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Supplementary Notes 

1. False non-discovery rate 

Control	 of	 the	 FNR	 is	 not	 yet	 conducted	 routinely	 in	 proteomics,	 potentially	 because	

interpretation	of	the	results	and	most	downstream	analysis	strategies	are	more	affected	by	

accumulation	of	false	positives	than	accumulation	of	false	negatives.	To	investigate	whether	

the	 FNR	 could	 provide	 a	 useful	 additional	 metric	 for	 error	 rate	 control,	 we	 have	

implemented	support	for	FNR	and	pFNR	estimation	in	PyProphet.	Applied	to	the	SWATH-MS	

inter-laboratory	 reproducibility	 study,	we	estimated	 the	FNR	values	 for	 the	global	 context	

on	the	protein	level	at	1%	FDR	to	be	15%	for	the	CAL,	25%	for	the	HEK	and	0%	for	the	SSL	

library.	 Unfortunately,	 these	 values	 are	 challenging	 to	 interpret,	 because	 they	 must	 be	

evaluated	in	the	context	of	the	library	that	was	used	to	query	the	data.	Since	the	absolute	

number	 of	 true	 negatives	 is	 smaller	 for	 the	 HEK	 library	 compared	 to	 the	 CAL,	 the	 lower	

number	of	 false	negatives	 results	 in	 a	 large	 FNR.	 In	 the	peptide-centric	 scoring	approach,	

the	 FNR	 value	 thus	 directly	 depends	 on	 the	 completeness	 and	 specificity	 of	 the	 applied	

library	and	is	difficult	to	compare	between	different	spectral	libraries.	For	example,	the	0%	

FNR	obtained	for	the	SSL	means	that	all	proteins	represented	 in	the	 library	are	present	 in	

the	data,	but	this	does	not	provide	any	information	about	what	part	of	the	proteome	was	

not	 covered	 by	 the	 peptide	 queries.	 The	 FNR	 is	 a	 useful	 statistic	 also	 for	 applications	 in	

proteomics,	but	applied	 to	DIA	data,	we	believe	 it	 is	better	suited	 for	spectrum-centric	or	

hybrid	 strategies	 and	 comparisons	 of	 related	 samples,	 analyzed	 using	 the	 same	 spectral	

library.	

	

2. Comparison of spectrum-centric search and peptide-centric query space 

The	 number	 of	 queries	 influences	 π0	 in	 both	 spectrum-centric	 as	 well	 as	 peptide-centric	

scoring	approaches.	However,	one	important	distinction	between	the	spectrum-centric	and	

peptide-centric	scoring	approach	is	the	definition	and	effect	of	the	search	or	query	space.	In	

spectrum-centric	 analyses,	 the	 protein	 sequence	 database	 defines	 the	 search	 space	 and	

directly	 influences	 π0	 and	 thus	 the	 error	 rate	 estimation.	 In	 contrast,	 the	 query	 space	 in	

peptide-centric	 scoring	 is	 defined	 by	 the	 acquired	 DIA	 data1	 and	 can	 be	 refined	 by	 the	

peptide	ion	specific	parameters	such	as	the	relative	retention	time	window.	Here,	the	query	
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space	limits	the	number	of	detected	peak	groups	competing	for	the	best	scoring	evidence	of	

detection	without	directly	influencing	π0.	

	

3. Tradeoff between spectral library specificity and comprehensiveness 

In	many	studies,	direct	DDA	analysis	of	the	samples	of	interest	resulted	in	a	spectral	library	

that	is	smaller	than	the	set	of	detectable	peptides	in	the	corresponding	DIA	data,	an	effect	

that	may	have	some	instrument	dependence.	This	is	demonstrated	by	the	observation	that	

employing	 spectral	 libraries	made	by	 fractionation	of	 the	 sample	 for	DDA	analysis,	 or	 the	

use	of	 repository-scale	 spectral	 libraries	 can	 increase	 the	 sensitivity	 in	 the	analysis	of	DIA	

data2-4	at	 the	cost	of	 increasing	π0.	Recent	algorithmic	developments	 for	spectrum-centric	

