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1 Additional experiments and fits

1.1 Full datasets from Fig. 4

For clarity we showed only part of the dataset in the fits in Fig. 4. The full datasets are
shown here in Fig. S1. Note that the fits shown in the main text were also performed on
the entire dataset, i.e. they are the same as the ones shown here, some concentrations
were simply omitted for clarity.

1.2 Fitting reaction orders

In the main text we noted a slight deviation of the fits in the parallel limit at high
monomer concentrations, Fig. 4. This may in fact be due to a small increase in the
reaction order of secondary nucleation, e.g. due to an increase in secondary nucleus
size. A freely varying n2 achieved fits to the experimental data within error, as shown
in Fig. S2, with a value of n2 ≈ 4. However, the improvement in the fit is small and all
other salt concentrations fit well to a value of n2 = 2. In addition a constant value of
n2 across the salt concentration allows for better comparison of the fitted rates. In the
main text we therefore chose to keep n2 fixed to a value of 2.
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Figure S1: Fits from Fig. 4. In Fig. 4 only part of the dataset was shown, here we
display all monomer concentrations for the fits in the parallel limit to the data at 2.5
mM salt and the fits in the saturation limit to the data at 150 mM salt.
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Figure S2: Fit of the full kinetic curves at 2.5 mM salt with n2 as a free
parameter. On the left the secondary nucleation reaction order,n2, is fixed to 2, which
is the case used in the main text, on the right n2 is left to vary during the fitting. n2

converged to a value of 4, when left to vary, yielding slightly improved fits compared to
the case of n2 = 2.
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1.3 Detailed variation of rates with salt.

The entire experimental setup was repeated and Fig. S3 shows the scaling exponent ob-
tained from the second set of experiments and is in agreement with the findings of the
first set of experiments. In Figs. S4, S5 and S6, the rates from fits of both limits at
all salt concentrations are shown. The entire setup was performed twice, labelled set 1
and set 2 in the figures, the results from the two datasets agree well. By considering
the saturation of secondary nucleation at high salt we can now explain the disconti-
nuity observed in the parameters obtained from fits in the parallel limit: At high salt
concentrations the secondary nucleation process is saturated at all monomer concentra-
tions. In a fully saturated system the term for secondary nucleation has no monomer
dependence and becomes k2

m(t)n2

1+m(t)n2/KM
M(t) → k2KMM(t) (details see section ”Fur-

ther special cases/limits” below) which is equivalent to a system purely determined by
fragmentation, with fragmentation rate constant k− = k2KM . Hence the parallel limit
yields good, purely fragmentation dominated fits at high salt concentrations, but the
fragmentation rate constant obtained from the fit is in fact the saturated secondary nu-
cleation rate constant, meaning that the discontinuities in k− and k2 in the parallel limit
results from the fact that we are fitting to actual fragmentation at low salt concentra-
tions and misinterpreting saturated secondary nucleation as fragmentation at high salt
concentrations.
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Figure S3: Variation of the average scaling exponent. This is equivalent to the
plot in Fig. 2c in the main text, for the repeat dataset, and shows very similar results.
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Figure S4: Variation of the combined primary nucleation-elongation rate con-
stant. This is the equivalent of Fig. 6b in the main text, for the repeat dataset, and
shows very similar results.
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Figure S5: Variation of the microscopic rates with salt concentration in the
parallel limit. The region in which we found the parallel limit to be no longer valid
(above approximately 50 mM salt) is marked in red. The top panels show the com-
bined fragmentation-elongation rate constant. The bottom panels show the combined
secondary nucleation - elongation rate. Note the major discontinuity in k+k2 (15 orders
of magnitude), which marks the point at which the parallel limit is no longer valid,
i.e. when saturated secondary nucleation is suddenly interpreted as fragmentation as
explained in detail in the text. In the region of validity, k+k2 increases by several orders
of magnitude, whereas k+k− only increases by one order of magnitude. As the elongation
rate constant was independently determined to increase by one order of magnitude, the
increase in k+k− can hence be attributed purely to the increase in elongation. Therefore
the fragmentation rate depends only weakly on the salt concentration, whereas the sec-
ondary nucleation rate constant (also confirmed by fits in the saturation limit) increases
significantly with increasing salt concentration.
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Figure S6: Variation of the microscopic rates with salt concentration in the sat-
uration limit. The region in which we found the saturation limit to be no longer valid
(below approximately 10 mM salt) is marked in red. The top panels show the combined
secondary nucleation-elongation rate constant. The bottom panels show the square root
of the Michaelis constant, i.e. the concentration at which saturation effects are most
significant. In its region of validity, the secondary nucleation rate constant increase by
about 2 orders of magnitude, the elongation rate constant, which was determined in-
dependently, shows only a weak increase in this region, hence secondary nucleation is
clearly favoured by an increase in salt concentration. The Michaelis constant displays
erratic behaviour in the region where the saturation limit is not valid, as these values
were obtained from missfits. In its region of validity there is a clear trend going from an
unsaturated system, with saturation concentrations above the highest sampled monomer
concentrations, to a saturated system, with saturation concentrations below the lowest
sampled monomer concentrations.
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2 Theoretical Background and Detailed Solutions

