# **Electronic Supplementary Information for:**

# Structural characterization of framework–gas interactions in the metal–organic framework Co<sub>2</sub>(dobdc) by *in situ* single-crystal X-ray diffraction

Miguel I. Gonzalez,<sup>a</sup> Jarad A. Mason,<sup>a</sup> Eric D. Bloch,<sup>a</sup> Simon J. Teat,<sup>b</sup> Kevin J. Gagnon,<sup>b</sup> Gregory Y. Morrison,<sup>b</sup> Wendy L. Queen,<sup>cd</sup> and Jeffrey R. Long<sup>\*aef</sup>

<sup>a</sup>Department of Chemistry, University of California, Berkeley, California, 94720-1462, USA. <sup>b</sup>Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.

<sup>c</sup>The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.

dÉcole Polytechnique Fédérale de Lausanne (EPFL), Institut des Sciences et Ingénierie Chimiques, CH 1051 Sion, Switzerland

<sup>e</sup>Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, 94720-1462, USA.

<sup>f</sup>Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States, 94720, USA.

| Table of Contents                                                                  |    |
|------------------------------------------------------------------------------------|----|
| Supplementary Figures                                                              | 3  |
| Thermal ellipsoid plots and crystallographic tables                                | 5  |
| Langmuir fits for low-pressure gas adsorption isotherms of Co <sub>2</sub> (dobdc) | 14 |
| Low-coverage differential enthalpy of adsorption plots for Co <sub>2</sub> (dobdc) | 22 |
| References                                                                         |    |

### **Supplementary Figures**



**Figure S1.** Comparison of the secondary binding sites in the structures of  $Co_2(dobdc) \cdot 3.8N_2$  at 100 K,  $Co_2(dobdc) \cdot 5.9O_2$  at 100 K,  $Co_2(dobdc) \cdot 2.0Ar$  at 90 K,  $Co_2(dobdc) \cdot 2.9CO_2^{-1}$  at 150 K, and  $Co_2(dobdc) \cdot 7.8H_2O^2$  at 100 K as determined by single-crystal X-ray diffraction. Purple, red, gray, blue, light blue, and white spheres represent Co, O, C, N, Ar, and H atoms, respectively. The structures of  $Co_2(dobdc) \cdot 2.9CO_2$  and  $Co_2(dobdc) \cdot 7.8H_2O$  have been reported previously and are shown here to facilitate comparisons.



**Figure S2.** Selected intermolecular contacts between the phenoxide oxygen (O1) and non-bridging carboxylate oxygen (O3) of the dobdc<sup>4–</sup> linkers and gases bound at secondary binding sites in the structures of  $Co_2(dobdc) \cdot 3.8N_2$  at 100 K,  $Co_2(dobdc) \cdot 5.9O_2$  at 100 K,  $Co_2(dobdc) \cdot 2.0Ar$  at 90 K,  $Co_2(dobdc) \cdot 2.9CO_2^{-1}$  at 150 K, and  $Co_2(dobdc) \cdot 7.8H_2O^2$  at 100 K as determined by single-crystal X-ray diffraction. Purple, red, gray, blue, light blue, and white spheres represent Co, O, C, N, Ar, and H atoms, respectively. The structures of  $Co_2(dobdc) \cdot 2.9CO_2$  and  $Co_2(dobdc) \cdot 7.8H_2O$  have been reported previously and are shown here to facilitate comparisons.

Thermal ellipsoid plots and crystallographic tables



**Figure S3.** Thermal ellipsoid plot of  $Co_2(dobdc)$  at 298 K drawn at 50% probability level as determined by singlecrystal X-ray diffraction; purple, red, gray and white ellipsoids represent Co, O, C, and H atoms, respectively.



**Figure S4.** Thermal ellipsoid plot of Co<sub>2</sub>(dobdc)·0.58CO at 90 K drawn at 50% probability level as determined by single-crystal X-ray diffraction; purple, red, gray, and white ellipsoids represent Co, O, C, and H atoms, respectively.



**Figure S5.** Thermal ellipsoid plot of  $Co_2(dobdc)$ ·1.2CO at 100 K drawn at 50% probability level as determined by single-crystal X-ray diffraction; purple, red, gray, and white ellipsoids represent Co, O, C, and H atoms, respectively.



**Figure S6.** Thermal ellipsoid plot of  $Co_2(dobdc) \cdot 3.8N_2$  at 100 K drawn at 50% probability level as determined by single-crystal X-ray diffraction; purple, red, gray, blue, and white ellipsoids represent Co, O, C, N, and H atoms, respectively.



