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Supplemental Methods

1 HIT’nDRIVE Framework

HIT’nDRIVE naturally integrates genome and transcriptome data from a number of tumor samples for identifying

and prioritizing sequence-wise altered genes as potential drivers. It “links” sequence-wise altered genes to genes

with expression changes through a gene or protein interaction network. For that, it aims to find the smallest set of

sequence-wise altered genes that can “explain” most of the observed gene expression alterations in the cohort. In

other words, HIT’nDRIVE identifies the minimum number of potential driver genes which can “cause” a user-defined

proportion of the downstream expression effects observed.

HIT’nDRIVE uses a particular “influence” value of a potential driver gene on other (possibly distant) genes

based on the (gene or protein) interaction network in use. In order to capture the uncertainty of interactions of genes

with their neighbours, it considers a random walk process which propagates the effect of sequence alteration in one

gene to the remainder of the genes through the network. As a result, the influence is defined to be the inverse of

hitting-time, which is the expected length (number of hops) of a random walk which starts at a given potential driver

gene, and “hits” a given target gene the first time in a (protein or gene) interaction network. More specifically, for

any two nodes u,v ∈V of an undirected, connected graph G = (V,E), let the random variable τu,v denote the number

of hops in a random walk starting from u and visiting v for the first time. Then the hitting-time Hu,v is defined as

Hu,v = E[τu,v] (Levin et al. 2008).

In order to capture synthetic lethality like scenarios, HIT’nDRIVE considers multiple sequence-wise altered

genes as potential drivers. For that, we define the influence value (of a set of potential driver genes on a target) as the

inverse of multi(source)-hitting time, i.e., the expectation of the smallest number of hops in one of the random walk

processes, simultaneously starting at each one of the potential driver genes and ending at a given expression-wise

altered gene for the first time. More specifically, let U ⊆V be a subset of nodes of G and v ∈ (V −{U}) be a single

node. We thus define the multi(source)-hitting time HU,v as HU,v = E[minu∈U τu,v].

HIT’nDRIVE formulates the process of potential driver gene(s) discovery in terms of the “random-walk facility

location” (RWFL) problem, which, for a single patient can be described as follows.

Let X be a set of potential driver genes and Y be a set of expression altered (outlier) genes. Then, for a user

defined k, HIT’nDRIVE can aim to return k potential driver genes as solution to the following optimization problem:

argminX⊆X ,|X |=k max
y∈Y

HX ,y
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where HX ,y denotes the multi-hitting time from the gene set X to the gene y.

RWFL problem resembles the standard (minimax) “facility location” problem in which one seeks a set of nodes

as facilities in a graph such that the maximum distance from any node in the graph to its closest facility is minimized.

RWFL differs from standard facility location by its use of HX ,y as a distance measure between a collection of nodes

to any other node, which aims to capture the uncertainty in molecular interactions during the propagation of one or

more signals, by random walks starting from one or more origins (reminiscent of the underlying Brownian motion).

Since the standard facility location is an NP-hard problem, RWFL problem is NP hard as well. As shown in the

next section, we overcome this difficulty by introducing a good estimate on the multi-hitting time that helps us to

reduce RWFL problem to the weighted multi-set cover problem (WMSC), which we solve through an Integer Linear

Programming (ILP) formulation. Although the use of set-cover for representing the most parsimonious solution in a

bioinformatics context is not new (Hormozdiari et al. 2009), to the best of our knowledge, this is the first use of the

multi-set cover formulation for maximum parsimony. In this formulation, we use a slightly different objective: given

a user defined upper bound on the maximum multi-hitting time, we now aim to minimize the number of potential

drivers that can “cover” (a user defined proportion of) the outlier genes. For more than one patient, we minimize the

number of drivers that can “cover” (a user defined proportion of) patient-specific outliers such that each such outlier

is covered by potential drivers that are aberrant in that patient.

2 Calculating Hitting Time on an Interaction Network

As mentioned before, HIT’nDRIVE estimates the multi-hitting time H(U,v) between a set of nodes U and a single

node v, as a function of independent hitting times H(u,v) for all u ∈U - as will be shown later. To calculate exact

values of H(u,v) for all pairs of nodes in the network, we use the matrix inversion method as explained by Tetali et

al. (Tetali 1999). Here we will briefly describe the method. For proofs please refer to Tetali (1999).

Let P denote the transition probability matrix (of size n×n) of the interaction network with n nodes, and H its

hitting-time matrix. Pi, j represents the probability that random walk picks node u j as its next step from node ui, and

Hi, j represents the hitting-time H(ui,u j). We assume that Pi,i = 0, for all i ∈ {1, ...,n}, which forces the random

walk to move from current node to one of its neighbours in every step. Lastly, let π be the stationary distribution of

the network, where πi represents the proportion of time that an infinite-length random walk in the network spends

visiting node ui.

Given P, H, and π , we define (n− 1)× (n− 1) matrices P̄ and H̄ as follows: P̄i,i = πi, P̄i, j = −πiPi, j and

H̄i,i = Hi,n +Hn,i, H̄i, j = Hi,n +Hn, j−Hi, j, for all i, j ∈ {1, ...,n−1} such that (i 6= j). We show how to calculate
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hitting-times based on the following claim:

Theorem 1. Given P, H, P̄ and H̄ as defined above, P̄H̄ = In−1.

For proofs please refer to Tetali (1999).

Note that P̄ can be computed directly from the transition probability matrix P (following its definition) and we

obtain H̄ by inverting P̄. Using the definition of H̄ and proof of Theorem 1 (see Theorem 2.2 in Tetali (1999)) we

obtain following formulae:

Hi,n = ∑
k

Ni,n
k

Hn,i = H̄i,i−Hi,n

Hi, j = Hi,n +Hn, j− H̄i, j

Standard O(n3) matrix inversion method based on Gaussian elimination finishes this pre-processing step of

calculating the exact hitting-times in a few hours for the interaction networks we analyzed.

3 Estimating Multi-Source Hitting Time via Single-Source Hitting Times

Given U = {u1,u2, . . . ,uk}, we now show how to estimate HU,v by a function of independent pairwise hitting times

Hui,v for all ui ∈U . The estimate we use is

HU,v ≈
1

∑
k
i=1

1
Hui ,v

Let the conductance of graph G be defined as Φ(G) = min /0(S(V
|E(S,V\S)|

min{vol(S),vol(V\S)} , where vol(S) is the sum of

degrees of the vertices of S. Many real-world networks including preferential attachment graphs are known to have

large conductance (Mihail et al. 2006). For such graphs, our next theorem provides mathematical evidence for the

accuracy of our estimate in (3).

Theorem 2. Let G = (V,E) be any graph with constant conductance Φ > 0. Then there is an integer C =C(Φ)> 0

such that, given an integer k, a set of nodes U = {u1,u2, . . . ,uk} and node v ∈ V satisfying 1
k· deg(v)

2|E|
≥ log1.5 n, the

following inequality holds:

HU,v ≤C · 1

∑
k
i=1

deg(v)
2|E|

.

In particular, for any pair of nodes u,v with deg(v)≤ 2|E|
log1.5 n

we have Hu,v = O( |E|deg(v)).
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For the proof of Theorem 2, it will be convenient to consider a lazy version of the random walk which stays at

the current node in each step with probability 1/2. Note that any hitting time (single-source or multi-source) of the

lazy version of the random walk is always an upper bound on the corresponding hitting time of the standard random

walk.

Lemma 3. Let G = (V,E) be a graph with constant conductance Φ > 0. For any pair of nodes u,v ∈V and number

of steps t with ω(logn)≤ t ≤ 2|E|
deg(v) , let Au,v,t be the event that a random walk starting from u visits v within t steps.

Then

Pr [Au,v,t ]≥
Φ2

280
· t · deg(v)

2|E|
.

Proof. We first record the following useful inequality (See Levin et al. (2008) for details). Let Ps
x,y be the probability

that a random walk starting at x visits node y in step s. Then,

∣∣∣∣Ps
x,y−

deg(y)
2|E|

∣∣∣∣≤
√

π(y)
π(x)

·λ t
max,

where π(w) = deg(w)
2|E| for any w ∈V , λmax = max{λ2, |λn|} with 1 = λ1 ≥ ·· · ≥ λn >−1 being the eigenvalues of

the transition matrix P. Since the random walk has loop probability 1/2, λn ≥ 0 and thus λmax = λ2. Furthermore,

by Cheeger’s inequality, λ2 ≤ 1− Φ2

8 . Hence

∣∣∣∣Ps
x,y−

deg(y)
2|E|

∣∣∣∣≤
√

π(y)
π(x)

·
(

1− Φ2

8

)t

,

which implies for every s with t/2≤ s≤ t, as t = ω(logn),

∣∣∣∣Ps
u,v−

deg(v)
2|E|

∣∣∣∣≤ n−4.

Let X be the random variable counting the number of visits to v within the time-interval [t/2, t]. Then, from the

above,
t
2
· deg(v)

2|E|
≤ E [X ]≤ 2t · deg(v)

2|E|
.