2.1 Model derivation

We make two basic assumptions, first that the increase in fibril mass is proportional to the
number of fibrils (this is motivated by considering addition to the ends of fibrils only; the
area and structure of the ends is not expected to change with fibril length) and that the
processes creating new fibrils are proportional to the total fibril mass (what we will call
secondary processes; this includes fibril surface catalysed nucleation and fragmentation
of fibrils). Using simple chemical kinetics we can then derive differential equations, the
moment equations, describing the time evolution of fibril number concentration, P (t),
and fibril mass concentration, M(t).

dP

dt
= knm(t)nc + k−(M(t)− (2nc − 1)P [t]) + k2

m(t)n2

1 +m(t)n2/KM

M(t) (S1)

dM

dt
= 2m(t)k+P (t) (S2)

The origin of the terms in equation (S1) from left to right is primary nucleation, frag-
mentation and secondary nucleation. In previous work [9] it was shown that secondary
nucleation may saturate at high monomer concentrations, i.e. become monomer inde-
pendent. This is reflected in the term m(t)n2

1+m(t)n2/KM
which originates from a treatment of

secondary nucleation as a Michaelis-Menten like process resulting in saturation kinetics:
At low monomer concentrations secondary nucleation depends on monomer to the power
of n2 ( m(t)n2

1+m(t)n2/KM
≈ m(t)n2), whereas at high monomer concentrations it is independent

of monomer concentration ( m(t)n2

1+m(t)n2/KM
≈ KM). The Michaelis constant KM determines

at which concentration this change of behaviour occurs. For a more detailed discussion
of the two limits see section 2.2.

The solution to these equations in the limit KM → ∞ (parallel limit) is outlined
below and in the limit k− → 0 (saturation limit) it is found in ”Differences in nucleation
behaviour underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides”
[9].

In the parallel limit the system of differential equations to solve becomes:

dP

dt
= knm(t)nc + k−M(t) + k2m(t)n2M(t) (S3)

dM

dt
= 2m(t)k+P (t) (S4)

where we ignored the term −(2nc−1)P [t] for clarity. It accounts for the fibrils lost when
a piece smaller than the critical nucleus breaks off and dissolves, which is negligible for
the small nucleus size at hand. We find the early time solution to these equations by
setting m(t) = m(0); this linearises the equations and makes them easily solvable. Then,
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by integrating equation S3 we obtain a fixed point operator and substitute the early time
solution as an initial guess into this fixed point operator to yield the first order solution
for M(t). This follows the strategy outlined in detail in Cohen et al.(2011) [5, 4]. The
approximate solution obtained in this way is given by:

M(t) = mtot + Exp

[
−k+(4cκCosh(κt) + 4P0κ

2Sinh(κt))

2κ3

]
(

(M0 −mtot)e
2k+c

κ2

)
(S5)

where

a = k2m
n2
0 + k−

c = knm
nc
0 + aM0

κ =
√

2k+m0(k2m
n2
0 + k−) (S6)

where mtot is the total protein concentration, M0, P0 and m0 are the initial mass concen-
tration of fibrils, number concentration of fibrils and monomer concentration respectively,
k+, k−, kn and k2 are the rate constants of elongation, fragmentation, primary nucleation
and secondary nucleation.