analysis	 of	 DIA	 data	 like	 DIA-Umpire5	 support	 peptide	 queries	 based	 on	 sample-specific	

spectral	 libraries	 generated	 directly	 from	 the	 DIA	 data.	 However,	 since	 many	 proteomic	

studies	 focus	 on	 comparing	 different	 experimental	 conditions	 or	 perturbations,	 it	 is	

desirable	 to	 target	 peptides	 of	 interest	 across	 all	 samples.	 In	 this	 scenario,	 the	 peptide	

queries	 and	 correspondingly	 the	 individual	 π0	 will	 grow	 rapidly	 with	 the	 sample	

heterogeneity	and	cohort	size.	This	is	particularly	relevant	in	clinical	cohort	studies,	where	a	

large	number	of	related	but	different	samples	are	compared.		

	

In	 a	 recent	 study6,	 Muntel	 et	 al.	 investigated	 the	 human	 urinary	 proteome	 in	 triplicate,	

using	 sample-specific	 libraries	 as	 well	 as	 the	 same	 combined	 human	 assay	 library	 (CAL)3	

used	 in	 this	 study.	The	data	used	 to	generate	 the	CAL	did	not	contain	any	measurements	

from	 urinary	 samples	 and	 therefore	 only	 partially	 represented	 the	 proteins	 and	 peptides	

contained	 in	 the	 urinary	 sample-specific	 libraries.	 The	 authors	 analyzed	 the	 triplicate	

samples	using	 the	respective	spectral	 libraries	 independently	 to	define	a	cumulative,	 total	

set	 of	 detectable	 peptides	 across	 each	 triplicate	 analysis.	 To	 assess	 the	 reproducibility	 of	

detection,	they	computed	the	fraction	of	peptides	that	could	be	detected	in	all	replicates	as	

comparison	metric.	 For	 sample-specific	 spectral	 libraries,	 signals	 representing	 69%	 of	 the	

globally	detectable	peptides	were	detected	 in	all	 three	 replicates.	 In	contrast,	 if	 the	same	

DIA	data	were	queried	with	the	peptide	query	parameters	of	the	complete	CAL,	only	26%	of	

the	 globally	 detectable	 peptides	 were	 detected	 in	 all	 three	 replicates.	 To	 investigate	 the	

reason	for	this	discrepancy,	the	authors	generated	a	specific	 instance	of	a	human	spectral	
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library	that	consisted	of	the	subset	of	peptides	from	the	CAL	that	were	also	contained	in	the	

sample-specific	spectral	library.	This	resulted	in	consistent	detection	in	all	replicates	for	71%	

of	 the	 globally	 detectable	 peptides,	 a	 value	 comparable	 to	 the	 results	 obtained	 from	 a	

sample-specific	 library.	This	 indicates	that	 the	peptide	query	parameters	derived	from	the	

CAL	 are	 similarly	 specific	 and	 sensitive	 as	 the	 ones	 from	 the	 sample-specific	 library.	 The	

authors	 concluded	 that	 due	 to	 a	 very	 high	 π0,	 the	 observed	 effects	 on	 reproducibility	

originated	 from	 the	 multiple	 hypothesis	 testing	 correction.	 Especially	 in	 their	 specific	

situation,	where	the	combined	library	covered	the	urinary	proteome	poorly,	sample-specific	

spectral	 libraries	 perform	 superior.	 Therefore,	 in	 specific	 samples,	 where	 the	 peptide	

prevalence	 in	 the	 reference	 spectral	 library	 is	 likely	 to	 be	 low,	 such	 as	 urinary	 or	 plasma	

proteomes,	AP-MS	digests	or	other	 specific	 sub-proteomes,	 it	 is	 crucial	 to	either	optimize	

the	library	or	to	adjust	the	error	rate	controlling	efforts.	

	

4. Implementations for context-dependent estimation of error rates 

Q-value	or	FDR	estimation	in	different	contexts	has	been	implemented	in	several	variations	

and	under	different	names.	For	example,	PeptideProphet7,	ProteinProphet8,	OpenSWATH2	

and	 Spectronaut9	 among	 many	 other	 algorithms	 provide	 metrics	 on	 a	 run-specific	 level.	