To apply the second moment method, we will now analyze the variance of X , denoted by V [X ]. Note that
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X = ∑
t
s=t/2 Xs, where Xs = 1 if the random walk visits u in step s and Xs = 0 otherwise. Then,

V [X ]≤
t

∑
s=t/2

E [Xs ]+2 ∑
t/2≤s<s′≤t

Pr [Xs = 1∧Xs′ = 1 ]−Pr [Xs = 1 ] ·Pr [Xs′ = 1 ]

=
t

∑
s=t/2

E [Xs ]+2 ∑
t/2≤s<s′≤t

Pr [Xs = 1 ] · (Pr [Xs′ = 1 | Xs = 1 ]−Pr [Xs′ = 1 ])

≤ E [X ]+2 ∑
t/2≤s<s′≤t

(
deg(v)
2|E|

+n−4
)
·
((

deg(v)
2|E|

+(1− Φ2

8
)s′−s

)
−
(

deg(v)
2|E|

−n−4
))

≤ E [X ]+2 ∑
t/2≤s≤t

∑
1≤i≤t/2

(
deg(v)
2|E|

+n−4
)
·
(
(1− Φ2

8
)i +n−4

)
≤ E [X ]+2 ∑

t/2≤s≤t

(
deg(v)
2|E|

+n−4
)
·
(

8
Φ2 + t/2 ·n−4

)
≤ E [X ] ·

(
2+

32
Φ2

)
+O(n−2)≤ 35

Φ2 ·E [X ] .

By the Paley-Zygmund inequality, for any 0 < δ < 1,

Pr [X ≥ δ ·E [X ] ]≥ (1−δ )2 · E [X ]2

V [X ]+E [X ]2
≥ (1−δ )2 · 1

35
Φ2 · 1

E[X ] +1
≥ (1−δ )2 · Φ2

2 ·35
·E [X ] ,

where the last inequality follows from E [X ] ≤ 2 which holds thanks to our upper bound on t. Choosing δ = 1
2

implies, as X is an integer-valued random variable,

Pr [Au,v,t ] = Pr [X ≥ 1 ]≥ Pr
[

X ≥ 1
2
·E [X ]

]
≥ Φ2

8 ·35
·E [X ] ,

and due to the lower bound on E [X ] derived earlier, the proof is finished.

With the lemma at hand, we are now able to complete the proof of Theorem 2.

Proof. For any integer α ≥ 1, define τ = τ(α) := α · 280
Φ2 · 1

∑
k
i=1

deg(v)
2|E|

. For any 1≤ i≤ k, let Ei be the event that the

random walk starting from ui does not visit v within τ steps. By partitioning the τ steps into consecutive sections of

length log1.5 n and applying Lemma 3 to every section, we conclude that

Pr [Ei ]≤
(

1− Φ2

280
· log1.5 n · deg(v)

2|E|

)τ/ log1.5 n

≤ exp
(
−τ · Φ2

280
· deg(v)

2|E|

)
.
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As all k random walks are independent, it follows that

Pr

[
k∧

i=1

Ei

]
=

k

∏
i=1

Pr [Ei ]≤ exp

(
−τ ·

k

∑
i=1

Φ2

280
· deg(v)

2|E|

)
= exp(−α)≤ 2−α .

Hence the expected multi-source hitting time can be estimated as follows,

H{u1,...,uk},v ≤
280
Φ2 ·

1

∑
k
i=1

deg(v)
2|E|

·
∞

∑
α=1

α ·2−α ≤ 560
Φ2 ·

1

∑
k
i=1

deg(v)
2|E|

Note that the bound in Theorem 2 differs from our estimate in equation (3) in that 1
Hui ,v

is replaced by deg(v)
2|E| .

However, for graphs with constant conductance, we have Hu,v ≤ Hπ,v +O(logn), where Hπ,v is the hitting time for a

random walk starting according to the stationary distribution π , given by π(w) = deg(w)
2|E| for every w ∈ V . Hence

2|E|
deg(v) = Hv,v ≤ Hπ,v +O(logn). Since Hπ,v = ∑u∈U π(u) ·Hu,v, it follows that, given any fixed node v, it holds for

“most nodes” u that Hu,v is not much smaller than 2|E|
deg(v) −O(logn).

Since Theorem 2 does not provide a strong mathematical bound, we attempted to measure the quality of

the estimate by comparing it to exact multi-source hitting time values of randomly chosen set U . Obviously,

computing the exact multi-hitting time over all possible sets of facilities in the network is computationally not

feasible. Therefore, we performed 1000 iterations of the following experiment on the STRING v10 interaction

network:

• Choose 10 nodes of the network uniformly at random, to be a set of facilities U .

• For each node v /∈U estimate multi-source hitting time by performing 5000 random walk simulations from

every u ∈U and in each simulation, measure the minimum time required for the first one of them to reach v.

Take the average of the observations and call it the exact multi-hitting time MHTU,v.

• Compute the relative error of the estimate HTU,v (estimated based on pair-wise hitting times) compared to

MHTU,v.

• Take the average relative error over all nodes v /∈U .

With 5000 random walk simulations, we hoped to get accurate enough estimate to be able to compute the relative

error accurately without it taking too long. Over the 1000 iterations, we observed average error rate of 5.96%, with

average error over non-facility nodes per iteration ranging from 3.03% to 8.06%. This suggests that our estimate
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(which has the practical benefit of being linear and thus useful in a linear programming setting) is quite accurate in

practice.

Furthermore, we would like to point out that the most extreme cases (of our approximation being inaccurate) are

where one of the u ∈U is an immediate neighbour of v of degree one, so that Hu,v = 1 and the multi-hitting time of

the entire set U should be 1. It is easy to see that if v has k such neighbours then the estimate will be approximately

1
k , when it should be 1. We have analysed the candidate driver-outlier pairs in the bipartite graph that have hitting

time 1 and obtained the following numbers: (a) TCGA-BRCA – 11 pairs with hitting time 1, where maximum

number of candidate drivers connected to a single outlier with hitting time 1 is 1; (b) TCGA-GBM – 0 pairs with

hitting time 1; (c) TCGA-OV – 12 pairs with hitting time 1, where maximum number of candidate drivers connected

to a single outlier with hitting time 1 is 1; (d) TCGA-PRAD – 1 pair with hitting time 1. Since average non-zero

hitting time in the STRING v10 hitting time matrix is 129322, and selected number of drivers is in order of tens

(meaning that in most cases the estimate of HU,v will be inverse of sum of number 1 and inverses of much larger

numbers), the estimate in these extreme cases will be close to 1 which represents the exact solution. Combined with

the the results of the previously-explained randomized test that estimated average error to be 5.96%, it serves as

further evidence that our approximation is quite accurate in practice.

4 Datasets and analysis

4.1 The Cancer Genome Atlas (TCGA)

We used publically available datasets of four major cancer-types glioblastoma multiforme (GBM) (The Cancer

Genome Atlas Research Network 2008), Ovarian serous cystadenocarcinoma (OV) (The Cancer Genome Atlas

Research Network 2011), breast adenocarcinoma (BRCA) (The Cancer Genome Atlas Research Network 2012), and

prostate adenocarcinoma (PRAD) (The Cancer Genome Atlas Research Network 2015) from The Cancer Genome

Atlas (TCGA) project. All data were obtained from TCGA data-portal in May 2014 which were mapped to GRCh37

genome build. Although TCGA has recently made available all data re-aligned to the newer GRCh38 genome build,

to ensure compatibility, all TCGA data we have used in this study has been mapped to GRCh37.

4.1.1 Somatic mutations

Somatic mutation calls (level 2 data) from all available platforms/centers were merged. Only missense mutations,

nonsense mutations and splice-site SNPs were marked as somatic-mutation alteration events.
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4.1.2 Copy number aberrations

Copy number aberrations for GBM and OV, Agilent Human Genome CGH Microarray 244A (level 1) data files

were used and for PRAD and BRCA, Affymetrix Genome-Wide Human SNP Array 6.0 (level 3) data files were

used to generate the copy number profiles.

These Agilent FE format sample files were loaded into BioDiscovery Nexus Copy Number software v7.0, where

quality was assessed and data was visualized and analyzed. All samples were mapped to the most recent genome

build (hg 19, GRCh37) via Agilent probe identifiers and annotation (downloaded from Agilent’s website) based

on the 1M SurePrint G3 Human CGH Microarray 1x1M design platform. BioDiscovery’s FASST2 segmentation

algorithm, a Hidden Markov Model based approach, was used to make copy number calls. The FASST2 algorithm,

unlike other common HMM methods for copy number estimation, does not aim to estimate the copy number state

at each probe but uses many states to cover more possibilities, such as mosaic events. These state values are then

used to make calls based on a log-ratio threshold. The significance threshold for segmentation was set at = 5X10-6)

also requiring a minimum of 3 probes per segment and a maximum probe spacing of 1000 between adjacent probes

before breaking a segment. The log ratio thresholds for single copy gain and single copy loss were set at 0.2 and

-0.23, respectively. The log ratio thresholds for two or more copy gain and homozygous loss were set at 1.14 and

-1.1 respectively. Upon loading of raw data files, signal intensities are normalized via division by mean. All samples

are corrected for GC wave content using a systematic correction algorithm. Only the high confidence copy number

aberrations i.e. high copy number gain or homozygous deletions were marked as copy-number aberrant events.