Note that for unseeded experiments the two limiting cases only involve 3 free pa-
rameters each (k+k2, k+kn and k+k− in the parallel limit and k+k2, k+kn and KM in
the saturation limit) which are sufficient to produce good global fits to all monomer
concentrations at any given salt concentration.

In the parallel limit the scaling exponents is given by

γcomp =
d log(t1/2)

d log(m(0))
≈ −1

2

(
n2

1 +K/m(0)n2
+ 1

)
(S7)

where K = k−/k2. This interpolates between γ = −1/2 and γ = −(n2 + 1)/2 for the
limits of low and high monomer respectively, giving the negative curvature in the double
logarithmic plots of the half time, as predicted from the qualitative argument used to
derive the general constraints above.

In the saturation limit the scaling exponent is given by

γsat ≈ −
1

2

(
n2

1 +m(0)n2/KM

+ 1

)
(S8)

where KM is the Michaelis constant. This interpolates between γ = −(n2 + 1)/2 and
γ = −1/2 for the limits of low and high monomer respectively, i.e. the reverse of the
other limit.
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2.2 Further special cases/limits

A fully saturated system in the saturation limit (m(t)n2 � KM) is mathematically
equivalent to, but physically distinct from, a purely fragmentation dominated system in
the parallel limit (k− � k2m(t)n2) as they both include a single, monomer-independent
secondary process. This explains why reasonable fits in the parallel limit were achieved
at high salt concentrations, albeit with a discontinuity in the fitted rates compared to
lower salt, because saturated secondary nucleation was misinterpreted as fragmentation
by the fitting, leading to unrealistic behaviours of the associated rates.

Equally, a completely unsaturated system in the saturation limit (m(t)n2 � KM)
is mathematically and physically equivalent to a purely secondary nucleation domi-
nated system in the parallel limit (k− � k2m(t)n2) as they both include one single-step,
monomer-dependent secondary process. However, because the analytical solutions given
above are approximate, they do in fact not converge to exactly the same solutions in
these limits. The solution in the parallel limit is obtained through one fixed point iter-
ation of the early time linearised solutions, whereas the solution in the saturation limit
is obtained from one fixed point iteration of a slightly improved initial guess [5, 4, 9],
meaning that the analytical solutions in the saturation case are more accurate, although
this effect is minor under most conditions. This may be one of the reasons the fits in the
region where both limits are valid do not agree perfectly.

2.3 A note on oligomers

Oligomeric species are thought to play an important role in connection with disease,
hence we briefly outline how they fit into the models presented here. Within the defi-
nitions of these models, fibrils are species that elongate with a length-independent rate
constant and show little dissociation. Therefore, the formation of non-fibrillar oligomers
would be subsumed into the nucleation step in our models. That is, the nucleation steps
can be a coarse-graining of a multi-step process including intermediate oligomers into a
single nucleation step. Under the conditions used in this work, there is no significant
build-up of oligomeric species and we find that our coarse-grained description is sufficient
to reproduce the kinetics. However, if more detailed data, for example including a direct
measurement of the number of small species, is to be analysed, a more detailed modelling
of the nucleation steps may be required. Nucleation cascades, which would describe the
formation of these species, are discussed in connection with our models in Garcia et al.[7]

2.4 Surface plasmon resonance (SPR) data analysis

The SPR experiments measure the variation of surface bound mass. The experiment
consists of two parts. Initially a solution containing monomer is flown past the bound
fibrils, during this phase the mass increases due to elongation of surface-bound fibrils
and due to adsorption of monomers onto the surface of the bound fibrils. Then, pure
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buffer, not containing any monomer, is flown past the surface and the mass decreases,
due to loss of the surface bound species and due to detachment from the fibril ends. We
treat the elongation process and surface adsorption processes separately, i.e. we assume
that the increase in fibril mass due to elongation does not affect the surface adsorption.
The elongation reaction is described by the differential equation:

dM

dt
= (k+m0 − koff)P0 (S9)

where the fibril number, P0, and the monomer concentration, m0, remain constant and
koff is the dissociation rate from the fibril ends. Solving this equation yields:

M(t) = M0 + (k+m0 − koff)P0t (S10)

The adsorption to the surface can be described simply by:

dmb

dt
= kam0(αM0 −mb(t))− kdmb(t) (S11)

where ka and kd are the rate constants of adsorption and detachment respectively, mb is
the mass bound and α is the number of binding sites on the fibril surface per monomer
in the fibril. The solution to this equation is given by:

mb(t) =
e−(kd+kam0)t(kdmb,0 + kam0mb,0 − kam0M0α + e(kd+kam0)tkam0M0α)

kd + kam0

(S12)

where mb,0 is the initial concentration of bound monomer.
In the desorption part of the experiment (when only buffer is flown past, so m0 = 0),

these equations simplify considerably to give the overall absorbed mass as a sum of mb(t)
and M(t):

Mabs(t) = M0 − koffP0t+mb,0e
−kdt (S13)

We fitted equation S13 to the desorption part of the experimental data, to obtain the
detachment rate, kd, as well as the coverage at the beginning of the desorption, mb,0,
and the coefficient of the linear term, koffP0 (see Fig. S7). Note that mb,0 and P0 are
not expected to be the same for repeats of the same experiment as a different number of
fibrils may be bound to the surface.

In the adsorption part of the experiment (when the monomer in solution is at a
constant concentration of m0 and at time 0 there is no monomer bound, mb,0 = 0),
equation S12 simplifies to give the overall absorbed mass as a sum of mb(t) and M(t):

Mabs(t) = M0 + (k+m0 − koff)P (t) +
(1− e−(kd+kam0)t)kam0M0α

kd + kam0

(S14)

Using the values obtained for kd, mb,0 and koffP0 in the fits of the decrease of the corre-
sponding experiment, we fitted the increasing portion to equation S14 (see Fig. S7).

For each experiment the ratio kd/ka was determined, giving an estimate of the dis-
sociation constant KD. The four values of KD obtained at each ionic strength were
averaged to yield the mean and standard errors shown in Fig. 6c.
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Figure S7: Fitting of SPR data. A representative set of fitted SPR data at a monomer
concentration of 7 µM for the adsorption part of the experiment (left), at an ionic
strength of 32 mM. The adsorption part of the data (left) were fitted to equation S14,
the desorption part to equation S13.

2.5 Debye Hückel analysis

Using the Bronsted-Bjerrum equation, which is based on a simple Debye-Hückel model
of activity coefficients[6, 2, 1], we obtain at room temperature

log10(k) ≈ log10(k0) + 0.5zAzB
√
I (S15)

where k is the rate at ionic strength I, k0 is the rate at 0 ionic strength and zA and zB
are the charges of the reacting species. Therefore the slope of a plot of the logarithm
of the rate versus the square root of the ionic strength gives the charges of the reacting
species. For the combined rate constants we obtain here, e.g. knk+, the slope will be the
sum of the products of the charges for each of the two reactions.
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3 Seeded experiments and analysis

3.1 Low concentration seeding

In order to confirm that secondary processes do indeed dominate at all salt concentra-
tions, we performed seeded experiments at very low seed concentrations (nM). If the
system is dominated by primary nucleation this addition of a very small concentration
of seed material has little effect and the half times are expected to remain unchanged.
However, if the system is dominated by secondary nucleation these seeds catalyse the for-
mation of more seeds in the positive feedback mechanism of secondary nucleation. This
leads to a significant effect on the half times as is apparent at all tested salt concentration,
see Fig. S8.