**Figure S7.** Thermal ellipsoid plot of  $Co_2(dobdc) \cdot 5.9O_2$  at 100 K drawn at 50% probability level as determined by single-crystal X-ray diffraction; purple, red, gray, and white ellipsoids represent Co, O, C, and H atoms, respectively. Note,  $O_2$  bound to the Co<sup>II</sup> sites were found to be disordered over two orientations with relative occupancies of 73(3)% and 27(3)%.



**Figure S8.** Thermal ellipsoid plot of  $Co_2(dobdc)$ ·2.0CH<sub>4</sub> at 100 K drawn at 50% probability level as determined by single-crystal X-ray diffraction; purple, red, gray, and white ellipsoids represent Co, O, C, and H atoms, respectively.



**Figure S9.** Thermal ellipsoid plot of  $Co_2(dobdc)$  2.0Ar at 90 K drawn at 50% probability level as determined by single-crystal X-ray diffraction; purple, red, gray, light blue, and white ellipsoids represent Co, O, C, Ar, and H atoms, respectively.



**Figure S10.** Thermal ellipsoid plot of  $Co_2(dobdc) \cdot 1.3P_4$  at 100 K drawn at 50% probability level as determined by single-crystal X-ray diffraction; purple, red, gray, light orange, and white ellipsoids represent Co, O, C, P, and H atoms, respectively. Note, the P<sub>4</sub> molecules were found in two positions, one with P<sub>4</sub> molecules coordinated to the Co<sup>II</sup> sites (45.5(10)% occupancy) and another 3.88(3) Å away from the Co<sup>II</sup> sites centers (20.6(10)% occupancy).