Percolator10,	 mQuest/mProphet11,	 iProphet12	 or	 TRIC13	 estimate	 the	 statistics	 in	 an	

experiment-wide	 context	when	 applied	 to	 several	 runs	 together.	 Algorithms	 like	 iProphet	

use	 estimated	 posterior	 error	 probabilities	 that	were	 individually	 computed	 per	 run	with	

different	 π0	 (and	 optionally	 updated	with	 evidence	 from	other	 runs)	 to	 then	 estimate	 an	

experiment-wide	 FDR	 on	 peptide	 sequence-level.	 Mayu14,	 Andromeda15	 and	

ProteinInferencer16	are	examples	for	tools	that	can	provide	statistics	in	a	global	context.	

	

5. Instrument and algorithm-specific considerations 

It	 is	 important	 to	 consider	 that	 the	 discussed	 effects	 of	 spectral	 library	 specificity	 and	

experimental	 contexts	are	valid	only	under	 the	assumptions	 that	 the	 individual	 runs	were	

acquired	 on	 similar	 instruments	 and	 analyzed	 with	 identical	 parameters.	 If	 these	

assumptions	are	not	fulfilled,	grouping	per	condition,	e.g.	per	instrument	or	parameter	set	

and	 separate	 error	 rate	 control	 is	 necessary17.	 Further,	 different	 computational	methods	

and	parameters	might	have	an	effect	on	 the	 scale	of	error	accumulation.	 For	example,	 in	
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this	 comparison,	we	applied	 the	original	parametric	model	of	mProphet11.	However,	non-

parametric	approaches10,18	can	be	more	appropriate	if	the	parametric	assumptions	are	not	

fulfilled.	 Applied	 to	 the	 plasma	 data	 set,	 we	 found	 that	 non-parametric	 approaches	 are	

much	more	 restrictive,	 lowering	 the	 accumulation	 of	 peptide	 detections	 across	 the	more	

than	 200	 runs	 (Supplementary	 Figure	 7).	 Nevertheless,	 the	 error	 accumulates	 on	 the	

protein-level,	 illustrating	 that	 even	 improved	 scoring	 functions	 and	 confidence	 estimates	

require	reporting	of	results	at	appropriate	levels.	

	

6. Strategies to reduce the query space for spectral libraries 

We	have	previously	 described	 and	 implemented	 simple	methods	 to	 filter	 peptide	queries	

for	 protein	 identifier	 sets,	 generated	 according	 to	 specific	 research	 questions,	 e.g.	

preliminary	candidates	or	disease	association3.	Other	strategies	based	on	prior	knowledge,	

such	as	matched	transcript	data,	could	also	facilitate	a	reduction	in	the	number	of	queries.	

In	spectrum-centric	data	analysis,	 reduction	of	 the	query	space	based	on	prior	knowledge	

such	 as	 likelihood	 of	 observing	 a	 particular	 peptide	 or	 protein	 based	 on	 global	 GPMDB	

data19	 or	 using	 complementary	 data	 such	 as	 RNA-Seq20,	 or	 using	 the	 knowledge	 derived	

from	the	data	being	analyzed,	as	in	e.g.	using	iterative	database	searching21	(reviewed	e.g.	

in	 22,23),	 have	 proven	 to	 be	 useful	 strategies	 in	 specific	 applications24.	 However,	 in	many	

studies,	 the	 proteins	 of	 interest	 are	 not	 known	 a	 priori.	 A	 recent	 publication	 adapting	

spectral	 library	searching	 for	DIA	data	suggested	peptide	query	optimization	directly	 from	

the	 data	 to	 decrease	 the	 number	 of	 absent	 peptides	 queried	 by	 peptide-centric	 targeted	

data	 extraction	 tools25.	 As	 with	 the	 strategies	 developed	 for	 spectrum-centric	 DDA	 data,	

data-driven	 reduction	 of	 putative	 not	 detectable	 targets	 in	 peptide-centric	 scoring	 is	

conceptually	attractive	because	no	prior	knowledge	would	be	required.	 	
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Supplementary Figures 