80 mM salt 150 mM salt

0 mM salt 5 mM salt

Figure S8: Effect of low seeding at different salt. The aggregation of 3 µM Aβ42
at a number of salt concentrations between 0 mM and 150 mM NaCl. The curves at
low salt are normalised and averaged over triplicate repeats for reasons of clarity as
the variations at these concentrations are large. For the higher salt concentrations the
individual curves are shown. In all cases 1.2 nM seeds, corresponding to 0.04% of the
monomer concentration present, already lead to a significant shortening of the half time,
confirming secondary nucleation is dominant.
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3.2 Determination of elongation rate constant

The estimation of the elongation rate also follows the methods described in [9]: Strongly
seeded experiments, at a seed concentration of 2 µM and a monomer concentrations
ranging from 1 to 6 µM were performed at salt concentrations of 1, 10, 31, 80 ,150, and
300 mM (ionic strengths are 12 mM higher due to the presence of buffer). The initial
gradient, dP/dt|t=0 = 2k+P0m(t), at the different monomer concentrations was used to
extract the constant of proportionality, 2k+P0, relating the initial rate to the monomer
concentration. This moreover serves as a check for saturation of the elongation rate: If
the elongation rate does saturate, then the increase of the initial gradient with monomer
concentration is not linear, but plateaus above a certain monomer concentration. No
evidence of such a plateau was observed, even at the highest salt concentrations, as
evident in Fig. S9. In order to determine the absolute value of the elongation rate
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Figure S9: Initial gradients from strongly seeded experiments. The initial gra-
dients from strongly seeded experiments (2 µM seeds), show a linear dependence on the
monomer concentration, even at high ionic strengths, suggesting that the elongation rate
is not yet beginning to saturate. The factor of proportionality relating the initial gradient
to the monomer concentration can be used to determine the elongation rate constant.

constant, k+, from this, P0 needs to be estimated. The average number of monomers per
seed fibril, L0, relates the initial fibril mass concentration, M0, to the initial fibril number
concentration, P0, by P0 = M0/L0. The fibril mass concentration is known and L0 can
be determined from a measurement of fibril dimensions by TEM. Fig. S10 shows a table
of the average dimensions of fibrils at the different salt concentrations. By assuming a
density of protein of 1.3 g/ml these dimensions can be used in order to calculate the
number of monomers per seed fibril, which is plotted in Fig. S10. The absolute values
are likely to be very approximate, due to various biases in the extraction of fibril lengths:
larger fibrils are harder to detect, as the likelihood of being able to detect both ends is
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smaller. Moreover fibrils can form tangles, which will make the ends less accessible and
thereby increase the number of fibrils per growth competent end, L0. However, if we
assume this effects similarly affect all salt concentrations, the observed trend will be more
reliable than the absolute values. This equally translates to the trend of the elongation
rate constant with increasing salt: although its absolute value is inaccurate due to the
errors associated in determining the seed length, its increase by an order of magnitude is
significant. The error bars shown in Fig. 6 are hence determined by the inaccuracies in
measuring the initial gradient and in extrapolating the seed length to salt concentrations
not measured explicitly (Fig. S10).
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Figure S10: Determination of fibril dimensions from TEM. A slight decrease in
fibril length upon increase in ionic strength can be observed. This trend is in agreement
with our finding that the elongation rate increases less than the nucleation rates, leading
to a shorter equilibrium fibril length.
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4 Further experimental and theoretical techniques