Finally, genes that harbour either a somatic-mutation aberrant event or a copy-number aberrant event were taken to

be the final list of abberant genes at the genomic level.

4.1.3 Gene expression

We used microarray based gene-expression (Affymetrix HT Human Genome U133 Array Plate Set) (level-1) for

GBM and OV data sets. Where as for BRCA and PRAD data sets, RNA-seq derived gene-expression were used

(level-3). Gene expression profiles of normal and tumor phenotype were used as sample groups.

4.1.4 Gene fusions

Transcript fusions prediction calls for GBM, OV, BRCA and PRAD were obtained from TCGA Fusion gene Data

Portal (http://www.tumorfusions.org) (Yoshihara et al. 2014). The fusion partner genes were tagged for gene-fusion

alteration.
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4.1.5 Colorectal cancer data

We obtained matched genomic (somatic mutation level-3, somatic copy-number aberration level-3) and transcriptome

(gene-expression FPKM-UQ level-3) data for 429 samples from TCGA colorectal cancer (TCGA-COAD) project

(data downloaded on 28th March 2017). This included 78 hypermutated cases and 351 non-hypermutated cases.

4.2 Genomics of drug sensitivity in cancer

Somatic mutation, copy-number alterations and gene-expression, and drug screening data of cancer cell lines were

downloaded from Genomics of Drug Sensitivity in Cancer (GDSC) (Iorio et al. 2016) website

http://www.cancerrxgene.org/downloads. Data downloaded on August 2016.

4.3 Interaction networks

We used STRING version 10 (Szklarczyk et al. 2015) protein-interaction network which contains high confidence

functional protein-protein interactions (PPI). Self-loops and interactions with missing HGNC symbols were discarded

and interaction scores were divided by 1000 to obtain percentage-like reliability score. Only high confidence

interactions with combined score of 0.9 or greater were selected. As a result we obtained a network of 10971 nodes

with 214298 interactions.

In the case of prostate cancer, we integrated STRING-10 protein-protein interaction network with protein-DNA

interaction network derived from Chip-seq experiments for transcription factors highly relevant to prostate cancer -

REST, FOXA1, AR, EZH2 (Sharma et al. 2013) and ERG (Rickman et al. 2012) resulting in a new combined network

of 13517 nodes and 220190 interactions.

To simulate HIT’nDRIVE using different underlying network we used two additional interaction networks:

Human Protein Reference Database - Protein-Protein Interaction Database (HPRD-PPI) network (version 9.0)

(Keshava Prasad et al. 2009) and REACTOME pathway database (version 2015) (Fabregat et al. 2016).

4.4 Pathway enrichment analysis

The selected set of genes were tested for enrichment against gene sets of pathways present in Molecular Signature

Database (MSigDB) v5.0 (Subramanian et al. 2005). A Fisher’s exact test based gene set enrichment analysis was

used for this purpose. A cut-off threshold of false discovery rate (FDR) ≤ 0.01 was used to obtain the significantly

enriched pathways. An R implementation of GESD test is available at https://github.com/raunakms/GSEA-Fisher.

Same procedure, as above, is used to assign biological functional to the gene-modules.
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4.5 Validation dataset

For the validation of driver-modules we used the following gene-expression datasets: GBM: Murat-2008 (Murat

et al. 2008), Sun-2006 (Sun et al. 2006); OV: Yoshihara-2009 (Yoshihara et al. 2009), Bowen-2009 (Bowen et al.

2009); PRAD: Taylor-2010 (Taylor et al. 2010), Grasso-2012 (Grasso et al. 2012), SMMU-PC (Second Military

Medical University - prostate cancer patient cohort); BRCA:METABRIC (Curtis et al. 2012) and Richardson-2006

(Richardson et al. 2006).

5 Derivation of expression outlier genes

We used generalized extreme studentized deviate (GESD) test (Rosner 1983) to obtain the outlier genes. Unlike

Grubbs test and the Tietjen-Moore test, GESD test only requires that an upper bound for the suspected number of

outliers be specified. Given the upper bound, r, the GESD test essentially performs r separate tests: a test for one

outlier, a test for two outliers, and so on up to r outliers.

An R implementation of GESD test is available at https://github.com/raunakms/GESD

Hypothesis: The GESD test is defined for the hypothesis:

• H0: There are no outliers in the data set

• Ha: There are up to r outliers in the data set

Test statistic: Compute

Ri =
maxi|xi−µ|

σ

with µ and σ denoting the sample mean and sample standard deviation, respectively. Remove the observation

that maximizes |xi−µ| and then recompute the above statistic with n−1 observations. Repeat this process until r

observations have been removed. This results in the ’r’ test statistics R1,R2, ...,Rr.

Critical region: Corresponding to the r test statistics, compute the following r critical values

λi =
(n− i)tn−i−1,p√

(n− i−1+ t2
n−i−1,p)(n− i+1)
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where i = 1,2, ...,r, and tp,v is the 100p percentage point from the t distribution with v degrees of freedom.

p = 1− α

2(n− i+1)

here, α denotes the significance level.

The number of outliers is determined by finding the largest i such that Ri > λi

6 Derivation of expression outlier gene weights

Outlier-gene weights were calculated as follows: Let i denote genes, j denote patients and xi j denote the gene-

expression value of gene i in patient j. We then calculated the absolute value of z-score (zi j).

zi j =
|xi j−µi|

σi

where, µi and σi respectively denotes mean and standard deviation of expression value of gene i. Next we performed

Student’s t-test in the gene-expression values of normal and tumor phenotypes. where, ψi = −log(pvaluettest).

Finally, we calculate the outlier weight ωi j as

ωi j =
ψizi j

∑
i

ψizi j

7 HIT’nDRIVE sensitivity to least frequent driver gene

To demonstrate the sensitivity of HIT’nDRIVE to detect infrequent driver genes, we performed the following in-silico

experiment. We selected 1000 TCGA-BRCA tumors. We label these 1000 TCGA-BRCA samples as the “Original”

set of tumor samples. Our objective was to sub-sample TCGA-BRCA tumors with different sample-sizes such

that the frequency distributions of mutations in the selected sub-samples are similar to that of original 1000 BRCA

tumors. For this we first estimated the alteration-frequency distribution of the original 1000 tumor samples and

calculated the mean (µtarget) and standard-deviation (σtarget) of the distribution. Our aim here is to find the sub-set

of samples (with defined sample-size) such that the mean (µobs) and standard-deviation (σobs) of the sub-sampled

population is very close to µtarget and σtarget) respectively. This can be represented as the following:

MINIMIZE (Score = |µobs−µtarget |+ |σobs−σtarget |)
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Here, we gave equal penalty to both the attributes mean and standard-deviation. We took a heuristic approach to

solve the problem. We randomly sub-sampled, with a user defined sample-size, from the original set of tumor

samples and calculated the above score. This step was repeated for 10,000 times (i.e. 10,000 different combination

of samples of defined sample-size). Then the sub-sample set with least score was chosen for further HIT’nDRIVE

analysis.

8 Association of driver modules with patients’ survival outcome

To test for association of driver modules with patients’ survival outcome, we developed a risk-score based on

multi-gene (component genes of the module) expression. The risk-score (S) defined as a weighted sum of the

normalized gene-expression values of the component genes in the module weighted by their estimated univariate

Cox proportional-hazard regression coefficients (Beer et al. 2002) as given in the equation below.

S =
k

∑
i

βixi j

Here i and j represents a gene and a patient respectively, βi is the coefficient of cox regression for gene i, xi j is the

normalized gene-expression of gene i in patient j, and k is the number of component genes in a gene-module. The

normalized gene-expression values were fitted against overall survival time with living status as the censored event

using univariate Cox proportional-hazard regression (Exact method).

Based on the risk-score values, patients were stratified into two groups: low-risk group (patients with S < 33

percentile of S), and high-risk group (patients with S > 66 percentile of S). Patients that fall in between (i.e. patients

with S >= 33 percentile of S and <= 66 percentile of S) were discarded from the further analysis as these patients

fall into intermediate-risk group and are bound to introduce noise while performing log-rank test.

Both Cox regression coefficients of each gene and risk-score cutoff values for each module were estimated from

TCGA-BRCA cohort (training dataset), later these values were applied to METABRIC cohots (test dataset). To

assess whether the risk-score assignment to high/low categories was valid, a log-rank test was performed for each

module in both training and test datasets.

Finally, to identify the significant list of driver-modules that were robust enough to predict patients’ survival, we

calculated log-rank test pvalue, hazard-ratio (HR) (Wald test) and concordance-index (c-index) (Wald test).
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9 Statistical significance of the overlap of driver genes with that of CGC database.