	

	
Figure	S1.	Q-value	estimation	on	peptide	query-,	peptide-	and	protein-level.	The	peptide	

query-,	 peptide-	 and	 protein-level	 discriminant	 score	 density	 plots	 (a)	 and	 p-value	

histograms26	(b)	for	one	DIA	run	of	the	SWATH-MS	inter-laboratory	study	analyzed	with	the	

combined	human	assay	library	(CAL)	are	depicted.	a)	The	distributions	indicate	a	large	false	

target	 to	 total	 target	 ratio	 (π0	≈	0.6)	 on	 peptide	 query-level.	 The	 q-value	 estimation	 was	

adapted	for	peptide-	and	protein-level	by	using	the	best	scoring	peak	group	per	peptide	or	

protein	across	all	samples	for	both	targets	and	decoys.	The	false	target	to	total	target	ratio	

decreases	 slightly	 on	 peptide-level	 and	more	 on	 protein-level	 (π0	≈	0.5),	 compared	 to	 the	

peptide	 query-level.	 b)	 On	 peptide	 query-	 and	 peptide-levels,	 the	 estimation	 of	 π0	 is	

anticonservative,	 indicated	 by	 lower	 density	 of	 p-values	 after	 the	 p-value	 threshold	 of	

λ	=	0.4.	On	the	protein-level,	the	estimation	of	π0	is	more	accurate	with	a	consistent	density	

of	p-values26.	
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Figure	 S2.	 Influence	 of	 protein	 length	 on	 the	 peptide	 query-	 and	 protein-level	 q-value	

estimation.	 a)	 Protein	 length	 distribution	 of	 all	 proteins	 in	 the	 combined	 human	 assay	

library	(CAL),	all	proteins	inferred	at	1%	peptide	query-level	FDR	in	the	global	context	of	all	

229	DIA	runs	of	the	SWATH-MS	interlaboratory	comparison	study,	and	all	proteins	inferred	

at	 1%	global	 protein	 FDR	 respectively.	b)	Histogram	of	 protein	 length	distribution	 for	 the	

differently	filtered	protein	subsets	of	the	CAL.	The	distributions	show	that	there	 is	no	bias	

for	 protein	 length	when	 selecting	 the	 best	 peak	 group	 as	 proxy	 for	 protein-level	 q-value	

estimation.		
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Figure	S3.	Decoy	accumulation	across	multiple	runs.	The	number	of	cumulatively	detected	

peak	group	decoys	(a),	peptide	decoys	(b)	and	protein	decoys	(c)	is	shown	for	229	DIA	runs	

of	the	SWATH-MS	inter-laboratory	comparison	data	set27.		
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Figure	 S4.	 Analyte	 accumulation	 across	 multiple	 runs	 (5%	 FDR).	 The	 number	 of	

cumulatively	detected	peak	groups	 (a),	peptides	 (b)	and	proteins	 (c)	 is	 shown	for	229	DIA	

runs	of	the	SWATH-MS	inter-laboratory	comparison	data	set27.	
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Figure	S5.	Decoy	accumulation	across	multiple	runs	(5%	FDR).	The	number	of	cumulatively	

detected	peak	group	decoys	(a),	peptide	decoys	(b)	and	protein	decoys	(c)	is	shown	for	229	

DIA	runs	of	the	SWATH-MS	inter-laboratory	comparison	data	set27.	
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Figure	S6.	Combined	human	and	M.	tuberculosis	spectral	 library	analysis.	a)	The	peptide-

level	 discriminant	 score	 density	 of	 human	 targets,	 human	 decoys,	M.	 tuberculosis	 (Mtb)	

targets,	and	Mtb	decoys	is	shown	for	global	analysis	of	the	229	DIA	runs	of	the	SWATH-MS	

inter-laboratory	 comparison	 data	 set27	 applying	 the	 combined	 human	 and	 Mtb	 spectral	

library.	 The	Mtb	 targets	 and	 decoys	 show	 a	 similar	 distribution	 compared	 to	 the	 human	

decoys	 and	 the	 fraction	 of	 false	 human	 targets.	 The	 number	 of	 cumulatively	 detected	

peptides	is	shown	for	human	targets	(b),	human	decoys	(c),	Mtb	targets	(d),	and	Mtb	decoys	

