
ing the fluctuation-dissipation theorem, we obtain the
Smoluchowski equation for ϕ(x, r, t) in the presence of
a reaction sink, S(x, r) = krr

2δ(x− xts),

∂ϕ(x, r, t)
∂t

= [Lx(x) + Lr(r)− S(x, r)]ϕ(x, r, t),

(S4)
where Lx ≡ D∂x

(
∂x + (kBT )−1∂xUeff(x)

)
and

Lr ≡ λθ∂r (∂r + r/θ). Integrating both sides
of the equation over x by defining C(r, t) ≡∫∞
−∞ dxϕ(x, r, t) leads to ∂tC = LrC(r, t) −
krr

2ϕ(xts, r, t). By setting ϕ(xts, r, t) = φx(xts)C(r, t)
where φ(xts) = e−Ueff(xts)/kBT /

∫
dxe−Ueff(x)/kBT ≈

√
U ′′eff(xb)/2πkBTe−(Ueff(xts)−Ueff(xb))/kBT , we get

∂tC(r, t) =
[
λθ∂r (∂r + r/θ)− kr2

]
C(r, t), (S5)

where k ≡ kr
√
U ′′eff(xb)/2πkBTe−∆U‡/kBT with

∆U‡ ≡ U(xts) − U(xb). In all likelihood,
kr
(
= D ×

√
U ′′eff(xts)/2πkBT

)
represents the product

of diffusion coefficient D associated with barrier
crossing dynamics and the contribution of dy-
namics at the barrier top. Thus, under tension
f , one can set k → k(f) = k0e

f∆x‡/kBT where
k0 ≡ (ξD

√
U ′′eff(xb)U ′′eff(xts)/2πkBT )e−∆U‡/kBT

and ξ describes the correction due to geometrical
information of the cross section of bottleneck [1, 2].
Therefore, under tension f , Eq.S5 becomes Eq.(2) in
the main text.

Solution of the Smoluchowski equation with
time-dependent sink : For the problem with a
constant loading rate, the sink function of our Smolu-
chowski equation becomes time-dependent, resulting
in the following equation for the flux C(r, t),

∂C(r, t)
∂t

= λθ
∂

∂r

(
∂

∂r
+
r

θ

)
C(r, t)− k0r

2et(γ∆x‡/kBT )C(r, t) (S6)

with C(r, t = 0) =
√

2
πθ e
−r2/2θ. Although a time-dependent sink term, in general, makes Smoluchowski equations

analytically intractable, the ansatz C(r, t) ∼ eν(t)−µ(t)r2 used in the Ref. [1] allows us to solve the above problem
exactly. Substitution of C(r, t) ∼ eν(t)−µ(t)r2 leads to two ODEs for ν(t) and µ(t) (with ′ denoting derivative
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with respect to t),

ν′(t) = −2λθµ(t) + λ (S7)

and (
µ(t)− 1

4θ

)′
= −4λθ

(
µ(t)− 1

4θ

)2

+
λ

4θ

(
1 +

4k0θ

λ
etγ̃
)

(S8)

with µ(0) = 1/2θ. The equation for µ(t) in Eq.S13
is the Riccati equation, y′ = q0(t) + q1(t)y + q2(t)y2

with y(t) ≡ µ(t)− 1/4θ. In general, the Riccati equa-
tion can be reduced to a second order ODE. The vari-
able is changed in two steps : (i) v(t) = q2(t)y(t)
leads to v′ = v2 + P (t)v + Q(t) where Q = q0q2 =
−λ2

(
1 + 4k0θ

λ etγ̃
)

and P = q1 + q′2/q2 = 0. (ii) An-
other substitution v(t) = −u′(t)/u(t) leads to u′′(t)−
P (t)u′(t) +Q(t)u(t) = 0, i.e.,

u′′(t)− λ2

(
1 +

4k0θ

λ
etγ̃
)
u(t) = 0. (S9)

Introducing the variable ρ = 2λ
γ̃

√
4k0θ
λ etγ̃/2 = βκ(t)

with β ≡ 2λ
γ̃ and κ(t) ≡

√
4k0θ
λ etγ̃/2 one can modify

the second-order ODE in Eq.S9 into a more familiar
modified Bessel equation,

ρ2Uρρ + ρUρ −
[
β2 + ρ2

]
U = 0 (S10)

where u(t) = U(ρ). The solution of the above ODE
is the linear combination of I±β(ρ) for non-integer β,
and the linear combination of Iβ(ρ) and Kβ(ρ) when
β is integer. Thus, the solution of Eq.S10 is