Suppose, for a cohort of cancer patients, we predict ntotal number of driver genes using HIT’nDRIVE, out of which

ncgc number of driver genes are present in the Cancer Gene Census (CGC) database (of known cancer driver genes).

Let, x be the total number of sequence altered genes (i.e. all potential driver genes) and let y of these x sequence

altered genes be in CGC. This means that the probability that a randomly selected gene out of these sequence altered

genes happens to be a CGC gene is ( y
x).

The probability (p-value) that at least ncgc out of ntotal driver genes are identified in CGC is:

pvalue =
ntotal

∑
i=ncgc

(
ntotal

i

)(y
x

)i(
1− y

x

)ntotal−i

Next we consider driver genes in each patient. We also calculated the p-value for HIT’nDRIVE to pick at least p

CGC drivers out of p′ and pick at most q non-CGC drivers out of q′ as follows

pvalue =
x=p′+q′

∑
x=p′

(
p+q

x

)(
p

p+q

)x( q
p+q

)p′+q′−x
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Supplemental Results

10 HIT’nDRIVE: parameters

HIT’nDRIVE uses three user-specified input parameters:

1. α: fraction of outliers to be covered overall (across all patients)

2. β : fraction of outliers to be covered in each patient

3. γ : fractional lower bound on the sum of the incoming edge weights from driver genes selected by HIT’nDRIVE

HIT’nDRIVE is robust with respect to the changes in α and β but is somewhat sensitive to γ (Supplemental Fig.

S1), as expected. However, as γ grows, the driver genes identified by HIT’nDRIVE do not change but simply grow

in number by the addition of new driver genes, which indicates robustness of our method with respect to γ as well.

11 HIT’nDRIVE: outlier stringency

The higher the stringency we apply on the expression value change in a potential outlier, the fewer outliers we will

identify, which in turn will result in fewer number of driver genes. However, the new set of driver genes obtained

are, in general, a subset of the first set of driver genes, again indicating robustness (Supplemental Fig. S2).

12 HIT’nDRIVE: network perturbation

We used STRING v10 network for our analysis. The edges of the STRING v10 network was perturbed to different

extent (between 1-10%) preserving the degree of the nodes in the network. HIT’nDRIVE analysis was performed

using different perturbed networks. Proportion of common driver genes between the unperturbed network and each

of the perturbed network were calculated (Supplemental Fig. S3). We observed that even though the edges of the

network were perturbed, the list of driver genes did not change to a great extent (i.e. the overlap of driver genes was

very high) as compared to the non-perturbed network even when the edges of the network were perturbed by up to

10%. This clearly demonstrates that HIT’nDRIVE is not biased towards network perturbations.

13 HIT’nDRIVE: underlying network

We evaluated the robustness of HIT’nDRIVE on three networks, namely STRING, HPRD and the REACTOME.

Only 34% of the vertices in STRING, HPRD and the REACTOME are shared in all three networks; in terms of

edges, an even smaller proportion of the edges. Not surprisingly, the more nodes the network has, the more driver
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genes HIT’nDRIVE predicts. This is consistently observed across various parameter settings. What is noteworthy

is that the percentage overlap between the driver genes predicted on the three networks is quite robust, i.e., the

percentage of driver genes shared between all three networks is preserved across various parameter settings - e.g.

this overlap is above 60% between the REACTOME and any of the other two networks, across various values of

gamma - which is quite impressive. In fact the driver genes predicted on STRING are almost a superset of those

predicted on REACTOME. See Supplemental Fig. S4.

14 HIT’nDRIVE: alteration types

We ran HIT’nDRIVE with SNVs, gene fusions and CNVs independently to evaluate how the resulting driver genes

compare to those obtained by HIT’nDRIVE when applied to SNVs, gene fusions and CNVs simultaneously. The

results again demonstrate that HIT’nDRIVE is reasonably robust with respect to the treatment of potential driver

genes especially involving SNVs and CNAs, across various values of the gamma parameter (again, the choice of

alpha and beta do not alter the results in a meaningful manner). For gene fusions, the fact that overlap is lower is not

statistically meaningful as very few of the driver events are gene fusions. See Supplemental Fig. S5.

15 HIT’nDRIVE: random alterations and random outliers.

We compared the HIT’nDRIVE predictions of driver genes among observed mutations with those obtained through

randomized mutations (Supplemental Fig. S6A) and random outliers (Supplemental Fig. S6B). There is a stark

contrast between the two sets of driver gene predictions with respect to their overlap with the Cancer Gene Census

(CGC) data set - conserved through different values of the γ parameter (the overlap is generally preserved across

various settings of the remaining two parameters, namely α and β ). Driver genes predicted in the non-randomized

alteration (or non-randomized outliers) data not only (i) included a higher number of CGC genes (i.e. more number of

true driver genes) as compared to that in driver genes predicted from randomized alterations (or randomized outliers)

data, but also (ii) the number of CGC driver genes predicted through the use of non-randomized data increased

quickly with increasing γ parameter, whereas it stays roughly the same when randomized data was used. Note that

while performing randomization, the original gene labels (sequence-wise altered genes or expression-outlier genes)

were randomly replaced by new ones while preserving their recurrence frequency distributions.

16 Modified HIT’nDRIVE: when it is not required to prioritize one driver gene per patient.

In HIT’nDRIVE, at least one gene is picked per patient (i.e. when the β > 0). This constraint is based on the implicit

assumption that at least one causal mutation should be driving cancer (although there could be exceptions to this,
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for example, the driver event could be something other than genomic alteration, and be in the form of methylation,

aberrant expression of a regulatory RNA or a metabolite, they could all be incorporated in our framework, given

matching data - which unfortunately is not available through TCGA). There are also important performance issues

related to the value of beta: (1) Setting β > 0 significantly improves the robustness of our method with respect to

the alpha parameter. In Supplemental Fig. S1, it can observed that the alpha parameter has minimal effect on the

output of our method - provided beta is non-zero. If β = 0 (i.e. patients do not necessarily have one driver gene),

our method is less robust, as can be seen in Supplemental Fig. S7B. In Supplemental Fig. S7C, especially for small

values of alpha, the number of patients that do not have a driver gene increases as the value of gamma decreases.

In the worst case, ∼40% of patients do not report a driver gene; this happens when α = 0.5 and γ = 0.02. For

guaranteeing robustness, the γ value should be set above 0.2 and the α value should be set above 0.7, which reduces

to the fraction of patients with no driver genes to 5%. (2) Setting β = 0 significantly increases the running time of

our method, from a couple of minutes to several days on very large datasets.

17 HIT’nDRIVE’s ability to capture CGC genes

To check if HIT’nDRIVE is able to capture the true driver genes, we perform the following analysis. For the sake

of this analysis, let us first assume that the cancer-type specific genes listed in CGC database are the true driver

genes i.e. the ground truth. As described in the main manuscript text, we predicted potential driver genes in patients

from four major cancer types using HIT’nDRIVE. For every patient analyzed, we compared the input (i.e. all

sequence-wise altered gene) and the output (i.e. subset of the input sequence-wise altered genes that are predicted as

potential driver genes) data for HIT’nDRIVE. We compared the amount of CGC true driver genes present in the

input data versus amount of CGC true driver genes captured by HIT’nDRIVE.

The Supplemental Fig. S17 summarizes the results of this analysis. As can be seen, the likelihood of a sequence-

wise altered CGC gene to be prioritized by HIT’nDRIVE is much higher than that of a non-CGC genes. Next, for

each patient, we calculated the likelihood of HIT’nDRIVE to capture CGC genes (see supplemental methods for

detailed p-value calculation). We found that majority of the samples analyzed have a very significant p-value (i.e.

< 0.01) (Supplemental Fig. S18). This analysis demonstrates that HIT’nDRIVE is able to capture cancer driver

genes, to a larger extent, in the patient samples analyzed.

18 Patient druggability

We checked for overlap of HIT’nDRIVE predicted driver genes with the druggability information from Rubio-Perez

et al. (2015). In GBM, unlike other cancer types, more than 50% of patients could benefit from FDA approved
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drugs. It was intriguing to note that a larger fraction of patients could actually benefit from drugs in clinical trials.

The patient druggability data presented here is more or less similar to that presented in Rubio-Perez et al. (2015).

However, slight differences were present due to different numbers of patient resulting in different number of driver

genes in the two studies. Especially in the case of PRAD, the data presented in (Figure 2C) and Supplemental Fig.

S16 had striking difference which was primarily due to discrepancies in the druggability databases. Majority of

PRAD patients harboured TMPRSS2-ERG fusion which can be targeted using prap inhibitor (Chatterjee et al. 2013).

This information is well covered in TARGET database but not present in data obtained from Rubio-Perez et al.

(2015) resulting in far less number of patients that can benefit from targeted therapies (Supplemental Fig. S19).

We also assessed if the driver genes predicted by HIT’nDRIVE represents the targets of known anti-cancer drugs.