(e)	 from	 the	 combined	 human	 and	Mtb	 spectral	 library	 with	 different	 error	 rate	 control	
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strategies.	The	Mtb	decoy	to	target	ratio	is	0.82,	explaining	the	absolute	higher	number	of	

the	accumulated	Mtb	targets.	
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Figure	S7.	Analyte	accumulation	across	multiple	runs	in	the	plasma	dataset	(1%	FDR).	The	

number	of	cumulatively	detected	peak	groups	(a),	peptides	(b)	and	proteins	(c)	is	shown	for	

the	246	DIA	 runs	of	 the	plasma	data	set28	analyzed	with	 the	non-parametric	model	 for	q-

value	estimation.	
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Supplementary Tables 

Term Definition 
Spectrum-centric 

scoring 
Analysis	of	MS/MS	spectra	by	assigning	candidate	peptide	sequences	
from	databases	to	each	spectrum.	“To	which	peptide	sequence	does	
the	spectrum	match	best?”1	

Peptide-centric 
scoring 

Analysis	of	MS/MS	spectra	or	ion	chromatograms	by	querying	peptides	
to	detect	evidence	for	analyte	presence.	“Is	this	peptide	detected	in	
the	data?”1	

Transition Pair	of	precursor	and	product	ion	m/z.	
Peptide query 

parameters 
Empirically	optimized	set	of	transitions	which	in	combination	enable	
selective	and	sensitive	detection	of	a	peptide	by	a	“peak	group”,	co-
eluting	fragment	ion	chromatograms.	Peptide	query	parameters	(also	
referred	to	as	“Tier	3”	assays29)	can	be	made	more	specific	by	
including	a	normalized	retention	time30	or	empirical	relative	fragment	
ion	intensities.	Multiple	sets	of	peptide	query	parameters,	e.g.	for	
different	precursor	charge	states,	can	be	used	per	peptide.	

Peptide query Targeted	data	extraction	and	scoring	of	DIA	spectra	using	peptide	
query	parameters	resulting	in	candidate	peak	groups,	of	which	
commonly	the	best	scoring	is	considered	to	originate	from	the	target	
peptide.	

Discriminant 
score 

The	discriminant	score	(also	abbreviated	as	d-score	here)	is	a	
combined	score	for	each	extracted	peak	group.	It	is	computed	in	the	
semi-supervised	learning	step	in	PyProphet,	from	the	initial	peak	
group	scores	such	as	peak	shape,	co-elution,	signal-to-noise-ratio,	etc.		

FDR False	discovery	rate31;	metric	used	for	the	control	of	the	error	rate	of	
detected	analytes	in	experiments	affected	by	the	multiple	testing	
problem.	

Q-value Measure	of	significance	of	a	detected	analyte	similar	to	the	p-value,	
but	accounting	for	the	multiple	testing	problem	analogously	to	the	
FDR.26,32	

π0 The	prior	probability	that	the	null	hypothesis	is	true,	i.e.	the	ratio	
between	undetectable	targets	(analytes	that	are	not	detectable	in	the	
queried	sample)	and	the	total	number	of	queried	targets.26	

Analyte level Peptide	query-,	peptide-	or	protein-level	metrics,	e.g.	a	protein	q-
value,	representing	the	significance	of	an	inferred	protein.	

Error rate context Run-specific,	experiment-wide	or	global	contexts	are	used	as	
attributes	to	specify	whether	an	analyte	metric,	e.g.	a	protein	q-value,	
should	be	interpreted	independently	per	run,	within	the	context	of	an	
experiment	expression	matrix	or	in	a	cumulative,	global	context.	

	

Table	1.	Glossary	and	definitions.	
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