U(ρ) =
{
c1Iβ(ρ) + c2I−β(ρ) β 6= n, β > 0
c1Iβ(ρ) + c2Kβ(ρ) β = n where n = 0, 1, 2 · · ·

(S11)
For simplicity, we use the notation Qβ(ρ) to represent
either I−β(ρ) or Kβ(ρ),

Qβ(ρ) =
{
I−β(ρ) β 6= n, β > 0
Kβ(ρ) β = n where n = 0, 1, 2 · · ·

(S12)

Thus one obtains µ(t) using y(t) = − u′(t)
q2(t)u(t) .

µ(t) =
1
4θ

+
κ(t)
4θ

(
I ′β(ρ) + cQ′β(ρ)
Iβ(ρ) + cQβ(ρ)

)
. (S13)

Note that I ′β(ρ) ≡ dIβ(ρ)/dρ. The initial condition
µ(0) = 1/2θ determines the constant c in Eq.S13

c =
I ′β(ρ0)− [κ(0)]−1Iβ(ρ0)

[κ(0)]−1Qβ(ρ0)−Q′β(ρ0)
. (S14)

where ρ0 ≡ βκ(0). Thus, one obtains

µ(t)
µ(0)

=
1
2

[
1 + κ(t)

I ′(ρ)
I(ρ)

]
(S15)

where I(ρ) ≡
(
I ′β(ρ0)Qβ(ρ)−Q′β(ρ0)Iβ(ρ)

)
−

[κ(0)]−1 {Iβ(ρ0)Qβ(ρ)−Qβ(ρ0)Iβ(ρ)}. Recall that

ρ ≡ βκ(t) with β ≡ 2λ/γ̃, κ(t) ≡
√

4k0θ
λ etγ̃/2, and

ρ0 ≡ ρ(0). Note that κ(0)(I ′(ρ0)/I(ρ0)) = 1 is sat-
isfied. Integration of Eq.S7 with t using Eq.S15 and
change of variable dρ = βγ̃

2 κ(t)dt = λκ(t)dt results in
the expression for ν(t):

ν(t) =
λt

2
− 1

2
log
(
I(ρ)
I(ρ0)

)
. (S16)

With µ(t) (Eq.S15) and ν(t) (Eq.S16) in hand, we can
solve

C(r, t) =

√
2
πθ

[
I(ρ)
I(ρ0)

]−1/2

exp
[
λt

2
− r2

4θ

{
1 + κ(t)

I ′(ρ)
I(ρ)

}]
, (S17)

from which the survival probability is obtained as

Σγλ(t) =
∫ ∞

0

drC(r, t) =
1√
2θ

eν(t)√
µ(t)

=
√

2e
λt
2

[
I(ρ)
I(ρ0)

]−1/2 [
1 + κ(t)

I ′(ρ)
I(ρ)

]−1/2

. (S18)
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The λ-dependent unbinding time distribution Pλ(t) are obtained from the relation Pλ(t) = −dΣγλ(t)/dt,

Pλ(t) =
λeλt/2√

2

[
κ2(t)

I ′′(ρ)
I(ρ)

+
1
β
κ(t)
I ′(ρ)
I(ρ)

− 1
] [
I(ρ)
I(ρ0)

]−1/2 [
1 + κ(t)

I ′(ρ)
I(ρ)

]−3/2

. (S19)

Transformation to the unbinding force distribution
Pλ(f̃)

[
= γ̃−1Pλ(t)

]
is made through the relationship

between dimensionless scaled-force (f̃) and time t:
f̃ = γ̃t with γ̃ = γ∆x‡/kBT .

Illustration using synthetic data : Although
Pλ(f̃) in Eq.S19 is complicated, the familiar expres-
sion used in the Dynamic Force Spectroscopy (DFS)
for P (f) is restored when λ → ∞ (see below). In
order to obtain insight into the behavior of Pλ(f̃) we
generated several synthetic distributions for varying
λ values and loading rates. We find that Pλ(f̃) with
varying γ̃(= γ∆x‡/kBT ) shows the standard pattern
of force distribution in DFS (Fig.S1-A, B) [2, 3]. The

effect of varying λ on Pλ(f̃) is shown in Fig.S1-C, D.
It is of particular interest that if γ̃ � k0θ then the
most probable forces f∗λ from Pλ(f̃) are insensitive to
the variation in λ even though the shapes of Pλ→0(f̃)
and Pλ→∞(f̃) are very different from each other
(Fig.S1-C). However, when γ̃ ∼ k0θ, f̃∗λ changes with
λ (Fig.S1-E) and the shape of Pλ→0(f̃) differs from
Pλ→∞(f̃) qualitatively (Fig.S1-D).

