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1 Model description

Consider a data set of N individuals, each of which is annotated with a se-
ries of categorical observations, which are themselves organised in a hierarchical
structure reflecting increasing levels of resolution; i.e., annotations are associ-
ated with nodes within a classification tree. Observations may be made at both
terminal and internal nodes depending on resolution. We define an indicator,
Zij , for the presence of at least one annotation j ∈ T for individual i; where T
is the set of all annotations (organised as a tree). We model the distribution
of Zij , conditional on the genotype of individual i at variant s, Gis ∈ {0,1,2},
using a logistic model, with an intercept (β0

j ) and separate coefficients for the

heterozygous (β1
j ) and homozygous (β2

j ) states:

Yijs = β
0
j + β

1
j ∗ I(Gis == 1) + β2

j ∗ I(Gis == 2), (1)

P (Zij = 1∣Yijs) =
eYijs

(1 + eYijs)
. (2)

To model the correlation structure of the genetic coefficients across cate-
gories, we allow the coefficient pair {β1, β2} to evolve down the tree in a Marko-
vian fashion. The coefficients attached to a parent node x can either be inherited
by a child node y, with probability e−θ, or can transition to a new pair of values,
with probability 1 − e−θ. With probability 1 − π1 the new values are {0,0}, and
with probability π1 they are drawn from a joint prior on β1 and β2, f(β1, β2).
The state of the ancestral node in the tree is drawn from the stationary distri-
bution of this process; i.e., {0,0} with probability 1−π1 or from f(β1, β2) with
probability π1. We use a non-local prior for f(β1, β2), such that:

f(β) = N2(0,Σ) ∗ ∣β∣k ∗ e, (3)

with

Σ = [
σ2
1 rσ1σ2

rσ1σ2 σ2
2

] (4)

and,

e =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0.10, if β1 ∗ β2 < 0

0.10, if β1 > β2

1, otherwise.

(5)

The density of the prior is illustrated in Supplementary Figure 1. The mix-
ture prior on the coefficients (including the point mass at 0) is referred to as
f∗(β1, β2). Unless stated otherwise we use parameter values π1 = 0.001, θ = 1/3,
σ1 = 2, σ2 = 4, k = 1/2 and r = 0.5, throughout. The unknown intercept term β0

j

is chosen, for each value of {β1
j , β

2
j }, to maximise the likelihood. That is,
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L(β1
j , β

2
j ∣Zj) =maxβ0

j
L(β0

j , β
1
j , β

2
j ∣Zj), (6)

where Zj is {Z1j , Z2j , . . . , ZNj}.
The joint distribution of different annotations across individuals has sub-

stantial non-independence. For example, the same individual might be recorded
as having different subtypes of a disorder on separate visits to a hospital, the
recording of a specific disease subtype will mean that other subtypes are less
likely to be recorded for the same individual and a disease may have multiple
diagnostic features. However, rather than attempt to capture such structure,
we make the approximation that annotations are independent conditional on an
individual's genotype (and evaluate the impact of this approximation). Hence,
the likelihood for a given vector of {β1, β2} values across annotations, β, is given
by the product over all nodes in the tree T :

L(β∣Z) =∏
j∈T

L(βj ∣Zj), (7)

where βj = {β1
j , β

2
j }. The prior density for β can be calculated by considering

the state of the ancestral node, A, and all transitions between parent and child
nodes:

P (β) = p(βA)∏
p,c

q(βp,βc), (8)

where q(βp,βc) is the transition probability between the coefficients of the par-
ent and child nodes. Because of the structure of the model, it is possible to
sum the likelihood over all possible values of β using dynamic programming.
To achieve this, for each node j we calculate an integrated likelihood

Lj = ∫ Pj(D∣β)f∗(β)dβ, (9)

where Pj(D∣β) is given by the likelihood function in Equation 6 when j is a
terminal node, or by

Pj(D∣β) = ∏
i∈γ(j)

[e−θPi(D∣β) + (1 − e−θ)Li], (10)

when j is an intermediate node. Here, e−θ is the stay transition probability in
β and (1 − e−θ) is the switch transition probability in β, which results in un-
correlated genetic coefficients between nodes. Note that in practice we evaluate
the functions over a grid of values for β.

The full likelihood (i.e. by summing over all possible coefficients) is given
by summing the values at the ancestral node A:

Lfull = LA. (11)

The likelihood under the model of no genetic association across all nodes in the
tree, L∅, is calculated by summing the likelihood over all nodes with β = 0, and
the prior on this:
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Lj(β = 0) = ∏
i∈γ(j)

p00Li(β = 0), (12)

where p00 = e
−θ + (1 − e−θ)(1 − π1). For terminal nodes, Lj(β = 0) is calculated

directly from the likelihood function by evaluating Equation 6 at β = 0. It
follows that the null likelihood L∅ is given by

L∅ = (1 − π1)LA(β = 0). (13)

2 Model fitting and Bayes factor calculation

There are two objectives to the analysis. First, to calculate the evidence for as-
sociation between a genetic variant and any of the annotations, thus identifying
variants that have association to at least one annotation. Second, for variants
with some association, to identify those annotations with non-zero coefficients.