For this we leveraged drug-target information for the drugs used in Genomics of Drug Sensitivity in Cancer project

(Iorio et al. 2016). For every patient analyzed, we identified the drugs that could potentially be targeted against the

(A) driver genes (predicted by HIT’nDRIVE) in each patient, (B) sequence-wise altered CGC genes present in each

patient and (C) CGC genes prioritized as driver genes by HIT’nDRIVE in each patient.

We grouped the drugs into three tiers based on their level of clinical approval - Tier-I: clinically approved drugs,

Tier-II: drugs currently in clinical trials and Tier-III: pre-clinical drugs We considered the potential driver genes,

(A) either predicted by HIT’nDRIVE, (B) or the sequence-wise altered CGC genes, or (C) the intersection of (A)

and (B) for each patient (Supplemental Fig. S20). Among these potential driver genes, we identified those which

are targeted by clinically approved (Tier-I) drugs. About 75% of GBM patients and over 60% of OV and BRCA

could be targeted by at least one such drug, i.e. these patients have at least one potential driver gene that is targeted

by the drugs tested. In case of PRAD only about 20% of the patients have a potential driver gene targeted by a

drug but this can be easily attributed to the fact that prostate cancer drugs primarily target androgen receptor AR

which typically is not genomically altered but is rather alternatively spliced in primary prostate tumors. (We did not

consider alternative splicing events in this study as potential drivers due to lack of RNA-Seq data.) We note that the

proportion of patients with at least one drug targetable potential driver gene increases as we consider Tier-II and

Tier-III drugs in addition to Tier-I drugs - demonstrating that driver genes (be it HIT’nDRIVE predicted or CGC

driver genes) are indeed known targets for anti-cancer drugs.

19 Unsupervised classification of gene expression data

Our rationale for using driver-module identified by OptDis as a feature of classifying phenotypes (eg. tumor vs

normal) is that the observable effects of true driver alterations on their immediate vicinity (in an interaction network)

should be sufficient to discriminate normal samples from tumour samples. The genes in the immediate vicinity
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of “top” potential driver genes are very limited in size compared to the entire gene set to be used by unsupervised

clustering approach. To demonstrate this, we computed cross validation performance of whole set of differentially

expressed genes and compared it to the accuracy of the modules on the TCGA-BRCA subtype expression datasets

(Supplemental Fig. S24). There were 4657 genes on which the classifier was trained (using R caret package (Kuhn

et al. 2016) LGOCV train method), achieving following accuracy: 93.41% in Basal, 88.16% in Her2, 66.08% in

Luminal-A and 77.02% in Luminal-B. The fact that the classifier using only a few modules composed of genes

(in the immediate vicinity of HIT’nDRIVE identified driver genes) performing better (Supplemental Fig. S24,

Supplemental Fig. S25) than a classifier (albeit unsupervised) with access to the entire set of genes provides a strong

evidence that HIT’nDRIVE identified genes are likely to be true driver genes.

The classification of breast subtypes (in TCGA samples) based on their gene-expression profiles using an

unsupervised classification approach is shown in the Supplemental Fig. S30. Based on the dendrogram in the figure,

BASAL subtype is very easy to classify as it forms a separate cluster. But in the case of rest of other subtypes,

unsupervised classification did not reveal a distinguishable clusters hence difficult to classify. However, OptDis

(supervised) classification outperformed unsupervised classification for every breast cancer subtypes. For these

reasons, unsupervised classification is not a suitable approach for the problem. This clearly demonstrates the

superiority of HIT’nDRIVE-OptDis classification approach using driver modules over naive unsupervised clustering

approach.

20 Phenotype classification using CGC gene seeded modules

To evaluate the difference between HIT’nDRIVE predicted driver genes and a list of known driver genes, we

performed the following experiments. First we compared the HIT’nDRIVE driver seeded module with CGC gene

seeded module to classify tumor vs normal samples in TCGA-PRAD patient cohort. Note that among the four

TCGA cancer cohorts we study in this paper, only the PRAD cohort includes non-trivial number of patients with no

known driver genes (based on an unpublished study by PCAWG project) and thus provides a good testbed for novel

driver gene identification by HIT’nDRIVE. As can be seen, HIT’nDRIVE identified driver seeded modules provide

higher classification accuracy, potentially due to novel driver genes identified by HIT’nDRIVE.

The top HIT’nDRIVE modules associated with PRAD are seeded by (in the order of discriminative ability) ERG,

FOXA1, ERG/ACAN, PTEN and CDKN1B (Supplemental Fig. S23A). All but ACAN are CGC genes associated with

PRAD. HIT’nDRIVE successfully identified all these driver genes without the use of any information related to

known PRAD driver genes from CGC. In addition, HIT’nDRIVE identified ACAN, a non-CGC gene as a potential

driver gene of PRAD. In comparison, the modules identified for CGC PRAD driver genes were seeded by (again
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in the order of discriminative ability) ERG, FOXA1, NCOR2, BRAF/ERG and AR/KLK2 - missing PTEN due to

potentially large overlap with other modules. Overall, the modules seeded by HIT’nDRIVE identified driver genes

provide a higher accuracy in discriminating PRAD than CGC PRAD driver genes.

Next, we compared HIT’nDRIVE driver genes to CGC genes in breast cancer subtypes in TCGA-BRCA patient

cohort. Note that breast cancer is possibly the best studied cancer type with respect to driver genes Thus it is

not surprising that Basal, Her2 and Luminal-B subtypes show negligible differentiation between HIT’nDRIVE

predictions and CGC based predictions (Supplemental Fig. S23B). This is due to big overlap between HIT’nDRIVE

discovered modules and CGC modules (e.g. in BASAL, top 4 HIT’nDRIVE modules almost perfectly match the top

4 CGC modules - which, again, is not surprising since BRCA is a very well studied cancer with respect to driver

genes). However, HIT’nDRIVE show some advantage in Luminal-A. HIT’nDRIVE outperformed the CGC genes

from 43rd module onward. This may be due to HIT’nDRIVE predicted driver genes (seeds) such as DMD, ROCK1,

AGAP1, SHANK2 which are not part of CGC and these genes play important role in cancer.

21 Mutual exclusivity of driver modules

To investigate the association between the seed driver gene and component genes in the resulting driver module, for

each cancer type, we first selected the top-50 scoring sub-networks and then combined the sub-networks seeded by

the same driver gene. This resulted in 33, 36, 29 and 33 driver modules in GBM, OV, PRAD and BRCA cohorts

respectively (Supplemental Table S10-13).

21.1 Glutathione S-Transferase (GST) module

We found Glutathione S-Transferase (GST) module as a top-scoring module in OV. The GST module consisted

of 3 members of GST protein family - GSTT1, GSTM5 and GSTA3; 2 members of Cytochrome P450 (CYP)

protein family - CYP2BC and CYP3A5; 2 members of Alcohol Dehydrogenase (ADH) protein family - ADH1B and

ADH6; 1 member of UDP Glucuronosyltransferase (UGT) family - UGT2B17; and Monoamine Oxidase B (MAOB).

Developments of ovarian tumors are primarily regulated by female sex hormone - estrogen. Metabolism of estrogen

may cause DNA damage by the formation of mutagenic DNA adducts and by generation of free radicals. Estradiol

(estrogen) gets activated by CYP3A5 generating 4-hydroxyestradiol, gets oxidized to quinone intermediates leading

to a carcinogenic pathway (Supplemental Fig. S42). GSTs and UGTs inactivate the estrogen and its intermediate

metabolites, avoiding the formation of carcinogens, thus protecting cells against free radical damage and initiate

tumor cell response against adjuvant cancer therapies including radiation and chemotherapy (Guillemette et al.

2004; Tew et al. 2011). Interestingly, we found mutual exclusivity of GSTT1 and UGT2B17 driver alterations in
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OV patients (Supplemental Fig. S26A), both of which detoxify estrogen into inactive metabolites. Almost half

of the patients in the OV cohort harboured GSTT1 and/or UGT2B17 alterations among which around 90% of the

patients had homozygous deletions in either or both of the genes. Expression patterns of CYP and GST proteins

have been known to influence the response to drug treatment and overall survival of the OV cancer patient (Ekhart

et al. 2009). ADH proteins helps in ethanol metabolism to acetaldehyde, which inactivates GST proteins and thus

inhibits anti-oxidative defence system and DNA-repair pathways.

21.2 Phosphoinositide-3-Kinase (PI3K) module

The second top-ranked module in BRCA was Phosphoinositide-3-Kinase (PI3K) module, which included four

mutually exclusive driver genes: 3 members of PI3K protein family - PIK3CA, PIK3R1, PIK3C2B; and 1 member of

Protein Tyrosine Phosphate (PTP) protein family - PTPRM (Supplemental Fig. S26C). Other genes in the module

include EGFR, PLCZ1, TNS1, PVRL3, SPRY2 and FIGF (VEGFD). PI3K pathway is frequently activated in many

cancer types including BRCA as a result of genetic alteration targeting its key components (Fruman and Rommel

2014). Thus EGFR, PI3K, AKT and mTOR inhibitors are often used for different cancer types. HIT’nDRIVE

analysis demonstrated the prevalence of genetic alterations in components of PI3K module: at least 34% of BRCA

patients harboured alterations in this module. PI3K pathway is involved in regulation of diverse cellular processes

(Weigelt and Downward 2012; Gordon and Banerji 2013), including cell proliferation, survival, and migration

(Supplemental Fig. S45).