Asymptotic behavior at λ/γ̃ →∞ : To obtain the
asymptotic behavior we will use the following uniform
asymptotic expansion of the modified Bessel function
for large orders (ν →∞) [4].

Iν(νz) ∼ 1√
2πν

eνη

(1 + z2)1/4

(
1 +O(ν−1)

)
Kν(νz) ∼

√
π

2ν
e−νη

(1 + z2)1/4

(
1 +O(ν−1)

)
I ′ν(νz) ∼ 1√

2πν
(1 + z2)1/4

z
eνη
(
1 +O(ν−1)

)
K ′ν(νz) ∼ −

√
π

2ν
(1 + z2)1/4

z
e−νη

(
1 +O(ν−1)

)
(S20)

where I ′ν(νz) ≡ d
d(νz)Iν(νz) and η =

√
1 + z2 + log

(
z

1+
√

1+z2

)
The asymptotic behavior at large negative orders can be obtained by using the relation I−ν(z) =

2
π sin (νπ)Kν(z) + Iν(z)

I−ν(νz) ∼
(

2√
2πν

sin (νπ)
e−νη

(1 + z2)1/4
+

1√
2πν

eνη

(1 + z2)1/4

)(
1 +O(ν−1)

)
I ′−ν(νz) ∼

(
− 2√

2πν
sin (νπ)

(1 + z2)1/4

z
e−νη +

1√
2πν

(1 + z2)1/4

z
eνη
)(

1 +O(ν−1)
)

(S21)

Using these asymptotics, we obtain the following relations at β = 2λ/γ̃ →∞.

lim
β→∞

I(ρ) ∼ 2
(

sinβπ
βπ

)
1

κ(0)

[
eβ(η−η0)

(
1 +

1
S(t)

)
+ e−β(η−η0)

(
1− 1

S(t)

)]
lim
β→∞

I ′(ρ) ∼ 2
(

sinβπ
βπ

)
1

κ(0)κ(t)

[
eβ(η−η0) (S(t) + 1)− e−β(η−η0) (S(t)− 1)

]
(S22)

where S(t) ≡ (1 + κ2(t))1/2. Therefore

lim
β→∞

I ′(ρ)
I(ρ)

=
S(t)
κ(t)

[
(S(t) + 1)− (S(t)− 1)e−2β(η−η0)

(S(t) + 1) + (S(t)− 1)e−2β(η−η0)

]
(S23)
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FIG. S1: A-D Rupture force distributions, P (f̃), under varying loading rates (γ̃) and the gating frequency (λ) charac-

terizing the disorder. E. f̃∗ vs γ̃ plot under two limiting values of λ.

and

lim
β→∞

I(ρ)
I(ρ0)

= eβ(η−η0)

[
(S(t) + 1)− (S(t)− 1)e−2β(η−η0)

2S(t)

]
. (S24)

With limγ̃→0 S(t) = S and limγ̃→0 β(η − η0) = λSt where S ≡
(
1 + 4k0θ

λ

)1/2
, it is now easy to show

lim
γ̃→0

µ(t)
µ(0)

=
1
2

[
1 + S

(S + 1)− (S − 1)e−2λSt

(S + 1) + (S − 1)e−2λSt

]
(S25)

and

lim
γ̃→0

ν(t) = −λt
2

(S − 1) + log
[

(S + 1)− (S − 1)e−2λSt

2S

]−1/2

. (S26)

Thus, substituting Eq.S25 and S26 into Σ(t) =
∫∞

0
drC(r, t) = 1√

2θ
eν(t)√
µ(t)

recovers the previous result for survival

probability in Zwanzig’s FB model [1]

lim
γ̃→0

Σ(t) = exp
(
−λ

2
(S − 1)t

)[
(S + 1)2 − (S − 1)2E

4S

]−1/2

. (S27)

For λ → ∞ and λ → 0, limλ→∞ limγ̃→0 Σ(t) =
exp (−kθt) and limλ→0 limγ̃→0 Σ(t) = (1 + 2kθt)−1/2,
respectively.