Our first objective can be met by calculating a Bayes factor that compares
the likelihood integrated over all possible values of β in which at least one node
is active, L+, to the likelihood under which all nodes are inactive. By noting
that there is only one way in which all nodes can be inactive and that it is easy
to calculate both the prior, π∅, and likelihood, L∅, for this state, we can obtain
the Bayes factor as follows. First, note the we can rewrite the full likelihood
function Lfull in Equation 11 as:

Lfull = π∅L∅ + ∑
p∈∅′

πpLp, (14)

which sums over the path where all nodes are inactive and all possible path with
at least one active node (p ∈ ∅′). Then, we can solve for the likelihood L+:

L+ =
Lfull − π∅L∅

(1 − π∅)
. (15)

The desired Bayes factor is then calculated by taking the ratio of the two like-
lihoods:

BFtree =
L+

L∅
=
Lfull − π∅L∅
(1 − π∅)L∅

. (16)

Using the same framework, it is also possible to compute Bayes factors for
the cases where there is no correlation in state between parent and child nodes
(i.e., θ → ∞), and where all states are active and either share a single set of
coefficients (i.e., π1 → 1, θ → 0) or are independent (i.e., π1 → 1, θ → ∞). In
theory it would be possible either to estimate π1 and θ or to integrate over a
hyper-prior.

For those variants where there is evidence for association within the anno-
tation tree, it is possible to identify active nodes and estimate coefficients of
association for each node by using the forward and backward algorithms, also
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known as the inside and outside algorithms when applied to tree-like Markov
models. The forward (inside) algorithm has been described above, though for
completeness and consistency of notation, it is repeated below.

In the forward (inside) algorithm we are iterating up from the terminal nodes
towards the root of the tree calculating the joint likelihood of the subtree each
node subtends. To initialise, let j be a terminal node, so Fj(β) is the probability
of the observed data at node j for a given value of β,

Fj(β) = Pj(D∣β). (17)

We can then integrate over the values of β to calculate the integrated likelihood
at node j as in Equation 9,

Lj = ∫ Fj(β)f
∗
(β)dβ. (18)

For intermediate nodes we calculate Fj recursively up the tree. First, let j be
an intermediate node and γ(j) the set of child nodes of j. For each i ∈ γ(j) we
define,

Gi(β) = e
−θFi(β) + (1 − e−θ)Li, (19)

It follows that for an internal node

Fj(β) = ∏
i∈γ(j)

Gi(β). (20)

We can then calculate the integrated likelihood at node j using Equation 18 as
for the terminal nodes and continue the algorithm up the tree until the ancestral
node, A, is reached.

In the backward (outside) algorithm we calculate the probability density of
β starting from the root of the tree and moving recursively down the tree. The
quantity we are aiming to calculate is the likelihood for the data not subtended
by the node of interest.

To initialise, let A be the ancestral node, so BA(β) is given by the prior on
β,

BA(β) = f
∗
(β). (21)

We then iterate down the tree. Let i and j be such that j ∈ γ(i) (that is i is the
parent of j), then

Bj(β) = ∫ Bi(β
′
)q(β,β′)

Fi(β
′)

Gj(β)
dβ′, (22)

where q(β,β′) is the (transition) probability of state β in the daughter node
given state β′ in the parent node. Note that because of the structure of the
model there are only two types of transition, which enables efficient calculation.
The posterior density for β in node j can then be calculated from
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πj(β∣D) =
Fj(β) ×Bj(β)

Lfull
, (23)

and from this distribution we can integrate to estimate the probability of β ≠ 0
and the 95% credible sets for β.

3 Conditional analysis

To account for linkage disequilibrium in the MHC and to identify independent
associations with HLA alleles we performed conditional analysis. For each of
the datasets (SR and HES) we first analysed each imputed HLA and identified
the allele with the strongest evidence of association, as measured by the BFtree

statistic. We then continue to analyse the remaining HLA alleles in an iterative
approach, where at each iteration we controlled for previous identified HLA
alleles, through conditional analysis. To account for these covariates in the
analysis we use an approximation to the likelihood function. Let ∆ij quantify
the aggregated risk effects due to covariates in individual i in annotation j,

∆ij =∑
k

[β̂1
jk × I(Gik == 1) + β̂2

jk × I(Gik == 2)], (24)

where the genetic coefficients {β̂1
jk, β̂

2
jk} are the MAP estimates inferred for the

HLA allele with the largest BFtree in round k for annotation j, and Gik ∈ {0,1,2}
are the genotypes for individual i in the HLA allele identified in round k.