Although mutational heterogeneity between cancer patients adds noise to the data making cancer driver discovery

more challenging, combination of different genetic alterations could lead to similar disease phenotype. Many recent

cancer studies have shown that cancer driver genes often show a pattern of mutual exclusivity and are functionally

related. The pairs of driver genes that show significant mutual exclusivity are also likely to demonstrate synthetic

lethality interactions.

22 HIT’nDRIVE using regulatory networks

Our study focuses primarily on PPIs. A sub-network in this context is an amalgamation of chains of PPIs (Supple-

mental Fig. S43). In a limited way we have also attempted to enrich the PPI networks by incorporating (a) HiC data

- with the premise that genes that are in close 3-D proximity in the nucleus encode proteins with a higher chance

of interacting physically (allowing us to indirectly measure the likelihood of a PPI), and (b) ChIP-Seq data - from

which we infer interactions involving transcription factor binding to the promoter region of associated genes. The

HiC assisted enrichment of the network did not alter our results in a meaningful manner and thus the associated
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results are excluded from the manuscript. The ChIP-Seq assisted enrichment, on on the other hand is meaningful

and the associated results can be found below.

STRING v10 is a functional network and does contain regulatory interaction. However, the known regulatory

interaction (i.e. directed interaction network in general) is very limited as compared to undirected protein-interaction

network. This would limit the nodes in the influence matrix hence many critical driver genes of cancer and its

interactors would not be left out. For this reason we decided to use undirected protein-interaction network. However,

our method can use both directed (i.e. regulatory network) as well as undirected network.

In the case of prostate cancer, we integrated STRING-10 protein-interaction network with protein-DNA interac-

tion network derived from Chip-seq experiments for transcription factors (i.e. TF-target network) highly relevant to

prostate cancer - REST, FOXA1, AR, EZH2 (Sharma et al. 2013) and ERG (Rickman et al. 2012) resulting in a new

combined network of 13517 nodes and 220190 interactions.

Supplemental Fig. S44A shows a driver module with PTEN is a driver gene in TCGA-PRAD regulating its

downstream genes. In the module, EPHB4 (upregulation) is negatively regulated by PTEN (deletion/mutation,

downregulation). Supplemental Fig. S44B shows a module containing TF-target interaction of EZH2 and its target

MAPKAPK5. Similarly, Supplemental Fig. S44C shows a driver module with ERG as a driver gene and its several

targets as other component genes in the module.

23 Correlation of predicted driver genes with alteration burden.

To obtain the mutation rate, we calculated the somatic mutation frequency per Mb (considering mutations in

protein-coding genes only). We obtained copy-number burden values (i.e. percentage of somatic copy-number

genome changed) using BioDiscovery Nexus Copy Number software (Supplemental Table S20). Supplemental Fig.

S47A summarizes the correlation between Mutation rate and copy-number burden. As reported in many recent

studies, samples in OV, PRAD and BRCA had high copy-number burden. In case of GBM, majority of samples had

more or less equal mutation and copy-number burden. A large number of COAD samples were hypermutated and

few other samples had high copy-number burden.

Supplemental Fig. S47B shows the correlation of number of HIT’nDRIVE predicted driver genes with Mutation

rate. Except for a number of hypermutated samples in COAD and few highly mutated samples in BRCA, the number

of driver genes predicted by HIT’nDRIVE was not correlated with the somatic mutation rate of the respective sample.

In case of COAD, a large number of driver genes were identified in hypermutated samples (30 driver genes per

sample in average) as compared to non-hypermutated samples (10 driver genes per sample in average). Finally,

Supplemental Fig. S47C shows the correlation of number of HIT’nDRIVE predicted driver genes with copy-number
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burden. Here too we observed the number of HIT’nDRIVE predicted driver genes were largely independent of

the somatic copy number burden in the genome. Therefore, except for the hypermutated cases, the number of

HIT’nDRIVE predicted driver genes is independent of both mutation rate and copy-number burden.

24 Cancer-stage specific driver genes of colorectal cancer.

We analyzed 429 cases of colorectal cancer (TCGA-COAD) with matched data for somatic mutation and/or copy-

number aberration and RNA-seq gene-expression from TCGA. This included 78 hypermutated cases and 351

non-hypermutated cases.

Using HIT’nDRIVE we identified driver genes for each patient sample (Supplemental Table S21) Altogether

310 unique driver genes were identified for all 429 samples analyzed. Strikingly, we found that the driver genes of

hypermutated cases (140 driver genes) and non-hypermutated cases (193 driver genes) were markedly different with

only 23 genes in common between the two groups. A large number of driver genes were identified in hypermutated

samples (30 driver genes per sample in average) as compared to non-hypermutated samples (10 driver genes per

sample in average) (Supplemental Fig. S48A).

We grouped the tumor samples based on the pathologic stages (T1, T2, T3 and T4). We focused on few known

driver genes (APC, TP53, KRAS, BRAF, SMAD4, MAP2K4, MAP3K4, PIK3CA, RNF43) of colorectal cancer

(Vogelstein et al. 2013; Dienstmann et al. 2017). Supplemental Fig. S48B summarizes the recurrent frequencies of

above mentioned known driver genes of COAD broken down by different cancer stages. APC is known to initiate

colorectal cancer and HIT’nDRIVE identified APC as the most recurrently altered driver gene in all four stages of

tumor (indicating that it emerges in stage T1). Similarly, HIT’nDRIVE also predicted TP53, MAP2K4 and BRAF as

driver genes in all four stages of tumor, as expected. On the other hand, KRAS, SMAD4 and PIK3CA are known

driver genes of advanced stages of colorectal cancer. HIT’nDRIVE predicted KRAS, SMAD4 and PIK3CA as driver

genes only in stages T2, T3 and T4 and not in stage T1. Therefore this analysis demonstrates the capability of

HIT’nDRIVE to predict stage specific driver genes of cancer.
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Supplemental Figures

Supplemental Fig. S1. HIT’nDRIVE identified driver genes with respect to varying parameter values in
100 select BRCA samples. (See Supplemental Methods 7 for details) (A) The number of driver genes identified
by HIT’nDRIVE with respect to varying values of γ , the fractional lower bound on the sum of the incoming edge
weights from selected driver genes to each expression altered gene covered. As expected HIT’nDRIVE is sensitive
to changes in γ . (B) The number of driver genes identified by HIT’nDRIVE with respect to varying values of α , the
fraction of outlier genes to be covered across all patients. HIT’nDRIVE is highly robust with respect to the changes
in α . (HIT’nDRIVE is also very robust to variation in β , which is the fraction of outliers to be covered for each
patient).
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Supplemental Fig. S2. HIT’nDRIVE identified driver genes with respect to varying outlier stringency
across 100 select BRCA samples. (see Supplemental Methods 7 for details.) (A) The number of driver genes
identified by HIT’nDRIVE with respect to three outlier detection threshold values, across varying values of the γ