4.1 Protein purification

Initially Aβ42 was isolated from urea-dissolved inclusion bodies via ion exchange, SDS
PAGE analysis is shown in Fig. S11. All steps were performed in batch format using
a Büchner funnel and a vacuum flask. After application, the resin was washed with
10 mM Tris/HCl, 1 mM EDTA, pH 8.5 (buffer A) with 10 mM NaCl (lane w). The
Aβ42 peptide was then eluted with buffer A with 75 mM NaCl. The first five fractions
(lanes 1, 2, 3 ,4 and 5) are shown in Fig. S11. The NaCl eluates were passed through 30
kDa Mw cutoff centrifugal filter (Vivaspin, Hydrosart membrane), lyophylized, dissolved
in 6M GuHCl, pH 8.5, and separated on a 2.6 x 60 cm Superdex 75 column in 20 mM
sodium phosphate, 0.2 mM EDTA, pH 8.5 (buffer B) and lyophylized as multiple identical
aliquots. Aliquots were dissolved in 1 mL 6M GuHCl, pH 8.5 and separated on a 1.0 x 30
cm Superdex 75 column in buffer B. The monomer was collected, lyophylized, dissolved
in 1 mL 6M GuHCl, pH 8.5, and separated on a 1.0 x 30 cm Superdex 75 column in 20
mM sodium phosphate, 0.2 mM EDTA, pH 8.0. The chromatogram is shown in Fig. S11.
The monomer sample used in the kinetic experiments, marked by arrows in Fig. S11,
was diluted with water to contain 5-7 µM Aβ42 in 4 mM sodium phosphate, 0.04 mM
EDTA, pH 8.0.
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Figure S11: Examples of data from the isolation and purification of monomeric
Aβ42. Left: SDS PAGE (10-20% Tris-Tricine gel) analysis of the ion exchange step
used for the initial isolation of Aβ42 from urea-dissolved inclusion bodies (lane U) using
DEAE cellulose anion exchange resin. After application, the resin was washed with 10
mM Tris/HCl, 1 mM EDTA, pH 8.5 (buffer A) with 10 mM NaCl (lane w). The Aβ42
peptide was then eluted with buffer A with 75 mM NaCl. The first five fractions (lanes
1, 2, 3 ,4 and 5) are shown. The last lane contains pre-stained Mw markers. The green
protein with highest migration has a Mw of ca. 10 kDa. In lanes U and 1-5, Aβ42 is
seen as the band with higher migration than the green marker. Right: The monomer
was separated on a 1.0 x 30 cm Superdex 75 column in 20 mM sodium phosphate, 0.2
mM EDTA, pH 8.0, the chromatogram (with absorbance in blue and conductivity in
red) shows an example of such a third round of gel filtration. The monomer sample used
in the kinetic experiments was collected between the arrows.
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4.2 Verification of ThT scaling

We have previously optimised the ThT concentrations for measuring Aβ42 aggregation
at intermediate ionic strengths[3]. To ensure that the system is still well behaved at
higher and lower ionic strengths, i.e. that the fluorescence intensity still scales linearly
with the total aggregate concentration, we plotted the plateau fluorescence intensity
versus total monomer concentration for a range of ionic strengths. The plots are shown
in Fig. S12 and Fig. S13.

Figure S12: Scaling of fluorescence with total aggregate mass. The average flu-
orescence intensity of the last 25 points in the measurement is plotted against the total
monomer concentrations, at NaCl concentrations ranging from 5 mM to 40 mM. The
fluorescence intensity scales linearly with the amount of monomer at all salt concentra-
tions.

4.3 Error estimation

The error estimation was based on the method described in [9], similar to a bootstrapping
approach: All experiments were performed as triplicate repeats, therefore in order to
obtain an estimate of the error in the rate constants due to experimental variations, we
considered subsets of the data, including one repeat only at each monomer concentration.
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Figure S13: Scaling of fluorescence with total aggregate mass. The average flu-
orescence intensity of the last 25 points in the measurement is plotted against the total
monomer concentrations, at NaCl concentrations ranging from 80 mM to 300 mM. The
fluorescence intensity scales linearly with the amount of monomer at all salt concentra-
tions.

These subsets were fitted normally and the resulting values of the rate constants were
averaged and their standard deviation used to obtain an estimate of the error.

4.4 Fitting algorithm

The fitting was performed using our protein aggregation fitting software, AmyloFit[8],
which can be found at www.amylofit.ch.cam.ac.uk. It employs a basin hopping algorithm
[10], which consists of a local minimisation paired with a Monte-Carlo step to randomise
initial guesses. This algorithm thereby effectively flattens the potential energy landscape
and allows the fit to converge to the global minimum even if the initial guess was not
in the correct basin of attraction. Such a property is important in the global fitting of
large datasets to complex equations as these situations tend to result in rough energy
landscapes and convergence to local rather than the global minimum can be an issue.
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