|                                                                     | Co <sub>2</sub> (dobdc)                                     | Co <sub>2</sub> (dobdc)·0.58CO            | Co <sub>2</sub> (dobdc)·1.2CO         | Co <sub>2</sub> (dobdc)·3.8N <sub>2</sub> | Co <sub>2</sub> (dobdc)·5.9O <sub>2</sub> | Co <sub>2</sub> (dobdc)·2.0CH <sub>4</sub> | Co <sub>2</sub> (dobdc)·2.0Ar                                              | Co <sub>2</sub> (dobdc)·1.3P <sub>4</sub> |
|---------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|---------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------|
| Formula                                                             | $\mathrm{Co}_{2}\mathrm{C}_{8}\mathrm{H}_{2}\mathrm{O}_{6}$ | $Co_2C_{8.58}H_2O_{6.58}$                 | $Co_2C_{9.19}H_2O_{7.18}$             | $Co_2C_8H_2N_{7.56}O_6$                   | $Co_2C_8H_2O_{17.88}$                     | $Co_2C_{10}H_{10}O_6$                      | $\mathrm{Co}_{2}\mathrm{C}_{8}\mathrm{H}_{2}\mathrm{O}_{6}\mathrm{Ar}_{2}$ | $Co_2C_8H_2O_6P_{5.28}$                   |
| Temperature (K)                                                     | 296(2)                                                      | 90(2)                                     | 100(2)                                | 100(2)                                    | 100(2)                                    | 100(2)                                     | 90(2)                                                                      | 100(2)                                    |
| Crystal System                                                      | Trigonal                                                    | Trigonal                                  | Trigonal                              | Trigonal                                  | Trigonal                                  | Trigonal                                   | Trigonal                                                                   | Trigonal                                  |
| Space Group                                                         | R3                                                          | RЗ                                        | R3                                    | R3                                        | R3                                        | R3                                         | R3                                                                         | R3                                        |
| a, b, c (Å)                                                         | 25.892(4),<br>25.892(4),<br>6.8482(9)                       | 25.8262(16),<br>25.8262(16),<br>6.8315(4) | 25.853(3),<br>25.853(3),<br>6.8494(7) | 25.810(8),<br>25.810(8),<br>6.901(2)      | 25.7599(9),<br>25.7599(9),<br>6.8766(3)   | 25.866(5),<br>25.866(5),<br>6.8457(12)     | 25.860(4),<br>25.860(4),<br>6.8678(10)                                     | 25.7348(8),<br>25.7348(8),<br>6.8385(2)   |
| $\alpha, \beta, \gamma$ (°)                                         | 90, 90, 120                                                 | 90, 90, 120                               | 90, 90, 120                           | 90, 90, 120                               | 90, 90, 120                               | 90, 90, 120                                | 90, 90, 120                                                                | 90, 90, 120                               |
| V, (Å <sup>3</sup> )                                                | 3975.9(12)                                                  | 3946.1(5)                                 | 3964.6(9)                             | 3981(3)                                   | 3951.8(3)                                 | 3966.4(15)                                 | 3977.5(12)                                                                 | 3922.2(3)                                 |
| Z                                                                   | 9                                                           | 9                                         | 9                                     | 9                                         | 9                                         | 9                                          | 9                                                                          | 9                                         |
| Radiation, $\lambda$ (Å)                                            | Synchrotron,<br>0.7749                                      | Synchrotron, 0.7749                       | Synchrotron,<br>0.7749                | Synchrotron,<br>0.6199                    | Synchrotron,<br>0.7749                    | Synchrotron,<br>0.7749                     | Synchrotron,<br>0.6525                                                     | Synchrotron,<br>0.7749                    |
| 20 Range for<br>Data Collection<br>(°)                              | 6.782 to 64.176                                             | 6.8 to 69.512                             | 6.782 to 69.43                        | 4.768 to 47.466                           | 5.974 to 54.904                           | 6.786 to 65.124                            | 5.696 to 63.570                                                            | 6.796 to 74.476                           |
| Completeness to $2\Theta$                                           | 99.9%<br>(2Θ = 55.412°)                                     | 99.0%<br>(2Θ = 55.412°)                   | 99.9%<br>(2\Overline = 55.412°)       | 99.9%<br>(2\overline = 43.670°)           | 99.1%<br>(2 $\Theta$ = 54.904°)           | 99.8%<br>(2Θ = 55.412°)                    | 99.8%<br>(2 $\Theta$ = 46.096°)                                            | 99.9%<br>(2Θ = 55.412°)                   |
| Data / Restraints<br>/ Parameters                                   | 2374 / 0 / 74                                               | 2857 / 0 / 92                             | 2885 / 9 / 92                         | 2040 / 8 / 110                            | 1536 / 34 / 138                           | 2442 / 0 / 83                              | 3887 / 6 / 94                                                              | 3479 / 216 / 148                          |
| Goodness of Fit<br>on F <sup>2</sup>                                | 1.116                                                       | 1.070                                     | 1.051                                 | 1.190                                     | 1.015                                     | 1.064                                      | 1.072                                                                      | 1.198                                     |
| $\begin{array}{c} R1^a, wR2^b\\ (I\!\!>\!\!2\sigma(I)) \end{array}$ | 0.0485,<br>0.1370                                           | 0.0274,<br>0.0696                         | 0.0389,<br>0.0978                     | 0.0632,<br>0.1233                         | 0.0481,<br>0.1045                         | 0.0477,<br>0.1205                          | 0.0513,<br>0.1272                                                          | 0.0822,<br>0.2465                         |
| R1 <sup><i>a</i></sup> , wR2 <sup><i>b</i></sup><br>(all data)      | 0.0564,<br>0.1453                                           | 0.0317,<br>0.0718                         | 0.0491,<br>0.1032                     | 0.0805,<br>0.1328                         | 0.0860,<br>0.1203                         | 0.0558,<br>0.1271                          | 0.0637,<br>0.1358                                                          | 0.0902,<br>0.2530                         |
| Largest Diff.<br>Peak and Hole<br>(e Å <sup>-3</sup> )              | 0.990 and<br>-0.519                                         | 0.578 and -0.391                          | 0.454 and -0.432                      | 0.688 and -0.753                          | 0.826 and<br>-0.587                       | 0.777 and<br>-0.482                        | 1.740 and<br>-0.956                                                        | 2.388 and -1.557                          |

### Table S1. Crystallographic Data

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. {}^{b}wR_{2} = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}] \}^{1/2}.$ 



Langmuir fits for low-pressure gas adsorption isotherms of Co<sub>2</sub>(dobdc)

**Figure S11.** Dual-site Langmuir fits and parameters for CH<sub>4</sub> adsorption isotherms of Co<sub>2</sub>(dobdc) at 293.15, 298.15, 303.15, 313.15, 323.15 K (fit independently for each temperature); *T* is the temperature,  $n_{sat,I}$  is the saturation capacity,  $S_i$  is the site-specific molar entropy of adsorption,  $E_i$  is the site-specific binding energy, and R is the gas constant in J/mol·K.