parameter (see Supplemental Results 5 for details). An increase in the outlier detection threshold implies a slight
decrease in the number of detected driver genes. (B) Proportion of HIT’nDRIVE detected driver genes obtained for
outlier threshold of 0.01 which are also detected when the outlier threshold is 0.05 and 0.1. As can be seen, even
though the number of driver genes increase with the value of γ , the proportion of driver genes jointly detected for
three threshold values for outlier detection are very robust, roughly at 80%. More importantly, the increase in outlier
detection threshold only decreases the number of driver genes and does not introduce new driver genes, implying
robustness.
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Supplemental Fig. S3. HIT’nDRIVE identified driver genes with respect to network perturbation in 100
select BRCA samples. The edges of the STRING ver-10 network was perturbed to different extent (between 1-10%)
preserving the degree of the nodes in the network. HIT’nDRIVE simulation was performed using different perturbed
networks. Proportion of common driver genes between the unperturbed network and each of the perturbed network
were calculated.
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Supplemental Fig. S4. HIT’nDRIVE identified driver genes with respect to underlying network used in
100 select BRCA samples. (A) Venn Diagram showing the overlap of nodes in the three different networks used -
STRING v10 (only high-confident interactions), HPRD v9.0 and REACTOME v2015. (B) Comparison between the
number of nodes in the network. (C) Comparison between the number of edges in the network. (D) Comparison
between the number of driver genes detected using different networks. (E) Proportion of common driver genes
between the networks (STRING-REACTOME and HPRD-REACTOME) as compared to driver genes detected using
REACTOME network. A subset of 100 BRCA samples from TCGA were used for the simulation (See Supplemental
Methods 7 for details).
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Supplemental Fig. S5. HIT’nDRIVE identified driver genes with respect to different alteration types in
100 select BRCA samples. HIT’nDRIVE simulation was performed using different alteration types - SNV only,
CNA only, Gene Fusions only and combination of SNV + CNA + Gene Fusions. Intersection of driver genes
resulting when using individual alteration types alone and the driver genes resulting when using combination of SNV
+ CNA + Gene Fusions were calculated. Proportion of the intersection of driver genes as compared to the driver
genes detected using combination of SNV + CNA + Gene Fusions were plotted. A subset of 100 BRCA samples
from TCGA were used for the simulation (See Supplemental Methods 7 for details).
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Supplemental Fig. S6. HIT’nDRIVE identified driver genes using randomized input data in 100 select
BRCA samples. Driver genes predicted by HIT’nDRIVE in non-randomized data compared with the driver genes
predicted using randomized (i.e. by gene label swapping for 100 iterations). (A) Randomized altered genes and
(B) Randomized outlier genes. The Cancer Gene Census (CGC) genes present in the predicted driver geneset is
displayed in the plot. A subset of 100 BRCA samples from TCGA were used for the simulation (See Supplemental
Methods 7 for details).
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Supplemental Fig. S7. Modified HIT’nDRIVE not required to prioritize at least one driver gene per
patient. (A) Modified ILP formulation where we removed the constraint that ensured at least one driver gene is
prioritized per patient. (B) HIT’nDRIVE simulation with different values of gamma (γ) parameter with the modified
ILP formulation as given in A. Each line represents different values of alpha (α) parameter, which controls the
fraction of total outliers to be covered. (C) We calculated the fraction of patients with no driver genes prioritized, for
the same set of driver genes prioritized in B.
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Supplemental Fig. S8. Genomic drivers of Glioblastoma. The spectrum of driver alterations (somatic muta-
tions, CN amplifications, homozygous CN deletions and gene fusions) in GBM patients prioritized by HIT’nDRIVE.
Alteration frequency of the genes is shown on the right and frequency of driver genes predicted per patient is shown
on the top panel.
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Supplemental Fig. S9. Genomic drivers of Glioblastoma. Circos plot showing the genomic position of the
driver genes prioritized by HIT’nDRIVE in GBM.
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Supplemental Fig. S10. Genomic drivers of Ovarian Cancer. The spectrum of driver alterations (somatic mu-
tations, CN amplifications, homozygous CN deletions and gene fusions) in OV patients prioritized by HIT’nDRIVE.
Alteration frequency of the genes is shown on the right and frequency of driver genes predicted per patient is shown
on the top panel.
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Supplemental Fig. S11. Genomic drivers of Ovarian Cancer. Circos plot showing the genomic position of
the driver genes prioritized by HIT’nDRIVE in OV.
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Supplemental Fig. S12. Genomic drivers of Prostate Cancer. The spectrum of driver alterations (somatic
mutations, CN amplifications, homozygous CN deletions and gene fusions) in PRAD patients prioritized by
HIT’nDRIVE. Alteration frequency of the genes is shown on the right and frequency of driver genes predicted per
patient is shown on the top panel.
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Supplemental Fig. S13. Genomic drivers of Prostate Cancer. Circos plot showing the genomic position of
the driver genes prioritized by HIT’nDRIVE in PRAD.
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Supplemental Fig. S14. Genomic drivers of Breast Cancer. The spectrum of driver alterations (somatic
mutations, CN amplifications, homozygous CN deletions and gene fusions) in BRCA patients prioritized by
HIT’nDRIVE. Alteration frequency of the genes is shown on the right and frequency of driver genes predicted per
patient is shown on the top panel.

40



Supplemental Fig. S15. Genomic drivers of Breast Cancer. Circos plot showing the genomic position of the
driver genes prioritized by HIT’nDRIVE in BRCA.
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Supplemental Fig. S16. Driver genes distribution across cancer types. The distribution of number of driver
genes identified by HIT’nDRIVE in individual cancer cohort. The left most panel shows the distribution of driver
genes in a combined cohort of GBM, OV, PRAD and BRCA patients.
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Supplemental Fig. S17. Sequence-wise altered Cancer Gene Census (CGC) genes prioritized by
HIT’nDRIVE v.s. that of non-CGC genes, for each patient sample, across four cancer types. Only CGC
genes specific to a cancer type is considered here. Green: Cancer specific sequence-wise altered CGC genes priori-
tized by HIT’nDRIVE; Red: Cancer specific sequence-wise altered CGC genes NOT-prioritized by HIT’nDRIVE;
Orange: Sequence-wise altered non-CGC genes prioritized by HIT’nDRIVE; Purple: Sequence-wise altered non-
CGC genes NOT-prioritized by HIT’nDRIVE. The right panel depicts absolute numbers and the left panel depicts
relative proportions. As can be seen the likelihood of a sequence-wise altered CGC gene to be prioritized by
HIT’nDRIVE is much higher than that of a non-CGC gene.