To model the distribution of Zij we modified the logistic model in Equation
1 and 2 to account for the aggregate risk effect due to HLA alleles identified in
previous rounds:

Y cijs = β
0
+ β1

j ∗ I(Gis == 1) + β2
j ∗ I(Gis == 2) +∆ij , (25)

and,

P (Zij = 1∣Y cijs) =
eY

c
ijs

1 + eY
c
ijs

. (26)

The conditional likelihood function is then given by the binomial distribution,

Lcj(β∣Zj) =
N

∏
i=1
pc

Zij

ij (1 − pcij)
1−Zij , (27)

where we let pcij = P (Zij = 1∣Y cijs).
To compute the above conditional likelihood we use an approximation by

taking the 2nd order Taylor expansion around ∆ = 0. After evaluation of the
first and second derivatives of log(Lcj(β∣Zj)) at ∆ = 0 and simplifying terms we
obtain:
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log(Lcj(β∣Zj)) ≈ log(Lj(β∣Zj)) +
N

∑
i=1

[∆ij(Zij − pij) −
∆2
ij

2
pij(1 − pij)], (28)

where Lj(β∣Zij) and pij are given by the equivalent functions when we don’t
account for covariates. We note that while the approximation works well for
early rounds, its accuracy is likely to decrease after multiple rounds of condi-
tioning. Extensions that enable re-estimation at later steps will be explored in
subsequent work.

4 Predicting the expected magnitude of genetic
dilution due to the winners curse

The magnitude of the estimated effect of the GRS on any given diagnostic term
is a measure of how consistent the phenotypic diagnosis criterion is between the
GWAS used to derive the GRS and the group of individuals identified with the
diagnostic term in the UK Biobank. A decrease from a value of 1 represents a
dilution of the GRS, and the extent of this dilution is related to several factors,
including: misclassification, misdiagnosis, miscoding, disease heterogeneity, and
an expected dilution from the winner’s curse.

However, because the effect sizes are typically estimated in those papers
where the effect was first discovered, they are subject to the winner’s curse bias
[1], which would lead to apparent dilution even in a cohort with identical pheno-
typing. For each of the IMDs for which GRSs were constructed, we performed
simulations to estimate the amount of expected dilution due to the winner’s
curse. For each study we simulated 50,000 case-control datasets with sample
sizes matching those reported in the paper from which the effect sizes were esti-
mated. Allele frequencies at risk loci and effect sizes were sampled with replace-
ment from the empirical distribution of genome-wide significant SNPs (from
the same paper). Genotypes were sampled from a multinomial distribution and
phenotypes were simulated with an additive genetic risk. Simulated datasets
were analysed with logistic regression and, for any given replicate, we repeated
the simulation if the genotype to phenotype association was not genome-wide
significant (P-value < 5x10-8). The expected dilution was then calculated as the
average over replicates of the sum of the estimated genetic effects over the sum
of the true genetic effects.

For each of the studies analysed we estimated the expected dilution to be
no more than 15% (Supplementary Table 11).

5 Extent of genetic dilution due to misclassifi-
cation

To assess how misclassification between related traits can affect dilution and
associated diagnostic terms, we performed a series of simulations where we mis-
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classified individuals in the UK Biobank with a diagnosis of type 1 diabetes
(T1D) to a diagnosis of type 2 diabetes (T2D) - or the reverse - and we per-
formed TreeWAS analysis on these permuted datasets. This was performed in
both the SR and the HES datasets, and the T1D and T2D genetic risk scores
were analysed against each dataset.

When we simulated a misclassification from T2D to T1D we observed that
the evidence of association of the T1D GRS with the T1D term was not af-
fected (Supplementary Figure 6c,d) and remained highly significant (PP = 1)
for all simulated misclassification rates, but there was increased dilution of the
estimated genetic effect with increasing misclassification rates (Supplementary
Figure 6e,f). Therefore, misclassification is one of the factors that can affect
the extent of dilution observed for the genetic effect of a GRS on its respective
diagnostic term. When misclassification was performed in the reverse direction,
no significant increase in the dilution was observed for the T2D GRS on the
T2D diagnostic term.

In our simulation analysis we did not observe an association between the
T1D GRS and T2D diagnostic terms (Supplementary Table 7): through the
simulations we estimated that we would require at least a 10% misclassification
rate of T1D onto T2D to observe an association between the T1D GRS and the
T2D diagnostic term in the HES dataset (Supplementary Figure 7d).
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