9.39

17.5

6.41

20.4

6.41

323.15

10.5



| Figure S12. Dual-site Langmuir fits and parameters for CH <sub>4</sub> adsorption isotherms of Co <sub>2</sub> (dobdc) at 293.15, 298.15, |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| 303.15, 313.15, 323.15 K (fit simultaneously for all temperatures); $n_{sat,I}$ is the saturation capacity, $S_i$ is the site-            |
| specific molar entropy of adsorption, $E_i$ is the site-specific binding energy, and R is the gas constant in J/mol·K.                    |



**Figure S13.** Single-site Langmuir fits and parameters for N<sub>2</sub> adsorption isotherms of Co<sub>2</sub>(dobdc) at 298.15, 308.15, and 318.15 K (fit independently for each temperature); *T* is the temperature,  $n_{sat,I}$  is the saturation capacity,  $S_i$  is the site-specific molar entropy of adsorption,  $E_i$  is the site-specific binding energy, and R is the gas constant in J/mol·K.



**Figure S14.** Single-site Langmuir fit and parameters for N<sub>2</sub> adsorption isotherms of Co<sub>2</sub>(dobdc) at 298.15, 308.15, and 318.15 K (fit simultaneously for all temperatures);  $n_{sat,I}$  is the saturation capacity,  $S_i$  is the site-specific molar entropy of adsorption,  $E_i$  is the site-specific binding energy, and R is the gas constant in J/mol·K.



**Figure S15.** Single-site Langmuir fits and parameters for O<sub>2</sub> adsorption isotherms of Co<sub>2</sub>(dobdc) at 298.15, 308.15, and 318.15 K (fit independently for each temperature); *T* is the temperature,  $n_{sat,I}$  is the saturation capacity,  $S_i$  is the site-specific molar entropy of adsorption,  $E_i$  is the site-specific binding energy, and R is the gas constant in J/mol·K.



**Figure S16.** Single-site Langmuir fits and parameters for O<sub>2</sub> adsorption isotherms of Co<sub>2</sub>(dobdc) at 298.15, 308.15, and 318.15 K (fit simultaneously for all temperatures);  $n_{sat,I}$  is the saturation capacity,  $S_i$  is the site-specific molar entropy of adsorption,  $E_i$  is the site-specific binding energy, and R is the gas constant in J/mol·K.



**Figure S17.** Single-site Langmuir fits and parameters for Ar adsorption isotherms of Co<sub>2</sub>(dobdc) at 298.15, 308.15, and 318.15 K (fit independently for each temperature); *T* is the temperature,  $n_{sat,I}$  is the saturation capacity,  $S_i$  is the site-specific molar entropy of adsorption,  $E_i$  is the site-specific binding energy, and R is the gas constant in J/mol·K.



**Figure S18.** Single-site Langmuir fits and parameters for Ar adsorption isotherms of Co<sub>2</sub>(dobdc) at 298.15, 308.15, and 318.15 K (fit simultaneously for all temperatures);  $n_{sat,I}$  is the saturation capacity,  $S_i$  is the site-specific molar entropy of adsorption,  $E_i$  is the site-specific binding energy, and R is the gas constant in J/mol·K.



Low-coverage differential enthalpy of adsorption plots for Co<sub>2</sub>(dobdc)

**Figure S19.** Low-coverage differential enthalpy of adsorption ( $\Delta h_{ad}$ ) plots (calculated using independent Langmuir fits to low-pressure adsorption isotherms) for CH<sub>4</sub> (gray), N<sub>2</sub> (dark blue), O<sub>2</sub> (red), and Ar (light blue) adsorption in Co<sub>2</sub>(dobdc). Error bars for CH<sub>4</sub> and O<sub>2</sub> are smaller than the symbols used for the data.

#### References

- W. L. Queen, M. R. Hudson, E. D. Bloch, J. A. Mason, M. I. Gonzalez, J. S. Lee, D. Gygi, J. D. Howe, K. Lee, T. A. Darwish, M. James, V. K. Peterson, S. J. Teat, B. Smit, J. B. Neaton, J. R. Long and C. M. Brown, *Chem. Sci.*, 2014, 5, 4569–4581.
- 2 R. Mercado, B. Vlaisavljevich, L.-C. Lin, K. Lee, Y. Lee, J. A. Mason, D. J. Xiao, M. I. Gonzalez, M. T. Kapelewski, J. B. Neaton and B. Smit, *J. Phys. Chem. C*, 2016, **120**, 12590–12604.