43



Supplemental Fig. S18. P-value Distribution of the likelihood of HIT’nDRIVE to pick CGC genes
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Supplemental Fig. S19. Distribution of patient druggability. Distribution of patients with HIT’nDRIVE
predicted driver genes that are target of drugs in different levels of development. The druggability data were obtained
as published by (Rubio-Perez et al. 2015).
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Supplemental Fig. S20. Anti-cancer drugs targeting driver genes predicted by HIT’nDRIVE. We con-
sidered the potential driver genes, (A) either predicted by HIT’nDRIVE, (B) or the sequencewise altered CGC
genes, or (C) the intersection of CGC and HIT’nDRIVE predicted driver genes for each patient. The figure shows
the proportion of patients in which HIT’nDRIVE identified drivers were targets of anti-cancer drugs. Drug-target
information were obtained from (Iorio et al. 2016) .
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Supplemental Fig. S21. HIT’nDRIVE sensitivity to least frequent driver gene. (A) TCGA-BRCA cohot
with 1000 tumors were selected for randomization experiment (labelled here as “original”). Tumor samples of
different sample size were sub-sampled such that the sample alteration frequency in the sub-sample population is
very similar to that of the original 1000 tumors (see supplementary text for details). HIT’nDRIVE simulation was
performed in all of the above sub-sampled tumor populations. The least frequent driver gene was identified for each
sub-sampled population. (B-C) Number of samples (and percentage of sub-sampled tumor population) in which the
least frequent driver gene is present.
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Supplemental Fig. S22. Schematic Diagram of HIT’nDRIVE-unsupervised approach to prioritize driver-
modules. Driver-outlier interaction pairs are identified from the bipartite graph. We perform a hypergeometric test
to identify significant driver-outlier interaction pairs across the patient cohort (pvalue < 0.001). Each driver-module
is seeded with one HIT’nDRIVE identified driver gene, and includes outlier genes with significant driver-outlier
interaction pairs.
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Supplemental Fig. S23. Phenotype Classification using CGC Genes Seeded Modules. Phenotype Classifi-
cation accuracy of HIT’nDRIVE driver seeded module vs Cancer Gene Census (CGC) genes seeded modules. (A)
TCGA-PRAD gene-expression dataset with Tumor and Normal samples. (B) Subtype classification accuracy of
HIT’nDRIVE identified driver seeded modules vs CGC BRCA driver seeded modules on TCGA-BRCA cohort with
respect to four subtypes of breast cancer (Basal, Her2, Luminal-A and Luminal-B).
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Supplemental Fig. S24. Comparison of phenotype classification accuracy achieved by HIT’nDRIVE-
OptDis with that achieved by the best possible nearest neighbour classifier that uses a linear combination of
all differentially expressed genes (part of R’s caret package). As can be seen, in all subtypes but especially for
the Luminal-A subtype HIT’nDRIVE-OptDis provides a much higher classification accuracy.
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Supplemental Fig. S25. Comparison of HIT’nDRIVE+OptDis based modules against randomly selected
modules. Phenotype Classification accuracy of HIT’nDRIVE driver seeded module identified by OptDis in TCGA-
PRAD data against classification accuracy using randomly selected modules.
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Supplemental Fig. S26. Mutual Exclusivity of Driver Modules. The left panel represents protein-interaction
network among the component genes in the module seeded by a driver gene. The network was constructed based on
STRING v10 protein-interaction network. Each node represents a gene/protein and edges represents interaction
between the connected nodes. The driver gene node is colored in black. The middle panel represents the gene
expression heatmap of the driver module genes among the patients in which the respective driver genes have been
altered. The matrix on top of the heatmap shows the alteration status of the driver genes. The right panel shows
the pathway enrichment of the driver modules. The enrichment test was performed using component genes in the
driver module which was tested against different pathway databases (See supplementary methods for details). (A)
Glutathione S-Transferase (GST) modules in OV. (B) Phosphoinositide-3-Kinase (PI3K) module in BRCA.
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Supplemental Fig. S27. Module Expression Heatmap: TCGA-BRCA Dataset. The heatmap represents the
activity-score (i.e. average expression of all component genes in the module) of the driver module. These driver
module were discovered to distinguish one breast cancer subtype from the other subtypes. The vertical column
represents each patient sample analyzed. The top color-bar represents the breast cancer subtypes. The horizontal
row represents each driver module discovered. The color bar on the left of the heatmap represents each breast
cancer subtype the module belongs to (i.e. separates that subtypes with rest of the subtypes). The dendrogram was
generated using Euclidean distance and Ward’s minimum variance method.
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Supplemental Fig. S28. Module Expression Heatmap: METABRIC-CAMBRIDGE Dataset. The heatmap
represents the activity-score (i.e. average expression of all component genes in the module) of the driver module.
These driver module were discovered to distinguish one breast cancer subtype from the other subtypes. The vertical
column represents each patient sample analyzed. The top color-bar represents the breast cancer subtypes. The
horizontal row represents each driver module discovered. The color bar on the left of the heatmap represents each
breast cancer subtype the module belongs to (i.e. separates that subtypes with rest of the subtypes). The dendrogram
was generated using Euclidean distance and Ward’s minimum variance method.
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Supplemental Fig. S29. Module Expression Heatmap: METABRIC-VANCOUVER Dataset. The heatmap
represents the activity-score (i.e. average expression of all component genes in the module) of the driver module.
These driver module were discovered to distinguish one breast cancer subtype from the other subtypes. The vertical
column represents each patient sample analyzed. The top color-bar represents the breast cancer subtypes. The
horizontal row represents each driver module discovered. The color bar on the left of the heatmap represents each
breast cancer subtype the module belongs to (i.e. separates that subtypes with rest of the subtypes). The dendrogram
was generated using Euclidean distance and Ward’s minimum variance method.
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Supplemental Fig. S30. Unsupervised Clustering of BRCA subtypes in TCGA-BRCA cohort. Unsuper-
vised classification of BRCA subtypes based on the gene-expression profiles. The dendrogram was generated
using Euclidean distance and Ward’s minimum variance method (via hclust, R’s hierarchical clustering function).
As can be seen, unsupervised clustering can not identify BRCA subtypes well. In particular, LUMINAL-A and
LUMINAL-B subtypes are well mixed in the dendogram.
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Supplemental Fig. S31. Activity Score of BRCA subtype-specific modules containing ESR1. Activity
Score of a module represents the average expression of component genes in the module.
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Supplemental Fig. S32. Activity Score of BRCA subtype-specific modules containing ERBB2. Activity
Score of a module represents the average expression of component genes in the module.
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Supplemental Fig. S33. Heatmap of NCOA3 driver module expression across different BRCA subtypes.
The NCOA3 module contains NCOA3, AR, TFF1, XBP1 and SPDEF as component genes.
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Supplemental Fig. S34. BRCA subtype specific driver module (HER2-01). (A) Module seeded by NCOA3
that distinguished Her2 subtype from rest of the BRCA subtypes. (B) Activity-score of the module across different
BRCA subtypes. (C) Kaplan-Meier plot showing the significant association of the module with patients’ clinical
outcome in three different datasets
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Supplemental Fig. S35. BRCA subtype specific driver module (HER2-11). (A) Module seeded by GPR98
that distinguished Her2 subtype from rest of the BRCA subtypes. (B) Activity-score of the module across different
BRCA subtypes. (C) Kaplan-Meier plot showing the significant association of the module with patients’ clinical
outcome in three different datasets
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Supplemental Fig. S36. BRCA subtype specific driver module (HER2-13). (A) Module seeded by NRXN2
that distinguished Her2 subtype from rest of the BRCA subtypes. (B) Activity-score of the module across different
BRCA subtypes. (C) Kaplan-Meier plot showing the significant association of the module with patients’ clinical
outcome in three different datasets
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Supplemental Fig. S37. BRCA subtype specific driver module (LUMA-09). (A) Module seeded by RSRC1
that distinguished Luminal-A subtype from rest of the BRCA subtypes. (B) Activity-score of the module across
different BRCA subtypes. (C) Kaplan-Meier plot showing the significant association of the module with patients’
clinical outcome in three different datasets
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Supplemental Fig. S38. BRCA subtype specific driver module (LUMA-11). (A) Module seeded by INTS4
that distinguished Luminal-A subtype from rest of the BRCA subtypes. (B) Activity-score of the module across
different BRCA subtypes. (C) Kaplan-Meier plot showing the significant association of the module with patients’
clinical outcome in three different datasets
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Supplemental Fig. S39. BRCA subtype specific driver module (LUMA-29). (A) Module seeded by PIK3R1
that distinguished Luminal-A subtype from rest of the BRCA subtypes. (B) Activity-score of the module across
different BRCA subtypes. (C) Kaplan-Meier plot showing the significant association of the module with patients’
clinical outcome in three different datasets

65



Supplemental Fig. S40. BRCA subtype specific driver module (LUMA-39). (A) Module seeded by MACF1
that distinguished Luminal-A subtype from rest of the BRCA subtypes. (B) Activity-score of the module across
different BRCA subtypes. (C) Kaplan-Meier plot showing the significant association of the module with patients’
clinical outcome in three different datasets
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Supplemental Fig. S41. BRCA subtype specific driver module (LUMB-23). (A) Module seeded by RIMS1
that distinguished Luminal-A subtype from rest of the BRCA subtypes. (B) Activity-score of the module across
different BRCA subtypes. (C) Kaplan-Meier plot showing the significant association of the module with patients’
clinical outcome in three different datasets
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Supplemental Fig. S42. Metabolism of Estrogen. Estradiol (E2) hydrolyation by CYP3A5 leads to a
carcinogenic pathway. 4-OH-E2 undergoes metabolic redox cycling to generate free radicals such as superoxide and
the chemically-reactive estrogen semiquinone/quinone intermediates. GSTT1 and UGT inactivates estrogen and
intermediate compounds, avoiding the formation of carcinogens such as E2-3,4-Q. 4-OH-E2, 4-hydroxyestradiol;
E2-3,4-SQ, estradiol-3,4-semiquinone; E2-3,4-Q, estradiol-3,4-quinone; GSTT1, Glutathione S-Transferase Theta 1;
UGT, UDP Glucuronosyltransferase.
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Supplemental Fig. S43. Drivers Modules of Ovarian Cancer. The left panel represents protein-interaction
network among the component genes in the module seeded by a driver gene. The network was constructed based
on String v10 protein-interaction network. Each node represents a gene/protein and edges represents interaction
between the connected nodes. The node color represents the mean gene expression of the gene among the patient
samples represented. The driver gene node is colored in black. The middle panel represents the gene expression
heatmap of the driver module genes among the patients in with the respective driver gene(s) have been altered. The
matrix on top of the heatmap shows the alteration status of the driver gene(s). The right panel shows the pathway
enrichment of the driver modules.
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Supplemental Fig. S44. Drivers Modules of Prostate Cancer. The left panel represents protein-interaction
network among the component genes in the module seeded by a driver gene. The network was constructed based on
String v10 protein-interaction network and ChipSeq based interaction edges for some key transcription factors related
to prostate cancer were added. We infer interactions involving transcription factor binding to the promoter region of
associated genes. Each node represents a gene/protein and edges represents interaction between the connected nodes.
The node color represents the mean gene expression of the gene among the patient samples represented. The driver
gene node is colored in black. The middle panel represents the gene expression heatmap of the driver module genes
among the patients in with the respective driver gene(s) have been altered. The matrix on top of the heatmap shows
the alteration status of the driver gene(s). The right panel shows the pathway enrichment of the driver modules.
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Supplemental Fig. S45. EGFR-PI3K Signaling Pathway.
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Supplemental Fig. S46. Overview of Drug Response Analysis using HIT’nDRIVE + OptDis. (A) Somatic
mutation, Copy Number Aberration and mRNA Gene Expression data (for four cancer types - GBM, OV, PRAD and
BRCA) were obtained from Genomics of Drug Sensitivity in Cancer (GDSC) project (Iorio et al. 2016). We ran
HIT’nDRIVE to identify driver genes of individual cancer cell lines. (B) Drug sensitivity data from drug screening
of a total of 265 drugs on the above cell lines were obtained from GDSC project. The cell lines were stratified
into either sensitive or resistant phenotype. (C-D) The driver genes were used as seeds in the network to identify
sub-networks that discriminate between the drug-response phenotypes (i.e. sensitive vs resistant cell lines).
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Supplemental Fig. S47. Correlation between the number of driver genes predicted by HIT’nDRIVE with
mutation rate and copy-number burden. (A) Correlation between Mutation rate (frequency of somatic mutation
per Mb) with copy-number burden (percentage of genome changed calculated using somatic copy number changes).
Correlation of the number of driver genes predicted by HIT’nDRIVE with (B) mutation rate and (C) copy-number
burden.
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Supplemental Fig. S48. HIT’nDRIVE predicted driver genes of Colorectal cancer (TCGA-COAD). (A)
Box plot comparing the number of HIT’nDRIVE predicted driver genes in hypermutated and non-hypermutated
cases of TCGA-COAD. (B) Recurrent frequency of the known stage-specific driver genes that were also predicted
by HIT’nDRIVE in non-hypermutated COAD samples. (C) Recurrent frequency of all driver genes predicted by
HIT’nDRIVE in non-hypermutated COAD samples.
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