Survival probability (Σ(f̃)) and rupture force
distribution (P (f̃)) for λ → ∞ and λ → 0 : For

λ→∞, taking
∫∞

0
dr(· · · ) on Eq.S6 with pre-averaged

rate constant k(t)θ and transforming t into f̃ , we ob-
tain γ̃∂f̃Σλ→∞(f̃) = −k(f̃)θΣλ→∞(f̃), which leads to

Σλ→∞(f̃) = exp

[
− 1
γ̃

∫ f̃

0

df̃k(f̃)θ

]
(S28)
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and the rupture force distribution (P (f̃) =
−dΣ(f̃)/df̃)

Pλ→∞(f̃) =
1
γ̃
k(f̃)θΣλ→∞(f̃) (S29)

The most probable force (f̃∗) is obtained us-
ing [∂f̃Pλ→∞]f̃=f̃∗ = 0, which is equivalent to

γ̃[∂f̃k(f̃)]f̃=f̃∗ = [k(f̃)]2
f̃=f̃∗

θ. Using k(f̃) = k0e
f̃ , one

can easily show that

f̃∗λ→∞ = log [γ̃/(k0θ)]. (S30)

This expression is equivalent to the standard DFS the-
ory except for the presence of the θ term. The fast
variation of r-coordinate effectively modifies the reac-
tivity k0r

2 into k0θ.
For λ→ 0 the bottleneck radius is quenched to a sin-

gle value, say, r0. In this case the noise-averaged prob-
ability of the molecule found at the configuration of r0

at force f̃ , C(r0, f̃) = exp
(
− 1
γ̃

∫ f̃
0
df̃k(f̃)r2

0

)
, should

be weighted by φ(r0)
[
=
√

2
πθ e
−r20/2θ

]
as Σλ→0(f̃) =∫∞

0
dr0C(r0, f̃)φ(r0) to give the survival probability,

Σλ→0(f̃) =

[
1 +

2θ
γ̃

∫ f̃

0

df̃k(f̃)

]−1/2

. (S31)

A similar procedure as in Eqs. S29 and S30 leads to

Pλ→0(f̃) =
1
γ̃
k(f̃)θ

[
Σλ→0(f̃)

]3
(S32)

and

f̃∗λ→0 = log {(γ̃/k0θ) (1− 2k0θ/γ̃)}. (S33)

Comparison between Pλ→∞(f̃) and Pλ→0(f̃) one-
dimensional models : Asymptotic behaviors of
P (f) with two limiting λ values at large f̃ � f̃∗,
Pλ→∞(f̃) and Pλ→0(f̃) are obtained by using the Bell
model for k(f̃). Comparison between Pλ→∞(f̃) and
Pλ→0(f̃) can be made by using the explicit form of
k(f̃) = k0e

f̃ .

Pλ→∞(f̃) =
k0θ

γ̃
exp

[
f̃ − k0θ

γ̃
(ef̃ − 1)

]
(S34)

and

Pλ→0(f̃) =
k0θ

γ̃
exp (f̃)

[
1 + 2

k0θ

γ̃
(ef̃ − 1)

]−3/2

.

(S35)

For f̃ →∞, P (f̃) behaves as

lim
f̃→∞

logPλ→∞(f̃) ∼ f̃ − k0θ

γ̃
exp (f̃)

lim
f̃→∞

logPλ→0(f̃) ∼ −f̃/2. (S36)

It is worth noting that depending on the λ value (λ→
∞ or 0) Pλ(f̃) differs in its asymptotic behavior with
respect to f̃ (see Eqs.S35 and S36).

The asymptotic behavior of the so-called micro-
scopic model [5, 6], whose force range is limited by the
critical force (f < fc = ∆G‡/ν∆x‡), is reduced to that
of Gumbel distribution only if f∗ < f � fc. If f∗ <
f → fc then the unbinding force distribution decays
precipitously to zero as ∼ (1 − f/fc)1/ν−1(ν = 2/3:
cubic potential) and linearly (ν = 1/2: harmonic cusp
potential) (λ → ∞ corresponds to the Bell model).
Note that the model in [5, 6] corresponds to λ→∞.

In contrast, for f̃ → 0,

lim
f̃→0

Pλ→∞(f̃) ∼ k0θ

γ̃
× exp

[(
1− k0θ

γ̃

)
f̃

]
lim
f̃→0

Pλ→0(f̃) ∼ k0θ

γ̃
×
[
1 +

(
1− 3

k0θ

γ̃

)
f̃ +O(f̃2)

]
.

(S37)

The initial slope of P (f̃) is determined by the value
of k0θ/γ̃.
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